메뉴 건너뛰기




Volumn 6, Issue 11, 2010, Pages

Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε

Author keywords

[No Author keywords available]

Indexed keywords

DNA; DNA DIRECTED DNA POLYMERASE; DNA DIRECTED DNA POLYMERASE BETA; DNA DIRECTED DNA POLYMERASE DELTA; DNA DIRECTED DNA POLYMERASE EPSILON; DNA DIRECTED DNA POLYMERASE ZETA; DPB3 PROTEIN; DPB4 PROTEIN; HOLOENZYME; NUCLEAR PROTEIN; PHOSPHODIESTERASE I; PROTEIN MLH1; PROTEIN MSH2; PROTEIN MSH6; PROTEIN PMS1; SPLEEN EXONUCLEASE; UNCLASSIFIED DRUG; DNA DIRECTED DNA POLYMERASE ALPHA; DNA DIRECTED DNA POLYMERASE GAMMA; DPB2 PROTEIN, S CEREVISIAE; EXONUCLEASE; PROTEIN SUBUNIT; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 78649701177     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1001209     Document Type: Article
Times cited : (62)

References (71)
  • 1
    • 10044241865 scopus 로고    scopus 로고
    • Functions of DNA polymerases
    • Bebenek K, Kunkel TA (2004) Functions of DNA polymerases. Adv Protein Chem 69: 137-165.
    • (2004) Adv Protein Chem , vol.69 , pp. 137-165
    • Bebenek, K.1    Kunkel, T.A.2
  • 2
    • 18044384092 scopus 로고    scopus 로고
    • DNA polymerases that propagate the eukaryotic DNA replication fork
    • Garg P, Burgers PM (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40: 115-128.
    • (2005) Crit Rev Biochem Mol Biol , vol.40 , pp. 115-128
    • Garg, P.1    Burgers, P.M.2
  • 3
    • 0035942104 scopus 로고    scopus 로고
    • The 39-.59 exonuclease of DNA polymerase delta can substitute for the 59 flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability
    • Jin YH, Obert R, Burgers PM, Kunkel TA, Resnick MA, et al. (2001) The 39-.59 exonuclease of DNA polymerase delta can substitute for the 59 flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci U S A 98: 5122-5127.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 5122-5127
    • Jin, Y.H.1    Obert, R.2    Burgers, P.M.3    Kunkel, T.A.4    Resnick, M.A.5
  • 4
    • 0037449727 scopus 로고    scopus 로고
    • Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 39-59-exonuclease activities of Pol delta in the creation of a ligatable nick
    • Jin YH, Ayyagari R, Resnick MA, Gordenin DA, Burgers PM (2003) Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 39-59-exonuclease activities of Pol delta in the creation of a ligatable nick. J Biol Chem 278: 1626-1633.
    • (2003) J Biol Chem , vol.278 , pp. 1626-1633
    • Jin, Y.H.1    Ayyagari, R.2    Resnick, M.A.3    Gordenin, D.A.4    Burgers, P.M.5
  • 5
    • 8644285427 scopus 로고    scopus 로고
    • Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication
    • Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM (2004) Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18: 2764-2773.
    • (2004) Genes Dev , vol.18 , pp. 2764-2773
    • Garg, P.1    Stith, C.M.2    Sabouri, N.3    Johansson, E.4    Burgers, P.M.5
  • 7
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase epsilon participates in leading-strand DNA replication
    • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317: 127-130.
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 8
    • 0029670573 scopus 로고    scopus 로고
    • 3′->5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae
    • Shcherbakova PV, Pavlov YI (1996) 3′->5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142: 717-726.
    • (1996) Genetics , vol.142 , pp. 717-726
    • Shcherbakova, P.V.1    Pavlov, Y.I.2
  • 9
    • 0028174896 scopus 로고
    • The 3′->5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae
    • Morrison A, Sugino A (1994) The 3′->5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet 242: 289-296.
    • (1994) Mol Gen Genet , vol.242 , pp. 289-296
    • Morrison, A.1    Sugino, A.2
  • 10
    • 0034595502 scopus 로고    scopus 로고
    • Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork
    • Karthikeyan R, Vonarx EJ, Straffon AF, Simon M, Faye G, et al. (2000) Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J Mol Biol 299: 405-419.
    • (2000) J Mol Biol , vol.299 , pp. 405-419
    • Karthikeyan, R.1    Vonarx, E.J.2    Straffon, A.F.3    Simon, M.4    Faye, G.5
  • 11
    • 30944452765 scopus 로고    scopus 로고
    • Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta
    • Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, et al. (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16: 202-207.
    • (2006) Curr Biol , vol.16 , pp. 202-207
    • Pavlov, Y.I.1    Frahm, C.2    McElhinny, N.S.A.3    Niimi, A.4    Suzuki, M.5
  • 12
    • 75749086797 scopus 로고    scopus 로고
    • DNA polymerases at the eukaryotic fork-20 years later
    • Pavlov YI, Shcherbakova PV (2010) DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 685: 45-53.
    • (2010) Mutat Res , vol.685 , pp. 45-53
    • Pavlov, Y.I.1    Shcherbakova, P.V.2
  • 13
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18: 521-527.
    • (2008) Trends Cell Biol , vol.18 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 14
    • 63249130106 scopus 로고    scopus 로고
    • Polymerase dynamics at the eukaryotic DNA replication fork
    • Burgers PM (2008) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284: 4041-4045.
    • (2008) J Biol Chem , vol.284 , pp. 4041-4045
    • Burgers, P.M.1
  • 15
    • 58549092765 scopus 로고    scopus 로고
    • Mechanisms of dealing with DNA damageinduced replication problems
    • Budzowska M, Kanaar R (2009) Mechanisms of dealing with DNA damageinduced replication problems. Cell Biochem Biophys 53: 17-31.
    • (2009) Cell Biochem Biophys , vol.53 , pp. 17-31
    • Budzowska, M.1    Kanaar, R.2
  • 16
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15-27.
    • (2006) Mol Cell , vol.21 , pp. 15-27
    • Lopes, M.1    Foiani, M.2    Sogo, J.M.3
  • 17
    • 77951699996 scopus 로고    scopus 로고
    • The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
    • Karras GI, Jentsch S (2010) The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141: 255-267.
    • (2010) Cell , vol.141 , pp. 255-267
    • Karras, G.I.1    Jentsch, S.2
  • 18
    • 77953694683 scopus 로고    scopus 로고
    • Ubiquitin-dependent DNA damage bypass is separable from genome replication
    • Daigaku Y, Davies AA, Ulrich HD (2010) Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465: 951-955.
    • (2010) Nature , vol.465 , pp. 951-955
    • Daigaku, Y.1    Davies, A.A.2    Ulrich, H.D.3
  • 19
    • 57649129186 scopus 로고    scopus 로고
    • The replisome uses mRNA as a primer after colliding with RNA polymerase
    • Pomerantz RT, O'Donnell M (2008) The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456: 762-766.
    • (2008) Nature , vol.456 , pp. 762-766
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 20
    • 0037515466 scopus 로고    scopus 로고
    • The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae
    • Chilkova O, Jonsson BH, Johansson E (2003) The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J Biol Chem 278: 14082-14086.
    • (2003) J Biol Chem , vol.278 , pp. 14082-14086
    • Chilkova, O.1    Jonsson, B.H.2    Johansson, E.3
  • 21
    • 0025805542 scopus 로고
    • DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae
    • Araki H, Hamatake RK, Johnston LH, Sugino A (1991) DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88: 4601-4605.
    • (1991) Proc Natl Acad Sci U S A , vol.88 , pp. 4601-4605
    • Araki, H.1    Hamatake, R.K.2    Johnston, L.H.3    Sugino, A.4
  • 22
    • 0042469481 scopus 로고    scopus 로고
    • Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication
    • Feng W, Rodriguez-Menocal L, Tolun G, D'Urso G (2003) Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication. Mol Biol Cell 14: 3427-3436.
    • (2003) Mol Biol Cell , vol.14 , pp. 3427-3436
    • Feng, W.1    Rodriguez-Menocal, L.2    Tolun, G.3    D'Urso, G.4
  • 23
    • 1842689859 scopus 로고    scopus 로고
    • Cell cycledependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase
    • Kesti T, McDonald WH, Yates JR, III, Wittenberg C (2004) Cell cycledependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. J Biol Chem 279: 14245-14255.
    • (2004) J Biol Chem , vol.279 , pp. 14245-14255
    • Kesti, T.1    McDonald, W.H.2    Yates III., J.R.3    Wittenberg, C.4
  • 24
    • 40849084036 scopus 로고    scopus 로고
    • Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae
    • Jaszczur M, Flis K, Rudzka J, Kraszewska J, Budd ME, et al. (2008) Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics 178: 633-647.
    • (2008) Genetics , vol.178 , pp. 633-647
    • Jaszczur, M.1    Flis, K.2    Rudzka, J.3    Kraszewska, J.4    Budd, M.E.5
  • 25
    • 70349106715 scopus 로고    scopus 로고
    • Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae
    • Jaszczur M, Rudzka J, Kraszewska J, Flis K, Polaczek P, et al. (2009) Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae. Mutat Res 669: 27-35.
    • (2009) Mutat Res , vol.669 , pp. 27-35
    • Jaszczur, M.1    Rudzka, J.2    Kraszewska, J.3    Flis, K.4    Polaczek, P.5
  • 26
    • 0025825976 scopus 로고
    • Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae
    • Araki H, Hamatake RK, Morrison A, Johnson AL, Johnston LH, et al. (1991) Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Nucleic Acids Res 19: 4867-4872.
    • (1991) Nucleic Acids Res , vol.19 , pp. 4867-4872
    • Araki, H.1    Hamatake, R.K.2    Morrison, A.3    Johnson, A.L.4    Johnston, L.H.5
  • 28
    • 0034725647 scopus 로고    scopus 로고
    • Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon
    • Li Y, Pursell ZF, Linn S (2000) Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J Biol Chem 275: 31554.
    • (2000) J Biol Chem , vol.275 , pp. 31554
    • Li, Y.1    Pursell, Z.F.2    Linn, S.3
  • 29
    • 0242708802 scopus 로고    scopus 로고
    • Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly
    • Tsubota T, Maki S, Kubota H, Sugino A, Maki H (2003) Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells 8: 873-888.
    • (2003) Genes Cells , vol.8 , pp. 873-888
    • Tsubota, T.1    Maki, S.2    Kubota, H.3    Sugino, A.4    Maki, H.5
  • 30
    • 0346363763 scopus 로고    scopus 로고
    • Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae
    • Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24: 217-227.
    • (2004) Mol Cell Biol , vol.24 , pp. 217-227
    • Iida, T.1    Araki, H.2
  • 32
    • 30044434363 scopus 로고    scopus 로고
    • Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryoelectron microscopy
    • Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, et al. (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryoelectron microscopy. Nat Struct Mol Biol 13: 35-43.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 35-43
    • Asturias, F.J.1    Cheung, I.K.2    Sabouri, N.3    Chilkova, O.4    Wepplo, D.5
  • 33
    • 0032915375 scopus 로고    scopus 로고
    • Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations
    • Shcherbakova PV, Kunkel TA (1999) Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 19: 3177-3183.
    • (1999) Mol Cell Biol , vol.19 , pp. 3177-3183
    • Shcherbakova, P.V.1    Kunkel, T.A.2
  • 34
    • 0030962035 scopus 로고    scopus 로고
    • Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants
    • Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA (1997) Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17: 2859-2865.
    • (1997) Mol Cell Biol , vol.17 , pp. 2859-2865
    • Tran, H.T.1    Keen, J.D.2    Kricker, M.3    Resnick, M.A.4    Gordenin, D.A.5
  • 35
    • 0032588388 scopus 로고    scopus 로고
    • The 3′->5′ exonucleases of DNA polymerases delta and epsilon and the 5′->3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae
    • Tran HT, Gordenin DA, Resnick MA (1999) The 3′->5′ exonucleases of DNA polymerases delta and epsilon and the 5′->3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19: 2000-2007.
    • (1999) Mol Cell Biol , vol.19 , pp. 2000-2007
    • Tran, H.T.1    Gordenin, D.A.2    Resnick, M.A.3
  • 36
    • 0033624527 scopus 로고    scopus 로고
    • A DNA polymerase epsilon mutant that specifically causes +1 frameshift mutations within homonucleotide runs in yeast
    • Kirchner JM, Tran H, Resnick MA (2000) A DNA polymerase epsilon mutant that specifically causes +1 frameshift mutations within homonucleotide runs in yeast. Genetics 155: 1623-1632.
    • (2000) Genetics , vol.155 , pp. 1623-1632
    • Kirchner, J.M.1    Tran, H.2    Resnick, M.A.3
  • 37
    • 34547118370 scopus 로고    scopus 로고
    • The Dpb4 subunit of ISW2 is anchored to extranucleosomal DNA
    • Dang W, Kagalwala MN, Bartholomew B (2007) The Dpb4 subunit of ISW2 is anchored to extranucleosomal DNA. J Biol Chem 282: 19418-19425.
    • (2007) J Biol Chem , vol.282 , pp. 19418-19425
    • Dang, W.1    Kagalwala, M.N.2    Bartholomew, B.3
  • 38
    • 67649668797 scopus 로고    scopus 로고
    • Conformational changes associated with template commitment in ATPdependent chromatin remodeling by ISW2
    • Gangaraju VK, Prasad P, Srour A, Kagalwala MN, Bartholomew B (2009) Conformational changes associated with template commitment in ATPdependent chromatin remodeling by ISW2. Mol Cell 35: 58-69.
    • (2009) Mol Cell , vol.35 , pp. 58-69
    • Gangaraju, V.K.1    Prasad, P.2    Srour, A.3    Kagalwala, M.N.4    Bartholomew, B.5
  • 39
    • 0028857175 scopus 로고
    • Analyzing fidelity of DNA polymerases
    • Bebenek K, Kunkel TA (1995) Analyzing fidelity of DNA polymerases. Methods Enzymol 262: 217-232.
    • (1995) Methods Enzymol , vol.262 , pp. 217-232
    • Bebenek, K.1    Kunkel, T.A.2
  • 41
    • 10044266718 scopus 로고    scopus 로고
    • Cellular functions of DNA polymerase zeta and Rev1 protein
    • Lawrence CW (2004) Cellular functions of DNA polymerase zeta and Rev1 protein. Adv Protein Chem 69: 167-203.
    • (2004) Adv Protein Chem , vol.69 , pp. 167-203
    • Lawrence, C.W.1
  • 42
    • 74249092035 scopus 로고    scopus 로고
    • Participation of DNA Polymerase {zeta} in Replication of Undamaged DNA in Saccharomyces cerevisiae
    • Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV (2009) Participation of DNA Polymerase {zeta} in Replication of Undamaged DNA in Saccharomyces cerevisiae. Genetics 184: 27-42.
    • (2009) Genetics , vol.184 , pp. 27-42
    • Northam, M.R.1    Robinson, H.A.2    Kochenova, O.V.3    Shcherbakova, P.V.4
  • 43
    • 33748941448 scopus 로고    scopus 로고
    • The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins
    • Zhong X, Garg P, Stith CM, Nick McElhinny SA, Kissling GE, et al. (2006) The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 34: 4731-4742.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4731-4742
    • Zhong, X.1    Garg, P.2    Stith, C.M.3    McElhinny, N.S.A.4    Kissling, G.E.5
  • 44
    • 0034805293 scopus 로고    scopus 로고
    • In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta
    • Pavlov YI, Shcherbakova PV, Kunkel TA (2001) In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Genetics 159: 47-64.
    • (2001) Genetics , vol.159 , pp. 47-64
    • Pavlov, Y.I.1    Shcherbakova, P.V.2    Kunkel, T.A.3
  • 45
    • 0034500024 scopus 로고    scopus 로고
    • DNA mismatch repair and genetic instability
    • Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34: 359-399.
    • (2000) Annu Rev Genet , vol.34 , pp. 359-399
    • Harfe, B.D.1    Jinks-Robertson, S.2
  • 46
    • 0032925857 scopus 로고    scopus 로고
    • Genetic factors affecting the impact of DNA polymerase delta proofreading activity on mutation avoidance in yeast
    • Tran HT, Degtyareva NP, Gordenin DA, Resnick MA (1999) Genetic factors affecting the impact of DNA polymerase delta proofreading activity on mutation avoidance in yeast. Genetics 152: 47-59.
    • (1999) Genetics , vol.152 , pp. 47-59
    • Tran, H.T.1    Degtyareva, N.P.2    Gordenin, D.A.3    Resnick, M.A.4
  • 47
    • 0036242094 scopus 로고    scopus 로고
    • Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway
    • Huang ME, Rio AG, Galibert MD, Galibert F (2002) Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics 160: 1409-1422.
    • (2002) Genetics , vol.160 , pp. 1409-1422
    • Huang, M.E.1    Rio, A.G.2    Galibert, M.D.3    Galibert, F.4
  • 48
    • 36248991353 scopus 로고    scopus 로고
    • The eukaryotic leading and lagging strand DNA polymerases are loaded onto primerends via separate mechanisms but have comparable processivity in the presence of PCNA
    • Chilkova O, Stenlund P, Isoz I, Stith CM, Grabowski P, et al. (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primerends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35: 6588-6597.
    • (2007) Nucleic Acids Res , vol.35 , pp. 6588-6597
    • Chilkova, O.1    Stenlund, P.2    Isoz, I.3    Stith, C.M.4    Grabowski, P.5
  • 49
    • 0033800646 scopus 로고    scopus 로고
    • Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta
    • Kokoska RJ, Stefanovic L, DeMai J, Petes TD (2000) Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol Cell Biol 20: 7490-7504.
    • (2000) Mol Cell Biol , vol.20 , pp. 7490-7504
    • Kokoska, R.J.1    Stefanovic, L.2    DeMai, J.3    Petes, T.D.4
  • 50
    • 0345628659 scopus 로고    scopus 로고
    • Characterization of the repeat-tract instability and mutator phenotypes conferred by a Tn3 insertion in RFC1, the large subunit of the yeast clamp loader
    • Xie Y, Counter C, Alani E (1999) Characterization of the repeat-tract instability and mutator phenotypes conferred by a Tn3 insertion in RFC1, the large subunit of the yeast clamp loader. Genetics 151: 499-509.
    • (1999) Genetics , vol.151 , pp. 499-509
    • Xie, Y.1    Counter, C.2    Alani, E.3
  • 51
    • 1642403670 scopus 로고    scopus 로고
    • Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity
    • Niimi A, Limsirichaikul S, Yoshida S, Iwai S, Masutani C, et al. (2004) Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity. Mol Cell Biol 24: 2734-2746.
    • (2004) Mol Cell Biol , vol.24 , pp. 2734-2746
    • Niimi, A.1    Limsirichaikul, S.2    Yoshida, S.3    Iwai, S.4    Masutani, C.5
  • 52
    • 0032109778 scopus 로고    scopus 로고
    • Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
    • Chen C, Umezu K, Kolodner RD (1998) Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2: 9-22.
    • (1998) Mol Cell , vol.2 , pp. 9-22
    • Chen, C.1    Umezu, K.2    Kolodner, R.D.3
  • 53
    • 57149094856 scopus 로고    scopus 로고
    • Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae
    • doi:10.1371/journal.pgen.1000264
    • Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA (2008) Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4: e1000264. doi:10.1371/journal.pgen.1000264.
    • (2008) PLoS Genet , vol.4
    • Yang, Y.1    Sterling, J.2    Storici, F.3    Resnick, M.A.4    Gordenin, D.A.5
  • 54
    • 19944401050 scopus 로고    scopus 로고
    • The multiple biological roles of the 3′->5′ exonuclease of Saccharomyces cerevisiae DNA polymerase delta require switching between the polymerase and exonuclease domains
    • Jin YH, Garg P, Stith CM, Al-Refai H, Sterling JF, et al. (2005) The multiple biological roles of the 3′->5′ exonuclease of Saccharomyces cerevisiae DNA polymerase delta require switching between the polymerase and exonuclease domains. Mol Cell Biol 25: 461-471.
    • (2005) Mol Cell Biol , vol.25 , pp. 461-471
    • Jin, Y.H.1    Garg, P.2    Stith, C.M.3    Al-Refai, H.4    Sterling, J.F.5
  • 56
    • 17044448600 scopus 로고    scopus 로고
    • Genomic instability induced by mutations in Saccharomyces cerevisiae POL1
    • Gutierrez PJ, Wang TS (2003) Genomic instability induced by mutations in Saccharomyces cerevisiae POL1. Genetics 165: 65-81.
    • (2003) Genetics , vol.165 , pp. 65-81
    • Gutierrez, P.J.1    Wang, T.S.2
  • 57
    • 0029825072 scopus 로고    scopus 로고
    • The prevention of repeatassociated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions
    • Tran HT, Gordenin DA, Resnick MA (1996) The prevention of repeatassociated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics 143: 1579-1587.
    • (1996) Genetics , vol.143 , pp. 1579-1587
    • Tran, H.T.1    Gordenin, D.A.2    Resnick, M.A.3
  • 59
    • 37249019677 scopus 로고    scopus 로고
    • Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA
    • Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21: 3342-3355.
    • (2007) Genes Dev , vol.21 , pp. 3342-3355
    • Mojas, N.1    Lopes, M.2    Jiricny, J.3
  • 60
    • 65249132383 scopus 로고    scopus 로고
    • The mismatch repair system promotes DNA polymerase zeta-dependent translesion synthesis in yeast
    • Lehner K, Jinks-Robertson S (2009) The mismatch repair system promotes DNA polymerase zeta-dependent translesion synthesis in yeast. Proc Natl Acad Sci U S A 106: 5749-5754.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 5749-5754
    • Lehner, K.1    Jinks-Robertson, S.2
  • 61
    • 33846404877 scopus 로고    scopus 로고
    • DNA polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse
    • Delbos F, Aoufouchi S, Faili A, Weill JC, Reynaud CA (2007) DNA polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. J Exp Med 204: 17-23.
    • (2007) J Exp Med , vol.204 , pp. 17-23
    • Delbos, F.1    Aoufouchi, S.2    Faili, A.3    Weill, J.C.4    Reynaud, C.A.5
  • 62
    • 70350126567 scopus 로고    scopus 로고
    • DNA polymerase {varepsilon} and {delta} proofreading suppress discrete mutator and cancer phenotypes in mice
    • Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, et al. (2009) DNA polymerase {varepsilon} and {delta} proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci U S A.
    • (2009) Proc Natl Acad Sci U S A
    • Albertson, T.M.1    Ogawa, M.2    Bugni, J.M.3    Hays, L.E.4    Chen, Y.5
  • 63
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541-1553.
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 64
    • 3242736410 scopus 로고    scopus 로고
    • Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations
    • Pavlov YI, Maki S, Maki H, Kunkel TA (2004) Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations. BMC Biol 2: 11.
    • (2004) BMC Biol , vol.2 , pp. 11
    • Pavlov, Y.I.1    Maki, S.2    Maki, H.3    Kunkel, T.A.4
  • 65
    • 0026004621 scopus 로고
    • Eukaryotic DNA polymerase amino acid sequence required for 3′->5′ exonuclease activity
    • Morrison A, Bell JB, Kunkel TA, Sugino A (1991) Eukaryotic DNA polymerase amino acid sequence required for 3′->5′ exonuclease activity. Proc Natl Acad Sci U S A 88: 9473-9477.
    • (1991) Proc Natl Acad Sci U S A , vol.88 , pp. 9473-9477
    • Morrison, A.1    Bell, J.B.2    Kunkel, T.A.3    Sugino, A.4
  • 66
    • 0035942104 scopus 로고    scopus 로고
    • The 3′->5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability
    • Jin YH, Obert R, Burgers PM, Kunkel TA, Resnick MA, et al. (2001) The 3′->5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci U S A 98: 5122-5127.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 5122-5127
    • Jin, Y.H.1    Obert, R.2    Burgers, P.M.3    Kunkel, T.A.4    Resnick, M.A.5
  • 67
    • 0038371133 scopus 로고    scopus 로고
    • Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast
    • Pavlov YI, Mian IM, Kunkel TA (2003) Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 13: 744-748.
    • (2003) Curr Biol , vol.13 , pp. 744-748
    • Pavlov, Y.I.1    Mian, I.M.2    Kunkel, T.A.3
  • 68
    • 0029908575 scopus 로고    scopus 로고
    • Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases
    • Shcherbakova PV, Noskov VN, Pshenichnov MR, Pavlov YI (1996) Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases. Mutat Res 369: 33-44.
    • (1996) Mutat Res , vol.369 , pp. 33-44
    • Shcherbakova, P.V.1    Noskov, V.N.2    Pshenichnov, M.R.3    Pavlov, Y.I.4
  • 69
    • 0023264512 scopus 로고
    • Statistical test for the comparison of samples from mutational spectra
    • Adams WT, Skopek TR (1987) Statistical test for the comparison of samples from mutational spectra. J Mol Biol 194: 391-396.
    • (1987) J Mol Biol , vol.194 , pp. 391-396
    • Adams, W.T.1    Skopek, T.R.2
  • 71
    • 0347379857 scopus 로고    scopus 로고
    • The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4
    • Kokoska RJ, McCulloch SD, Kunkel TA (2003) The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. J Biol Chem 278: 50537-50545.
    • (2003) J Biol Chem , vol.278 , pp. 50537-50545
    • Kokoska, R.J.1    McCulloch, S.D.2    Kunkel, T.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.