메뉴 건너뛰기




Volumn 30, Issue 2, 2008, Pages 137-144

Division of Labor at the Eukaryotic Replication Fork

Author keywords

CELLCYCLE; DNA

Indexed keywords

DEOXYCYTIDINE TRIPHOSPHATE; DEOXYGUANOSINE TRIPHOSPHATE; DNA DIRECTED DNA POLYMERASE DELTA;

EID: 42949119884     PISSN: 10972765     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.molcel.2008.02.022     Document Type: Article
Times cited : (381)

References (37)
  • 1
    • 0032584599 scopus 로고    scopus 로고
    • Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta
    • Burgers P.M., and Gerik K.J. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273 (1998) 19756-19762
    • (1998) J. Biol. Chem. , vol.273 , pp. 19756-19762
    • Burgers, P.M.1    Gerik, K.J.2
  • 2
    • 33749991391 scopus 로고    scopus 로고
    • The rise, fall and renaissance of microsatellites in eukaryotic genomes
    • Buschiazzo E., and Gemmell N.J. The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 28 (2006) 1040-1050
    • (2006) Bioessays , vol.28 , pp. 1040-1050
    • Buschiazzo, E.1    Gemmell, N.J.2
  • 3
    • 0032491540 scopus 로고    scopus 로고
    • Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway
    • Dua R., Levy D.L., and Campbell J.L. Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. J. Biol. Chem. 273 (1998) 30046-30055
    • (1998) J. Biol. Chem. , vol.273 , pp. 30046-30055
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 4
    • 0033529497 scopus 로고    scopus 로고
    • Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae Pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain
    • Dua R., Levy D.L., and Campbell J.L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae Pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274 (1999) 22283-22288
    • (1999) J. Biol. Chem. , vol.274 , pp. 22283-22288
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 5
    • 0028813895 scopus 로고
    • Microsatellite instability in inherited and sporadic neoplasms
    • Eshleman J.R., and Markowitz S.D. Microsatellite instability in inherited and sporadic neoplasms. Curr. Opin. Oncol. 7 (1995) 83-89
    • (1995) Curr. Opin. Oncol. , vol.7 , pp. 83-89
    • Eshleman, J.R.1    Markowitz, S.D.2
  • 6
    • 0034955240 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control
    • Feng W., and D'Urso G. Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol. Cell. Biol. 21 (2001) 4495-4504
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4495-4504
    • Feng, W.1    D'Urso, G.2
  • 7
    • 1642351959 scopus 로고    scopus 로고
    • Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts
    • Fukui T., Yamauchi K., Muroya T., Akiyama M., Maki H., Sugino A., and Waga S. Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts. Genes Cells 9 (2004) 179-191
    • (2004) Genes Cells , vol.9 , pp. 179-191
    • Fukui, T.1    Yamauchi, K.2    Muroya, T.3    Akiyama, M.4    Maki, H.5    Sugino, A.6    Waga, S.7
  • 8
    • 33646490558 scopus 로고    scopus 로고
    • Mechanism of a genetic glissando: structural biology of indel mutations
    • Garcia-Diaz M., and Kunkel T.A. Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem. Sci. 31 (2006) 206-214
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 206-214
    • Garcia-Diaz, M.1    Kunkel, T.A.2
  • 9
    • 18044384092 scopus 로고    scopus 로고
    • DNA polymerases that propagate the eukaryotic DNA replication fork
    • Garg P., and Burgers P.M. DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol. 40 (2005) 115-128
    • (2005) Crit. Rev. Biochem. Mol. Biol. , vol.40 , pp. 115-128
    • Garg, P.1    Burgers, P.M.2
  • 10
    • 8644285427 scopus 로고    scopus 로고
    • Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication
    • Garg P., Stith C.M., Sabouri N., Johansson E., and Burgers P.M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 18 (2004) 2764-2773
    • (2004) Genes Dev. , vol.18 , pp. 2764-2773
    • Garg, P.1    Stith, C.M.2    Sabouri, N.3    Johansson, E.4    Burgers, P.M.5
  • 11
    • 0034500024 scopus 로고    scopus 로고
    • DNA mismatch repair and genetic instability
    • Harfe B.D., and Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34 (2000) 359-399
    • (2000) Annu. Rev. Genet. , vol.34 , pp. 359-399
    • Harfe, B.D.1    Jinks-Robertson, S.2
  • 12
    • 0032903092 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae protein YJR043C (Pol32) interacts with the catalytic subunit of DNA polymerase alpha and is required for cell cycle progression in G2/M
    • Huang M.E., Le Douarin B., Henry C., and Galibert F. The Saccharomyces cerevisiae protein YJR043C (Pol32) interacts with the catalytic subunit of DNA polymerase alpha and is required for cell cycle progression in G2/M. Mol. Gen. Genet. 260 (1999) 541-550
    • (1999) Mol. Gen. Genet. , vol.260 , pp. 541-550
    • Huang, M.E.1    Le Douarin, B.2    Henry, C.3    Galibert, F.4
  • 14
    • 0035942104 scopus 로고    scopus 로고
    • The 3′→5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability
    • Jin Y.H., Obert R., Burgers P.M., Kunkel T.A., Resnick M.A., and Gordenin D.A. The 3′→5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA 98 (2001) 5122-5127
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 5122-5127
    • Jin, Y.H.1    Obert, R.2    Burgers, P.M.3    Kunkel, T.A.4    Resnick, M.A.5    Gordenin, D.A.6
  • 16
    • 19944401050 scopus 로고    scopus 로고
    • The multiple biological roles of the 3′→5′ exonuclease of Saccharomyces cerevisiae DNA polymerase delta require switching between the polymerase and exonuclease domains
    • Jin Y.H., Garg P., Stith C.M., Al-Refai H., Sterling J.F., Murray L.J., Kunkel T.A., Resnick M.A., Burgers P.M., and Gordenin D.A. The multiple biological roles of the 3′→5′ exonuclease of Saccharomyces cerevisiae DNA polymerase delta require switching between the polymerase and exonuclease domains. Mol. Cell. Biol. 25 (2005) 461-471
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 461-471
    • Jin, Y.H.1    Garg, P.2    Stith, C.M.3    Al-Refai, H.4    Sterling, J.F.5    Murray, L.J.6    Kunkel, T.A.7    Resnick, M.A.8    Burgers, P.M.9    Gordenin, D.A.10
  • 17
    • 0345826100 scopus 로고    scopus 로고
    • The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding
    • Johansson E., Garg P., and Burgers P.M. The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem. 279 (2004) 1907-1915
    • (2004) J. Biol. Chem. , vol.279 , pp. 1907-1915
    • Johansson, E.1    Garg, P.2    Burgers, P.M.3
  • 18
    • 22244478079 scopus 로고    scopus 로고
    • Cellular DNA replicases: components and dynamics at the replication fork
    • Johnson A., and O'Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74 (2005) 283-315
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 283-315
    • Johnson, A.1    O'Donnell, M.2
  • 19
    • 0032587610 scopus 로고    scopus 로고
    • DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
    • Kesti T., Flick K., Keranen S., Syvaoja J.E., and Wittenberg C. DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3 (1999) 679-685
    • (1999) Mol. Cell , vol.3 , pp. 679-685
    • Kesti, T.1    Flick, K.2    Keranen, S.3    Syvaoja, J.E.4    Wittenberg, C.5
  • 21
    • 22144436659 scopus 로고    scopus 로고
    • Sensitivity to phosphonoacetic acid: a new phenotype to probe DNA polymerase delta in Saccharomyces cerevisiae
    • Li L., Murphy K.M., Kanevets U., and Reha-Krantz L.J. Sensitivity to phosphonoacetic acid: a new phenotype to probe DNA polymerase delta in Saccharomyces cerevisiae. Genetics 170 (2005) 569-580
    • (2005) Genetics , vol.170 , pp. 569-580
    • Li, L.1    Murphy, K.M.2    Kanevets, U.3    Reha-Krantz, L.J.4
  • 22
  • 23
    • 0027417017 scopus 로고
    • Pathway correcting DNA replication errors in Saccharomyces cerevisiae
    • Morrison A., Johnson A.L., Johnston L.H., and Sugino A. Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J. 12 (1993) 1467-1473
    • (1993) EMBO J. , vol.12 , pp. 1467-1473
    • Morrison, A.1    Johnson, A.L.2    Johnston, L.H.3    Sugino, A.4
  • 24
    • 0028979332 scopus 로고
    • DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint
    • Navas T.A., Zhou Z., and Elledge S.J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80 (1995) 29-39
    • (1995) Cell , vol.80 , pp. 29-39
    • Navas, T.A.1    Zhou, Z.2    Elledge, S.J.3
  • 25
    • 0029859168 scopus 로고    scopus 로고
    • RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae
    • Navas T.A., Sanchez Y., and Elledge S.J. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev. 10 (1996) 2632-2643
    • (1996) Genes Dev. , vol.10 , pp. 2632-2643
    • Navas, T.A.1    Sanchez, Y.2    Elledge, S.J.3
  • 26
    • 34047260752 scopus 로고    scopus 로고
    • Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta
    • Nick McElhinny S.A., Stith C.M., Burgers P.M., and Kunkel T.A. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 282 (2007) 2324-2332
    • (2007) J. Biol. Chem. , vol.282 , pp. 2324-2332
    • Nick McElhinny, S.A.1    Stith, C.M.2    Burgers, P.M.3    Kunkel, T.A.4
  • 28
    • 0036345594 scopus 로고    scopus 로고
    • Yeast origins establish a strand bias for replicational mutagenesis
    • Pavlov Y.I., Newlon C.S., and Kunkel T.A. Yeast origins establish a strand bias for replicational mutagenesis. Mol. Cell 10 (2002) 207-213
    • (2002) Mol. Cell , vol.10 , pp. 207-213
    • Pavlov, Y.I.1    Newlon, C.S.2    Kunkel, T.A.3
  • 29
    • 0035197623 scopus 로고    scopus 로고
    • Completion of replication map of Saccharomyces cerevisiae chromosome III
    • Poloumienko A., Dershowitz A., De J., and Newlon C.S. Completion of replication map of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell 12 (2001) 3317-3327
    • (2001) Mol. Biol. Cell , vol.12 , pp. 3317-3327
    • Poloumienko, A.1    Dershowitz, A.2    De, J.3    Newlon, C.S.4
  • 31
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase epsilon participates in leading-strand DNA replication
    • Pursell Z.F., Isoz I., Lundstrom E.B., Johansson E., and Kunkel T.A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317 (2007) 127-130
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 32
    • 0029670573 scopus 로고    scopus 로고
    • 3′→5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae
    • Shcherbakova P.V., and Pavlov Y.I. 3′→5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142 (1996) 717-726
    • (1996) Genetics , vol.142 , pp. 717-726
    • Shcherbakova, P.V.1    Pavlov, Y.I.2
  • 33
    • 0029087573 scopus 로고
    • Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes
    • Tran H.T., Degtyareva N.P., Koloteva N.N., Sugino A., Masumoto H., Gordenin D.A., and Resnick M.A. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol. Cell. Biol. 15 (1995) 5607-5617
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5607-5617
    • Tran, H.T.1    Degtyareva, N.P.2    Koloteva, N.N.3    Sugino, A.4    Masumoto, H.5    Gordenin, D.A.6    Resnick, M.A.7
  • 34
    • 0030962035 scopus 로고    scopus 로고
    • Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants
    • Tran H.T., Keen J.D., Kricker M., Resnick M.A., and Gordenin D.A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol. 17 (1997) 2859-2865
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 2859-2865
    • Tran, H.T.1    Keen, J.D.2    Kricker, M.3    Resnick, M.A.4    Gordenin, D.A.5
  • 35
    • 33645216188 scopus 로고    scopus 로고
    • Mutator phenotypes caused by substitution at a conserved motif A residue in eukaryotic DNA polymerase delta
    • Venkatesan R.N., Hsu J.J., Lawrence N.A., Preston B.D., and Loeb L.A. Mutator phenotypes caused by substitution at a conserved motif A residue in eukaryotic DNA polymerase delta. J. Biol. Chem. 281 (2006) 4486-4494
    • (2006) J. Biol. Chem. , vol.281 , pp. 4486-4494
    • Venkatesan, R.N.1    Hsu, J.J.2    Lawrence, N.A.3    Preston, B.D.4    Loeb, L.A.5
  • 36
    • 0028363546 scopus 로고
    • Reconstitution of complete SV40 DNA replication with purified replication factors
    • Waga S., Bauer G., and Stillman B. Reconstitution of complete SV40 DNA replication with purified replication factors. J. Biol. Chem. 269 (1994) 10923-10934
    • (1994) J. Biol. Chem. , vol.269 , pp. 10923-10934
    • Waga, S.1    Bauer, G.2    Stillman, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.