-
1
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proceedings of ACM SIGMOD, pages 37–46, 2001.
-
(2001)
Proceedings of ACM SIGMOD
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
2
-
-
0002016642
-
On least squares and linear combinations of observations
-
A. C. Aitken. On least squares and linear combinations of observations. Proc. Royal Soc. Edinburgh, 55:42–48, 1935.
-
(1935)
Proc. Royal Soc. Edinburgh
, vol.55
, pp. 42-48
-
-
Aitken, A.C.1
-
3
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike. A new look at the statistical model identification. IEEE Trans. Automatic Control, 19(6):716–723, 1974.
-
(1974)
IEEE Trans. Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
4
-
-
0034598746
-
Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
-
A. A. Alizadeh, M. B. Eisen, R. E. Davis et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403:503–511, 2000.
-
(2000)
Nature
, vol.403
, pp. 503-511
-
-
Alizadeh, A.A.1
Eisen, M.B.2
Davis, R.E.3
-
5
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
U. Alon,N. Barkai, D. A. Notterman, et al
-
U. Alon,N. Barkai, D. A. Notterman et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA, 96(12):6745, 1999.
-
(1999)
Proc. Nat. Acad. Sci. USA
, vol.96
, Issue.12
, pp. 6745
-
-
-
6
-
-
2342599235
-
Kernel-kohonen networks
-
P. Andras. Kernel-Kohonen networks. Int. J. Neural Systems, 12;117–135, 2002.
-
(2002)
Int. J. Neural Systems
, vol.12
, pp. 117-135
-
-
Andras, P.1
-
7
-
-
18544375333
-
Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia
-
S. A. Armstrong, J. E. Staunton, L. B. Silverman et al.MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics, 30(1):41–47, 2002.
-
(2002)
Nature Genetics
, vol.30
, Issue.1
, pp. 41-47
-
-
Armstrong, S.A.1
Staunton, J.E.2
Silverman, L.B.3
-
8
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337–404, 1950.
-
(1950)
Trans. Am. Math. Soc
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
10
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 12:2385–2404, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
11
-
-
18544365698
-
Gene-expression profiles predict survival of patients with lung adenocarcinoma
-
D. G. Beer, S. L. R. Kardia, C.-C. Huang et al.Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Med., 8:816–824, 2002.
-
(2002)
Nature Med
, vol.8
, pp. 816-824
-
-
Beer, D.G.1
Kardia, S.L.2
Huang, C.-C.3
-
12
-
-
85012688561
-
-
Princeton, NJ: Princeton University Press
-
R. Bellman. Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.
-
(1957)
Dynamic Programming
-
-
Bellman, R.1
-
14
-
-
0031208638
-
A paradigm for learning without a teacher
-
S. Ben-David and M. Lindenbaum. Learning distributions by their density levels: A paradigm for learning without a teacher. J. Computer System Sci., 55:171–182, 1997.
-
(1997)
J. Computer System Sci
, vol.55
, pp. 171-182
-
-
Ben-David, S.1
Levels, M.L.2
-
15
-
-
0033692876
-
Tissue classification with gene expression profiles
-
A. Ben-Dor, L. Bruhn, N. Friedman et al. Tissue classification with gene expression profiles. J. Computat. Biol., 7:559–583, 2000.
-
(2000)
J. Computat. Biol
, vol.7
, pp. 559-583
-
-
Ben-Dor, A.1
Bruhn, L.2
Friedman, N.3
-
16
-
-
0008070394
-
A support vector method for hierarchical clustering
-
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA: MIT Press
-
A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik. A support vector method for hierarchical clustering. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press.
-
Advances in Neural Information Processing Systems
, vol.13
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.3
Vapnik, V.4
-
21
-
-
0001740650
-
Training with noise is equivalent to tikhonov regularization
-
C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Comput., 7:108–116, 1995.
-
(1995)
Neural Comput
, vol.7
, pp. 108-116
-
-
Bishop, C.M.1
-
23
-
-
84926172756
-
Online learning via congregational gradient descent
-
New York: ACM Press, pages
-
K. L. Blackmore, R. C. Williamson, I. M. Mareels, and W. A. Sethares. Online learning via congregational gradient descent. In Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT’95). New York: ACM Press, pages 265–272, 1995.
-
(1995)
Proceedings of the 8Th Annual Conference on Computational Learning Theory (COLT’95)
, pp. 265-272
-
-
Blackmore, K.L.1
Williamson, R.C.2
Mareels, I.M.3
Sethares, W.A.4
-
24
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144–152, 1992.
-
(1992)
Proceedings of the 5Th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
25
-
-
40849145323
-
Batch kernel som and related laplacian methods for social network analysis
-
R. Boulet, B. Jouve, F. Rossi, and N. Villa. Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing, 71(7–9):1257–1273, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.79
, pp. 1257-1273
-
-
Boulet, R.1
Jouve, B.2
Rossi, F.3
Villa, N.4
-
26
-
-
3042597440
-
Learning multi-label scene classification
-
M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757–1771, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
28
-
-
1342330535
-
Is cross-validation valid for small-sample microarray classification?
-
U. M. Braga-Neto and E. R. Dougherty. Is cross-validation valid for small-sample microarray classification? Bioinformatics, 20(3):378–380, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.3
, pp. 378-380
-
-
Braga-Neto, U.M.1
Dougherty, E.R.2
-
29
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data using support vector machines
-
M. P. S. Brown, W. N. Grundy, D. Lin, et al.Knowledge-based analysis of microarray gene expression data using support vector machines. Proc. Nat. Acad. Sci. USA, 97 (1):262–267, 2000.
-
(2000)
Proc. Nat. Acad. Sci. USA
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.1
Grundy, W.N.2
Lin, D.3
-
30
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Knowledge Discovery Data Mining, 2(2):121–167, 1998.
-
(1998)
Knowledge Discovery Data Mining
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
34
-
-
84883285664
-
Capturing cognitive fingerprints from keystroke dynamics
-
J. Morris Chang, C. C. Fang, K. H. Ho et al.Capturing cognitive fingerprints from keystroke dynamics. IT Professional, 15(4):24–28, 2013.
-
(2013)
IT Professional
, vol.15
, Issue.4
, pp. 24-28
-
-
Morris Chang, J.1
Fang, C.C.2
Ho, K.H.3
-
35
-
-
79955702502
-
Libsvm: A library for support vector machines
-
Software available at
-
Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Trans. Intelligent Systems Technol., 2(27):1–27, 2011. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
-
(2011)
ACM Trans. Intelligent Systems Technol
, vol.2
, Issue.27
, pp. 1-27
-
-
Chang, C.-C.1
Lin, C.-J.2
-
36
-
-
0032594951
-
Support vector machines for histogram-based image classification
-
O. Chapelle, P. Haffner, and V. N. Vapnik. Support vector machines for histogram-based image classification. IEEE Trans. Neural Networks, 10:1055–1064, 1999.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 1055-1064
-
-
Chapelle, O.1
Haffner, P.2
Vapnik, V.N.3
-
37
-
-
0036161011
-
Choosing kernel parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukhejee. Choosing kernel parameters for support vector machines. In Machine Learning, 46: 131–159, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukhejee, S.4
-
38
-
-
85032398707
-
Schölkopf
-
P. H. Chen, C. J. Lin, and B. Schölkopf. A tutorial on ν-support vector machines, 2003 (http://www.kernel-machines.org).
-
(2003)
A Tutorial On
-
-
Chen, P.H.1
Lin, C.J.2
-
42
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
45
-
-
84918441630
-
Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
-
T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Computers, 14:326–334, 1965.
-
(1965)
IEEE Trans. Electron. Computers
, vol.14
, pp. 326-334
-
-
Cover, T.M.1
-
47
-
-
84926163490
-
-
Data set provider
-
Data set provider. http://www.igi.tugraz.at/aschwaig.
-
-
-
-
48
-
-
2942709662
-
Automatic classification of heartbeats using ecg morphology and heartbeat interval features
-
P. de Chazal, M. O’Dwyer, and R. B. Reilly. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng., 51(7):1196–1206, 2004.
-
(2004)
IEEE Trans. Biomed. Eng
, vol.51
, Issue.7
, pp. 1196-1206
-
-
De Chazal, P.1
O’Dwyer, M.2
Reilly, R.B.3
-
49
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc., Ser. B, 39(1):1–38, 1977.
-
(1977)
J. Royal Statist. Soc., Ser. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
50
-
-
12244256379
-
Kernel k-means, spectral clustering and normalized cuts
-
Seattle, WA
-
I. S. Dhillon, Y. Guan, and B. Kulis. Kernel K-means, spectral clustering and normalized cuts. In Proceedings of the 10th ACM KDD Conference, Seattle, WA, 2004.
-
Proceedings of the 10Th ACM KDD Conference
, pp. 2004
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
51
-
-
84867616970
-
Binary classification by minimizing the mean squared slack
-
Kyoto, pages
-
K. Diamantaras and M. Kotti. Binary classification by minimizing the mean squared slack. In Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP-2012), Kyoto, pages 2057–2060, 2012.
-
(2012)
Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP-2012)
, pp. 2057-2060
-
-
Diamantaras, K.1
Kotti, M.2
-
53
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res., 2:263–286, 1995.
-
(1995)
J. Artif. Intell. Res
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
54
-
-
84899013173
-
Support vector regression machines
-
Cambridge, MA: MIT Press, pages
-
H. Drucker, C. J. C. Burges, L. Kaufman, Smola A., and V. Vapnik. Support vector regression machines. In Advances in Neural Information Processing Systems (NIPS’96), Volume 9. Cambridge, MA: MIT Press, pages 155–161, 1997.
-
(1997)
Advances in Neural Information Processing Systems (NIPS’96)
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
57
-
-
0003499479
-
-
Technical Report 576, Department of Statistics, University of California, Berkeley, CA
-
S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. Technical Report 576, Department of Statistics, University of California, Berkeley, CA, 2000.
-
(2000)
Comparison of discrimination methods for the classification of tumors using gene expression data
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
58
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Statist. Assoc., 97:77–88, 2002.
-
(2002)
J. Am. Statist. Assoc
, vol.97
, pp. 77-88
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
59
-
-
0023657610
-
An analogue approach to the travelling salesman problem using an elastic net method
-
R. Durbin and D. J. Willshaw. An analogue approach to the travelling salesman problem using an elastic net method. Nature, 326:689–691, 1987.
-
(1987)
Nature
, vol.326
, pp. 689-691
-
-
Durbin, R.1
Willshaw, D.J.2
-
60
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7: 1–26, 1979.
-
(1979)
Ann. Statist
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
62
-
-
84950461478
-
Estimating the error rate of a prediction rule: Improvement on cross-validation
-
B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Am. Statist. Assoc., 78:316–331, 1983.
-
(1983)
J. Am. Statist. Assoc
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
63
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. USA, 95:14863–14868, 1998.
-
(1998)
Proc. Nat. Acad. Sci. USA
, vol.95
, pp. 14863-14868
-
-
Eisen, M.B.1
Spellman, P.T.2
Brown, P.O.3
Botstein, D.4
-
64
-
-
3543096272
-
The kernel recursive least-squares algorithm
-
Y. Engel, S. Mannor, and R. Meir. The kernel recursive least-squares algorithm. IEEE Trans. Signal Processing, 52(8):2275–2285, 2004.
-
(2004)
IEEE Trans. Signal Processing
, vol.52
, Issue.8
, pp. 2275-2285
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
66
-
-
0000874557
-
Theoretical foundation of the potential function method in pattern recognition learning
-
M. Aizerman, E. A. Braverman, and L. Rozonoer. Theoretical foundation of the potential function method in pattern recognition learning. Automation Remote Control, 25:821– 837, 1964.
-
(1964)
automation remote control
, pp. 837
-
-
Aizerman, M.1
Braverman, E.A.2
-
67
-
-
84899020966
-
Classification on pairwise proximity data
-
Cambridge,MA: MIT Press
-
T. Graepel, R. Herbrich, P. Bollman-Sdorra, and K. Obermayer. Classification on pairwise proximity data. Advances in Neural Information Processing Systems 11. Cambridge,MA: MIT Press, pages 438–444, 1999.
-
(1999)
Advances in Neural Information Processing Systems 11
, pp. 438-444
-
-
Graepel, T.1
Herbrich, R.2
Bollman-Sdorra, P.3
Obermayer, K.4
-
68
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, P. Tamayo et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
69
-
-
34548025132
-
A survey of kernel and spectral methods for clustering
-
M. Filippone, F. Camastra, F. Masulli, and S. Rosetta. A survey of kernel and spectral methods for clustering. Pattern Recognition, 41:176–190, 2008.
-
(2008)
Pattern Recognition
, vol.41
, pp. 176-190
-
-
Filippone, M.1
Camastra, F.2
Masulli, F.3
Rosetta, S.4
-
70
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7:179–188, 1936.
-
(1936)
Ann. Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
72
-
-
0000014486
-
Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
-
E. W. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21:768–769, 1965.
-
(1965)
Biometrics
, vol.21
, pp. 768-769
-
-
Forgy, E.W.1
-
73
-
-
33645643565
-
A two-sample bayesian t-test for microarray data
-
R. J. Fox and M. W. Dimmic. A two-sample Bayesian t-test for microarray data. BMC Bioinformatics, 7(1):126, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 126
-
-
Fox, R.J.1
Dimmic, M.W.2
-
74
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277–296, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.2
-
76
-
-
0035789613
-
Proximal support vector machine classifiers
-
San Francisco
-
G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In Proceedings, ACM KDD01, San Francisco, 2001.
-
(2001)
Proceedings, ACM KDD01
-
-
Fung, G.1
Mangasarian, O.L.2
-
77
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
T. S. Furey, N. Cristianini, N. Duffy et al.Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906–914, 2000.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
-
78
-
-
0348143190
-
Scoring clustering solutions by their biological relevance
-
I. Gat-Viks, R. Sharan, and R. Shamir. Scoring clustering solutions by their biological relevance. Bioinformatics, 19(18):2381–2389, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.18
, pp. 2381-2389
-
-
Gat-Viks, I.1
Sharan, R.2
Shamir, R.3
-
79
-
-
0036582564
-
Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel fisher discriminant analysis
-
T. V. Gestel, J. A. K Suykens, G. Lanckriet et al.Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis. Neural Comput., 14(5):1115–1147, 2002.
-
(2002)
Neural Comput
, vol.14
, Issue.5
, pp. 1115-1147
-
-
Gestel, T.V.1
Suykens, J.A.2
Lanckriet, G.3
-
80
-
-
0036798238
-
Judging the quality of gene expression-based clustering methods using gene annotation
-
F. D. Gibbons and F. P. Roth. Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res., 12:1574–1581, 2002.
-
(2002)
Genome Res
, vol.12
, pp. 1574-1581
-
-
Gibbons, F.D.1
Roth, F.P.2
-
81
-
-
0036565280
-
Mercer kernel based clustering in feature space
-
M. Girolami. Mercer kernel based clustering in feature space. IEEE Trans. Neural Networks, 13(3):780–784, 2002.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.3
, pp. 780-784
-
-
Girolami, M.1
-
82
-
-
0004236492
-
-
3rd edition. Battimore, MD: Johns Hopkins University Press
-
G. Golub and C. F. Van Loan. Matrix Computations, 3rd edition. Battimore, MD: Johns Hopkins University Press, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.1
Van Loan, C.F.2
-
84
-
-
0000333571
-
An analysis of the total least squares problem
-
G. Golub and C. van Loan. An analysis of the total least squares problem. SIAM J. Numerical Anal., 17:883–893, 1980.
-
(1980)
SIAM J. Numerical Anal
, vol.17
, pp. 883-893
-
-
Golub, G.1
Van Loan, C.2
-
85
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, C. Huard et al.Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Huard, C.3
-
87
-
-
0039136604
-
Note on free lunches and cross-validation
-
C. Goutte. Note on free lunches and cross-validation. Neural Comput., 9:1211–1215, 1997.
-
(1997)
Neural Comput
, vol.9
, pp. 1211-1215
-
-
Goutte, C.1
-
89
-
-
0001001930
-
Errors-in-the-variables bias in nonlinear contexts
-
Z. Griliches and V. Ringstad. Errors-in-the-variables bias in nonlinear contexts. Econometrica, 38(2):368–370, 1970.
-
(1970)
Econometrica
, vol.38
, Issue.2
, pp. 368-370
-
-
Griliches, Z.1
Ringstad, V.2
-
91
-
-
38949086488
-
Eukaryotic protein subcellular localization based on local pairwise profile alignment svm
-
J. Guo, M. W. Mak, and S. Y. Kung. Eukaryotic protein subcellular localization based on local pairwise profile alignment SVM. Proceedings, 2006 IEEE International Workshop on Machine Learning for Signal Processing (MLSP’06), pages 416–422, 2006.
-
(2006)
Proceedings, 2006 IEEE International Workshop on Machine Learning for Signal Processing (MLSP’06)
, pp. 416-422
-
-
Guo, J.1
Mak, M.W.2
Kung, S.Y.3
-
92
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389–422, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
95
-
-
84927511887
-
Direct clustering of a data matrix
-
J. A. Hartigan. Direct clustering of a data matrix. J. Am. Statist. Assoc., 67(337):123–129, 1972.
-
(1972)
J. Am. Statist. Assoc
, vol.67
, Issue.337
, pp. 123-129
-
-
Hartigan, J.A.1
-
96
-
-
0034568109
-
Gene shaving as a method for identifying distinct sets of genes with similar expression patterns
-
research0003.1– research0003.21
-
T. Hastie, R. Tibshirani, M. Eisen et al.“Gene shaving” as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol., 1(2):research0003.1– research0003.21, 2000.
-
(2000)
Genome Biol
, vol.1
, Issue.2
-
-
Hastie, T.1
Tibshirani, R.2
Eisen, M.3
-
97
-
-
0003807773
-
-
3rd edition. Englewood Cliffs, NJ: Prentice Hall
-
S. Haykin. Adaptive Filter Theory, 3rd edition. Englewood Cliffs, NJ: Prentice Hall, 1996.
-
(1996)
Adaptive Filter Theory
-
-
Haykin, S.1
-
100
-
-
0003074296
-
Trends and controversies – support vector machines
-
M. A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, and J. Platt. Trends and controversies – support vector machines. IEEE Intelligent Systems, 13:18–28, 1998.
-
(1998)
IEEE Intelligent Systems
, vol.13
, pp. 18-28
-
-
Hearst, M.A.1
Schölkopf, B.2
Dumais, S.3
Osuna, E.4
Platt, J.5
-
101
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Intell. Rev., 22:85–126, 2004.
-
(2004)
Intell. Rev
, vol.22
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
102
-
-
0033906922
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42(1):80–86, 1970.
-
(1970)
Technometrics
, vol.42
, Issue.1
, pp. 80-86
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
103
-
-
51049096780
-
Kernel methods in machine learning
-
T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. Ann. Statist., 36(3):1171–1220, 2008.
-
(2008)
Ann. Statist
, vol.36
, Issue.3
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
104
-
-
0001710505
-
Analysis of a complex of statistical variables into principal components
-
H. Hotelling. Analysis of a complex of statistical variables into principal components. J. Educational Psychol., 24: 498–520, 1933.
-
(1933)
J. Educational Psychol
, vol.24
, pp. 498-520
-
-
Hotelling, H.1
-
105
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
C. W. Hsu and C. J. Lin. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks, 13(2):415–425, 2002.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
106
-
-
77956528679
-
Multi-label prediction via compressed sensing)
-
Cambridge, MA: MIT Press
-
D. Hsu, S. M. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In Advances in Neural Information Processing Systems 22, Cambridge, MA: MIT Press, pages 772–780, 2009.
-
(2009)
Advances in Neural Information Processing Systems 22
, pp. 772-780
-
-
Hsu, D.1
Kakade, S.M.2
Langford, J.3
Zhang, T.4
-
107
-
-
0035957531
-
A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
-
S. Hua and Z. Sun. A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach. J. Molec. Biol., 308(2):397–407, 2001.
-
(2001)
J. Molec. Biol
, vol.308
, Issue.2
, pp. 397-407
-
-
Hua, S.1
Sun, Z.2
-
108
-
-
0347093598
-
Prediction of protein subcellular locations using fuzzy k-nn method
-
Y. Huang and Y. D. Li. Prediction of protein subcellular locations using fuzzy K-NN method. Bioinformatics, 20(1):21–28, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.1
, pp. 21-28
-
-
Huang, Y.1
Li, Y.D.2
-
109
-
-
0000171374
-
Robust statistics: A review
-
P. J. Huber. Robust statistics: A review. Ann. Math. Statist., 43:1041–1067, 1972.
-
(1972)
Ann. Math. Statist
, vol.43
, pp. 1041-1067
-
-
Huber, P.J.1
-
110
-
-
0004262735
-
-
New York: John Wiley and Sons
-
P. J. Huber. Robust Statistics. New York: John Wiley and Sons, 1981.
-
(1981)
Robust Statistics
-
-
Huber, P.J.1
-
111
-
-
0037443891
-
Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
-
N. Iizuka, M. Oka, H. Yamada-Okabe et al.Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet, 361(9361):923–929, 2003.
-
(2003)
Lancet
, vol.361
, Issue.9361
, pp. 923-929
-
-
Iizuka, N.1
Oka, M.2
Yamada-Okabe, H.3
-
113
-
-
0345978376
-
Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
-
L. B. Jack and A. K. Nandi. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems Signal Processing, 16:373–390, 2002.
-
(2002)
Mechanical Systems Signal Processing
, vol.16
, pp. 373-390
-
-
Jack, L.B.1
Nandi, A.K.2
-
114
-
-
33746489367
-
An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
-
P. Jafari and F. Azuaje. An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors. BMC Med. Inform., 6:27, 2006.
-
(2006)
BMC Med. Inform
, vol.6
, pp. 27
-
-
Jafari, P.1
Azuaje, F.2
-
115
-
-
84893405732
-
Data clustering: A review
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surveys, 31 (3):264–323, 1999.
-
(1999)
ACM Comput. Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
116
-
-
0001486499
-
Estimation with quadratic loss
-
Berkeley, CA: University of California Press, pages
-
W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, Volume 1. Berkeley, CA: University of California Press, pages 361–380, 1960.
-
(1960)
Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability
, vol.1
, pp. 361-380
-
-
James, W.1
Stein, C.2
-
117
-
-
0000636553
-
Text categorization with support vector machines: Learning with many relevant features
-
Berlin: Springer
-
T. Joachims. Text categorization with support vector machines: Learning with many relevant features. Proceedings of European Conference on Machine Learning, Berlin: Springer, pages 137–142, 1997.
-
(1997)
Proceedings of European Conference on Machine Learning
, pp. 137-142
-
-
Joachims, T.1
-
118
-
-
0003798627
-
-
Cambridge, MA: MIT Press
-
T. Joachims.Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods – Support Vector Learning. Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Kernel Methods – Support Vector Learning
-
-
Schölkopf, T.J.1
Burges, C.2
Smola, A.3
-
123
-
-
0003792312
-
-
Englewood Cliffs, NJ: Prentice Hall
-
T. Kailath. Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980.
-
(1980)
Linear Systems
-
-
Kailath, T.1
-
125
-
-
34250090755
-
Snakes: Active contour models
-
M. Kass, A.Witkin, and D. Terzopoulos. Snakes: Active contour models. Int. J. Computer Vision, 1:321–331, 1987.
-
(1987)
Int. J. Computer Vision
, vol.1
, pp. 321-331
-
-
Kass, M.1
-
126
-
-
0000545946
-
Improvements to platt’s smo algorithm for svm classifier design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput., 13:637–649, 2001.
-
(2001)
Neural Comput
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.4
-
127
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
J. Khan, J. S. Wei, M. Ringner et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6):673–679, 2001.
-
(2001)
Nature Medicine
, vol.7
, Issue.6
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
-
128
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
J. Khan, J. S. Wei, M. Ringner et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7:673–679, 2001.
-
(2001)
Nature Medicine
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
-
129
-
-
0033700952
-
Texture classification with kernel principal component analysis
-
K. I. Kim, K. Jung, S. H. Park, and H. J. Kim. Texture classification with kernel principal component analysis. Electron. Lett., 36(12):1021–1022, 2000.
-
(2000)
Electron. Lett
, vol.36
, Issue.12
, pp. 1021-1022
-
-
Kim, K.I.1
Jung, K.2
Park, S.H.3
Kim, H.J.4
-
130
-
-
0015000439
-
Some results on tchebycheffian spline functions
-
G. S. Kimeldarf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applications, 33:82-95, 1971.
-
(1971)
J. Math. Anal. Applications
, vol.33
, pp. 82-95
-
-
Kimeldarf, G.S.1
Wahba, G.2
-
131
-
-
26444479778
-
Optimization by simulated annealing
-
S. Kirkpatrick, C. D. Gelat, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.
-
(1983)
Science
, vol.220
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelat, C.D.2
Vecchi, M.P.3
-
132
-
-
0031381525
-
Wrappers for feature selection
-
R. Kohavi and G. H. John. Wrappers for feature selection. Artif. Intell., 97(1–2):273–324, 1997.
-
(1997)
Artif. Intell
, vol.97
, Issue.12
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
133
-
-
0020068152
-
Self-organized formation of topologically correct feature map
-
T. Kohonen. Self-organized formation of topologically correct feature map. Biol. Cybernet., 43:59–69, 1982.
-
(1982)
Biol. Cybernet
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
137
-
-
0019923189
-
Why systolic architectures?
-
H. T. Kung. Why systolic architectures? IEEE Computer, 15(1):37–46, 1982.
-
(1982)
IEEE Computer
, vol.15
, Issue.1
, pp. 37-46
-
-
Kung, H.T.1
-
138
-
-
0003859414
-
-
Englewood Cliffs, NJ: Prentice Hall
-
S. Y. Kung. VLSI Array Processors. Englewood Cliffs, NJ: Prentice Hall, 1988.
-
(1988)
VLSI Array Processors
-
-
Kung, S.Y.1
-
140
-
-
76249132145
-
Kernel approaches to unsupervised and supervised machine learning
-
Bangkok, Berlin: Springer-Verlag
-
S. Y. Kung. Kernel approaches to unsupervised and supervised machine learning. In Proceedings of PCM 2009, Bangkok, pages 1–32. Berlin: Springer-Verlag, 2009.
-
(2009)
Proceedings of PCM 2009
, pp. 1-32
-
-
Kung, S.Y.1
-
141
-
-
0028427087
-
Adaptive principal component extraction (Apex) and applications
-
S. Y. Kung, K. I. Diamantaras, and J. S. Taur. Adaptive principal component extraction (APEX) and applications. IEEE Trans. Signal Processing, 42(5):1202–1217, 1994.
-
(1994)
IEEE Trans. Signal Processing
, vol.42
, Issue.5
, pp. 1202-1217
-
-
Kung, S.Y.1
Diamantaras, K.I.2
Taur, J.S.3
-
142
-
-
84926149010
-
-
Piscataway, NJ: IEEE
-
S. Y. Kung, F. Fallside, J. A. Sorensen, and C. A. Kamm (Editors). Neural Networks for Signal Processing II. Piscataway, NJ: IEEE, 1992.
-
(1992)
Neural Networks for Signal Processing II
-
-
Kung, S.Y.1
Fallside, F.2
Sorensen, J.A.3
Kamm, C.A.4
-
143
-
-
84890443960
-
Pda–svm hybrid: A unified model for kernel-based supervised classification
-
S. Y. Kung and Man-Wai Mak. PDA–SVM hybrid: A unified model for kernel-based supervised classification. J. Signal Processing Systems, 65(1):5–21, 2011.
-
(2011)
J. Signal Processing Systems
, vol.65
, Issue.1
, pp. 5-21
-
-
Kung, S.Y.1
Mak, M.-W.2
-
146
-
-
33745491860
-
Multi-metric and multi-substructure biclustering analysis for gene expression data
-
Stanford, CA
-
S. Y. Kung, M. W. Mak, and I. Tagkopoulos. Multi-metric and multi-substructure biclustering analysis for gene expression data. In IEEE Computational Systems Bioinformatics Conference, Stanford, CA, 2005.
-
IEEE Computational Systems Bioinformatics Conference
, pp. 2005
-
-
Kung, S.Y.1
Mak, M.W.2
Tagkopoulos, I.3
-
147
-
-
33646483117
-
Symmetric and asymmetric multimodality biclustering analysis for microarray data matrix
-
S. Y. Kung, M. W. Mak, and I. Tagkopoulos. Symmetric and asymmetric multimodality biclustering analysis for microarray data matrix. J. Bioinformatics Comput. Biol., 4(3):275–298, 2006.
-
(2006)
J. Bioinformatics Comput. Biol
, vol.4
, Issue.3
, pp. 275-298
-
-
Kung, S.Y.1
Mak, M.W.2
Tagkopoulos, I.3
-
148
-
-
84867593296
-
On efficient learning and classification kernel methods
-
Kyoto
-
S. Y. Kung and Peiyuan Wu. On efficient learning and classification kernel methods. In Proceedings, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’12), Kyoto, 2012.
-
(2012)
Proceedings, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’12)
-
-
Kung, S.Y.1
Peiyuan, W.2
-
150
-
-
80053187942
-
Recursive kernel trick for network segmentation
-
S. Y. Kung and Yuhui Luo. Recursive kernel trick for network segmentation. Int. J. Robust Nonlinear Control, 21(15):1807–1822, 2011.
-
(2011)
Int. J. Robust Nonlinear Control
, vol.21
, Issue.15
, pp. 1807-1822
-
-
Kung, S.Y.1
Luo, Y.2
-
153
-
-
80051660612
-
Improving kernel-energy trade-offs for machine learning in implantable and wearable biomedical applications
-
K. H. Lee, S. Y. Kung, and N. Verma. Improving kernel-energy trade-offs for machine learning in implantable and wearable biomedical applications. In Proceedings of ICASSP, pages 1597–1600, 2011.
-
(2011)
Proceedings of ICASSP
, pp. 1597-1600
-
-
Lee, K.H.1
Kung, S.Y.2
Verma, N.3
-
154
-
-
84866051903
-
Low-energy formulations of support vector machine kernel functions for biomedical sensor applications
-
Berlin: Springer, published online
-
K. H. Lee, S. Y. Kung, and N. Verma. Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. Journal of Signal Processing Systems, Berlin: Springer, published online, 2012.
-
(2012)
Journal of Signal Processing Systems
-
-
Lee, K.H.1
Kung, S.Y.2
Verma, N.3
-
157
-
-
84863388188
-
Prediction of protein subcellular multi-localization based on the general form of chou’s pseudo amino acid composition
-
L. Q. Li, Y. Zhang, L. Y. Zou, Y. Zhou, and X. Q. Zheng. Prediction of protein subcellular multi-localization based on the general form of Chou’s pseudo amino acid composition. Protein Peptide Lett., 19:375–387, 2012.
-
(2012)
Protein Peptide Lett
, vol.19
, pp. 375-387
-
-
Li, L.Q.1
Zhang, Y.2
Zou, L.Y.3
Zhou, Y.4
Zheng, X.Q.5
-
158
-
-
33646739998
-
Toward intelligent music information retrieval
-
T. Li and M. Ogihara. Toward intelligent music information retrieval. IEEE Trans. Multimedia, 8(3):564–574, 2006.
-
(2006)
IEEE Trans. Multimedia
, vol.8
, Issue.3
, pp. 564-574
-
-
Li, T.1
Ogihara, M.2
-
159
-
-
84866939028
-
Transcriptional network analysis identifies bach1 as a master regulator of breast cancer bone metastasis
-
Y. Liang, H. Wu, R. Lei et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J. Biol. Chem., 287(40):33533–33544, 2012.
-
(2012)
J. Biol. Chem
, vol.287
, Issue.40
, pp. 33533-33544
-
-
Liang, Y.1
Wu, H.2
Lei, R.3
-
160
-
-
85032394978
-
-
Opensource EEG libraries and toolkit
-
Opensource EEG libraries and toolkit. http://www.goomedic.com/opensource-eeglibraries- and-toolkits-for-developers.html.
-
-
-
-
163
-
-
84962266851
-
Analysis of neighborhood interaction in kohonen neural networks
-
Z.-P. Lo, M. Fujita, and B. Bavarian. Analysis of neighborhood interaction in Kohonen neural networks. In Proceedings, 6th International Parallel Processing Symposium, Los Alamitos, CA, pages 247–249, 1991.
-
(1991)
Proceedings, 6Th International Parallel Processing Symposium, Los Alamitos, CA
, pp. 247-249
-
-
Lo, Z.-P.1
Fujita, M.2
Bavarian, B.3
-
164
-
-
0027555471
-
Analysis of the convergence properties of topology preserving neural networks
-
Z.-P. Lo, Y. Yu, and B. Bavarian. Analysis of the convergence properties of topology preserving neural networks. IEEE Trans. Neural Networks, 4:207–220, 1993.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 207-220
-
-
Lo, Z.-P.1
Yu, Y.2
Bavarian, B.3
-
165
-
-
27844598851
-
Searching for hypothetical proteins: Theory and practice based upon original data and literature
-
G. Lubec, L Afjehi-Sadat, J.W. Yang, and J. P. John. Searching for hypothetical proteins: Theory and practice based upon original data and literature. Prog. Neurobiol., 77:90–127, 2005.
-
(2005)
Prog. Neurobiol
, vol.77
, pp. 90-127
-
-
Lubec, G.1
Afjehi-Sadat, L.2
Yang, J.W.3
John, J.P.4
-
166
-
-
28944437658
-
Regularized roc method for disease classification and biomarker selection with microarray data
-
S. Ma and J. Huang. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics, 21(24):4356–4362, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.24
, pp. 4356-4362
-
-
Ma, S.1
Huang, J.2
-
168
-
-
0001457509
-
Some methods for classification and analysis of multivariate observation
-
(L. M. LeCun and J. Neyman, editors, volume, Berkeley, CA: University of California Press
-
M. MacQueen. Some methods for classification and analysis of multivariate observation. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probabilities L. M. LeCun and J. Neyman, editors, volume 1, pages 281–297. Berkeley, CA: University of California Press, 1967.
-
(1967)
Proceedings of the 5Th Berkeley Symposium on Mathematical Statistics and Probabilities
, vol.1
, pp. 281-297
-
-
MacQueen, M.1
-
169
-
-
0002975203
-
On the generalised distance in statistics
-
P. C. Mahalanobis. On the generalised distance in statistics. J. Proc. Asiatic Soc. Bengal, 2:49–55, 1936.
-
(1936)
J. Proc. Asiatic Soc. Bengal
, vol.2
, pp. 49-55
-
-
Mahalanobis, P.C.1
-
170
-
-
49249090580
-
Pairprosvm: Protein subcellular localization based on local pairwise profile alignment and svm
-
M. W. Mak, J. Guo, and S. Y. Kung. PairProSVM: Protein subcellular localization based on local pairwise profile alignment and SVM. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 5(3):416–422, 2008.
-
(2008)
IEEE/ACM Trans. Comput. Biol. Bioinformatics
, vol.5
, Issue.3
, pp. 416-422
-
-
Mak, M.W.1
Guo, J.2
Kung, S.Y.3
-
172
-
-
56549119290
-
Fusion of feature selection methods for pairwise scoring svm
-
M. W. Mak and S. Y. Kung. Fusion of feature selection methods for pairwise scoring SVM. Neurocomputing, 71(16–18):3104–3113, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.1618
, pp. 3104-3113
-
-
Mak, M.W.1
Kung, S.Y.2
-
173
-
-
84867597425
-
Low-power svm classifiers for sound event classification on mobile devices
-
Kyoto
-
M.W. Mak and S. Y. Kung. Low-power SVM classifiers for sound event classification on mobile devices. In Proceedings of ICASSP, Kyoto, 2012.
-
(2012)
Proceedings of ICASSP
-
-
Mak, M.W.1
Kung, S.Y.2
-
175
-
-
0002322469
-
On a test whether one of two random variables is stochastically larger than the other
-
H. B. Mann and D. R. Whitney. On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Statist., 18:50–60, 1947.
-
(1947)
Ann. Math. Statist
, vol.18
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
-
176
-
-
84926187554
-
-
Mathworks-SVM. Mathworks bioinformatics toolbox
-
Mathworks-SVM. Mathworks bioinformatics toolbox.
-
-
-
-
177
-
-
33646516358
-
A geometric approach to support vector machine (Svm) classification
-
M. Mavroforakis and S. Theodoridis. A geometric approach to support vector machine (SVM) classification. IEEE Trans. Neural Networks, 17(3):671–682, 2006.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.3
, pp. 671-682
-
-
Mavroforakis, M.1
Theodoridis, S.2
-
179
-
-
0001500115
-
Functions of positive and negative type, and their connection with the theory of integral equations
-
J. Mercer. Functions of positive and negative type, and their connection with the theory of integral equations. Trans. London Phil. Soc., A209:415–446, 1909.
-
(1909)
Trans. London Phil. Soc
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
180
-
-
1542337814
-
-
PhD thesis, The Technical University of Berlin, Berlin
-
S. Mika. Kernel Fisher Discriminants. PhD thesis, The Technical University of Berlin, Berlin, 2002.
-
(2002)
Kernel Fisher Discriminants
-
-
Mika, S.1
-
181
-
-
84898965347
-
A mathematical programming approach to the kernel fisher algorithm
-
Cambridge, MA: MIT press, pages
-
S. Mika, G. Ratsch, and K. R. Muller. A mathematical programming approach to the kernel Fisher algorithm. In Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT press, pages 591–597, 2001.
-
(2001)
Advances in Neural Information Processing Systems 14
, pp. 591-597
-
-
Mika, S.1
Ratsch, G.2
Muller, K.R.3
-
182
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
Y. H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors
-
S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K. R. Mullers. Fisher discriminant analysis with kernels. In Y. H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural Networks for Signal Processing IX, pages 41–48, 1999.
-
(1999)
Neural Networks for Signal Processing IX
, pp. 41-48
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Schölkopf, B.4
Mullers, K.R.5
-
183
-
-
0005073887
-
An improved training algorithm for kernel fisher discriminants
-
T. Jaakkola and T. Richardson, editors, San Francisco, CA, New York: Morgan Kaufmann
-
S. Mika, A. J. Smola, and B. Schölkopf. An improved training algorithm for kernel Fisher discriminants. In T. Jaakkola and T. Richardson, editors, Proceedings AISTATS, San Francisco, CA, pages 98–104. New York: Morgan Kaufmann, 2001.
-
(2001)
Proceedings AISTATS
, pp. 98-104
-
-
Mika, S.1
Smola, A.J.2
Schölkopf, B.3
-
187
-
-
84926151241
-
-
MSPsim
-
MSPsim. http://www.sics.se/project/mspsim.
-
-
-
-
188
-
-
0031375732
-
Nonlinear prediction of chaotic time series using support vector machines
-
J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Amelia Island, FL
-
S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time series using support vector machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Proceedings, IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL, pages 276–285, 1997.
-
(1997)
Proceedings, IEEE Workshop on Neural Networks for Signal Processing
, pp. 276-285
-
-
Mukherjee, S.1
Osuna, E.2
Girosi, F.3
-
189
-
-
0035272287
-
An introduction to kernelbased learning algorithms
-
K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Schölkopf. An introduction to kernelbased learning algorithms. IEEE Trans. Neural Networks, 12(2):181–201, 2001.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
190
-
-
84956628443
-
Predicting time series with support vector machines
-
London: Springer-Verlag, pages
-
K. R. Muller, A. Smola, G. Ratsch et al. Predicting time series with support vector machines. In Proceedings, International Conference on Artificial Neural Networks, London: Springer-Verlag, pages 999–1004, 1997.
-
(1997)
Proceedings, International Conference on Artificial Neural Networks
, pp. 999-1004
-
-
Muller, K.R.1
Smola, A.2
Ratsch, G.3
-
191
-
-
0035272287
-
An introduction to kernelbased learning algorithms
-
K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Schölkopf. An introduction to kernelbased learning algorithms. IEEE Trans. Neural Networks, 12(2):181–201, 2001.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
192
-
-
84898987101
-
Adaptive on-line learning in changing environments
-
M. C. Mozer, M. I. Jordan, and T Petsche, editors, Cambridge, MA: MIT press
-
N. Murata, K. R. Muller, A. Ziehe, and S. Amari. Adaptive on-line learning in changing environments. In M. C. Mozer, M. I. Jordan, and T Petsche, editors, Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT press, pages 599–605, 1997.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 599-605
-
-
Murata, N.1
Muller, K.R.2
Ziehe, A.3
Amari, S.4
-
193
-
-
84926139687
-
-
Thesis, Department of Electrical Engineering, Princeton University, Princeton, NJ
-
C. L. Myers. Context-sensitive methods for learning from genomic data. Thesis, Department of Electrical Engineering, Princeton University, Princeton, NJ, 2007.
-
(2007)
Context-Sensitive Methods for Learning from Genomic Data
-
-
Myers, C.L.1
-
194
-
-
84926210774
-
Accurate detection of aneuploidies in array cgh and gene expression microarray data
-
Published online, Oxford University Press
-
C.L. Myers, M. Dunham, S.Y. Kung, and O. Troyanskaya. Accurate detection of aneuploidies in array cgh and gene expression microarray data. In Bioinfomotics. Published online, Oxford University Press, 2005.
-
Bioinfomotics
, pp. 2005
-
-
Myers, C.L.1
Dunham, M.2
Kung, S.Y.3
Troyanskaya, O.4
-
196
-
-
85032421253
-
-
Neural network frequently asked questions
-
Neural network frequently asked questions. http://www.faqs.org/faqs/ai-faq/neuralnets/part3/section-12.html.
-
-
-
-
197
-
-
0000992663
-
On the use and interpretation of certain test criteria for purposes of statistical inference
-
J. Neyman and E. S. Pearson. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika, 20:175–240, 1928.
-
(1928)
Biometrika
, vol.20
, pp. 175-240
-
-
Neyman, J.1
Pearson, E.S.2
-
198
-
-
75449099314
-
Laplacian linear discriminant analysis approach to unsupervised feature selection
-
S. Niijima and Y. Okuno. Laplacian linear discriminant analysis approach to unsupervised feature selection. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 6(4):605–614, 2009.
-
(2009)
IEEE/ACM Trans. Comput. Biol. Bioinformatics
, vol.6
, Issue.4
, pp. 605-614
-
-
Niijima, S.1
Okuno, Y.2
-
199
-
-
0037381008
-
Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
-
C. L. Nutt, D. R. Mani, R. A. Betensky et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res., 63(7):1602–1607, 2003.
-
(2003)
Cancer Res
, vol.63
, Issue.7
, pp. 1602-1607
-
-
Nutt, C.L.1
Mani, D.R.2
Betensky, R.A.3
-
200
-
-
0020464111
-
A simplified neuron model as a principal component analyzer
-
E. Oja. A simplified neuron model as a principal component analyzer. J. Math. Biol., 15:267–273, 1982.
-
(1982)
J. Math. Biol
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
201
-
-
0031334889
-
An improved training algorithm for support vector machines
-
J. Principe, L. Giles, N. Morgan, and E.Wilson, Editors, Amelia Island, FL, pages
-
E. Osuna, R. Freund, and E. Girosi. An improved training algorithm for support vector machines. In J. Principe, L. Giles, N. Morgan, and E.Wilson, Editors, Proceedings, IEEE Workshop on Neural Networks for Signal Processing VII, Amelia Island, FL, pages 276–285, 1997.
-
(1997)
Proceedings, IEEE Workshop on Neural Networks for Signal Processing VII
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, E.3
-
202
-
-
0004225001
-
-
Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT, Cambridge, MA
-
D. Parker. Learning logic. Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT, Cambridge, MA, 1985.
-
(1985)
Learning Logic
-
-
Parker, D.1
-
203
-
-
0001473437
-
On estimation of a probability density function and mode
-
E. Parzen. On estimation of a probability density function and mode. Ann. Math. Statist., 33:1065–1076, 1962.
-
(1962)
Ann. Math. Statist
, vol.33
, pp. 1065-1076
-
-
Parzen, E.1
-
204
-
-
0034818556
-
Gene functional classification from heterogeneous data
-
Pittsburgh, PA, pages
-
P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy. Gene functional classification from heterogeneous data. In International Conference on Computational Biology, Pittsburgh, PA, pages 249–255, 2001.
-
(2001)
International Conference on Computational Biology
, pp. 249-255
-
-
Pavlidis, P.1
Weston, J.2
Cai, J.3
Grundy, W.N.4
-
205
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
K. Pearson. On lines and planes of closest fit to systems of points in space. Phil. Mag. Ser.6, 2:559–572, 1901.
-
(1901)
Phil. Mag. Ser
, vol.6
, Issue.2
, pp. 559-572
-
-
Pearson, K.1
-
207
-
-
84926204449
-
-
PhysioNet
-
PhysioNet. http://www.physionet.org.
-
-
-
-
208
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge,MA: MIT Press
-
J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods – Support Vector Learning, Cambridge,MA: MIT Press, pages 185–208, 1999.
-
(1999)
Advances in Kernel Methods – Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
210
-
-
10244252786
-
Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction
-
N. Pochet, F. De Smet, J. A. K. Suykens, and B. L. R. DeMoor. Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction. Bioinformatics, 20(17):3185–3195, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3185-3195
-
-
Pochet, N.1
De Smet, F.2
Suykens, J.A.3
DeMoor, B.L.4
-
211
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio and F. Girosi. Networks for approximation and learning. Proc. IEEE, 78(9):1481–1497, 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
212
-
-
0037165140
-
Prediction of central nervous system embryonal tumour outcome based on gene expression
-
S. L. Pomeroy, P. Tamayo, M. Gaasenbeek et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870):436–442, 2002.
-
(2002)
Nature
, vol.415
, Issue.6870
, pp. 436-442
-
-
Pomeroy, S.L.1
Tamayo, P.2
Gaasenbeek, M.3
-
216
-
-
26444489630
-
Proteomic cancer classification with mass spectrometry data
-
J. C. Rajapakse, K. B. Duan, and W. K. Yeo. Proteomic cancer classification with mass spectrometry data. Am. J. Pharmacogenomics, 5(5):281–292, 2005.
-
(2005)
Am. J. Pharmacogenomics
, vol.5
, Issue.5
, pp. 281-292
-
-
Rajapakse, J.C.1
Duan, K.B.2
Yeo, W.K.3
-
217
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signatures
-
S. Ramaswamy, P. Tamayo, R. Rifkin et al. Multiclass cancer diagnosis using tumor gene expression signatures. PNAS, 98(26):15149–15154, 2001.
-
(2001)
PNAS
, vol.98
, Issue.26
, pp. 15149-15154
-
-
Ramaswamy, S.1
Tamayo, P.2
Rifkin, R.3
-
218
-
-
70349968175
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. In Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pages 254–269, 2009.
-
(2009)
Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
219
-
-
4444336823
-
Genecluster 2.0: An advanced toolset for bioarray analysis
-
M. Reich, K. Ohm, M. Angelo, P. Tamayo, and J. P. Mesirov GeneCluster 2.0: An advanced toolset for bioarray analysis. Bioinformatics, 20(11):1797–1798, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.11
, pp. 1797-1798
-
-
Reich, M.1
Ohm, K.2
Angelo, M.3
Tamayo, P.4
Mesirov, J.P.5
-
220
-
-
0032077533
-
Using neural networks for prediction of the subcellular location of proteins
-
A. Reinhardt and T. Hubbard. Using neural networks for prediction of the subcellular location of proteins. Nucl. Acids Res., 26:2230–2236, 1998.
-
(1998)
Nucl. Acids Res
, vol.26
, pp. 2230-2236
-
-
Reinhardt, A.1
Hubbard, T.2
-
222
-
-
0001098776
-
A universal prior for integers and estimation by minimum description length
-
J. Rissanen. A universal prior for integers and estimation by minimum description length. Ann. Statist., 11(2):416–431, 1983.
-
(1983)
Ann. Statist
, vol.11
, Issue.2
, pp. 416-431
-
-
Rissanen, J.1
-
224
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization of the brain
-
F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization of the brain. Psychol. Rev., 65:42–99, 1958.
-
(1958)
Psychol. Rev
, vol.65
, pp. 42-99
-
-
Rosenblatt, F.1
-
225
-
-
0001529784
-
Remarks on some nonparametric estimates of a density function
-
M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27:832–837, 1956.
-
(1956)
Ann. Math. Statist
, vol.27
, pp. 832-837
-
-
Rosenblatt, M.1
-
226
-
-
0000661887
-
Density estimates and markov sequences
-
M. Puri, editor, London: Cambridge University Press
-
M. Rosenblatt. Density estimates and Markov sequences. In M. Puri, editor, Nonparametric Techniques in Statistical Inference. London: Cambridge University Press, pages 199–213, 1970.
-
(1970)
Nonparametric Techniques in Statistical Inference
, pp. 199-213
-
-
Rosenblatt, M.1
-
227
-
-
84898938392
-
Denoising pairwise data
-
Cambridge, MA: MIT Press
-
V. Roth, J. Laub, J. M. Buhmann, and K.-R. Muller. Going metric: Denoising pairwise data. In Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT Press, pages 817–824, 2003.
-
(2003)
Advances in Neural Information Processing Systems 15
, pp. 817-824
-
-
Roth, V.1
Laub, J.2
Buhmann, J.M.3
Metric, K.-R.4
-
228
-
-
84898984897
-
Nonlinear discriminant analysis using kernel functions
-
S. A. Sola, T. K. Leen, and K. -R. Muller, editors, Cambridge, MA: MIT Press, pages
-
V. Roth and V. Steinhage. Nonlinear discriminant analysis using kernel functions. In S. A. Sola, T. K. Leen, and K. -R. Muller, editors, Advances in Neural Information Processing Systems 12. Cambridge, MA: MIT Press, pages 568–574, 2000.
-
(2000)
Advances in Neural Information Processing Systems 12
, pp. 568-574
-
-
Roth, V.1
Steinhage, V.2
-
230
-
-
0000646059
-
Learning internal representations by error propagation
-
D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors, Cambridge, MA: MIT Press/Bradford Books
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors, Parallel Distribution Processing: Explorations in the Microstruture of Cognition, Volume 1: Foundation. Cambridge, MA: MIT Press/Bradford Books, 1986.
-
Parallel Distribution Processing: Explorations in the Microstruture of Cognition, Volume 1: Foundation
, pp. 1986
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
231
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network
-
T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 12:459–473, 1989.
-
(1989)
Neural Networks
, vol.12
, pp. 459-473
-
-
Sanger, T.D.1
-
233
-
-
0028467001
-
A state space approach to adaptive rls filtering
-
A. Sayed and T. Kailath. A state space approach to adaptive RLS filtering. IEEE Signal Processing Mag., 11:18–60, 1994.
-
(1994)
IEEE Signal Processing Mag
, vol.11
, pp. 18-60
-
-
Sayed, A.1
Kailath, T.2
-
235
-
-
0033905095
-
A boosting-based system for text categorization
-
R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3):135–168, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Boostexter, Y.S.2
-
237
-
-
9944239689
-
Nonparametric regression in the presence of measurement error
-
S. M. Schennach. Nonparametric regression in the presence of measurement error. Econometric Theory, 20(6):1046–1093, 2004.
-
(2004)
Econometric Theory
, vol.20
, Issue.6
, pp. 1046-1093
-
-
Schennach, S.M.1
-
240
-
-
7544240447
-
-
NeuroCOLT2 Technical Report Series, NC2-TR-2000-82
-
B. Schölkopf, R. Herbrich, A. Smola, and R. Williamson. A generalized representer theorem. NeuroCOLT2 Technical Report Series, NC2-TR-2000-82, 2000.
-
(2000)
A Generalized Representer Theorem
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.3
Williamson, R.4
-
241
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13:1443–1472, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 1443-1472
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
242
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10:1299–1319, 1998.
-
(1998)
Neural Comput
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Muller, K.-R.3
-
243
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Comput., 12:1207–1245, 2000.
-
(2000)
Neural Comput
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
244
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
245
-
-
84898941932
-
Support vector method for novelty detection
-
S. A. Sola, T. K. Leen, and K.-R. Muller, editors, Cambridge, MA: MIT Press
-
B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt. Support vector method for novelty detection. In S. A. Sola, T. K. Leen, and K.-R. Muller, editors, Advances in Neural Information Processing Systems 12. Cambridge, MA: MIT Press, pages 568–574, 2000.
-
(2000)
Advances in Neural Information Processing Systems 12
, pp. 568-574
-
-
Schölkopf, B.1
Williamson, R.C.2
Smola, A.J.3
Shawe-Taylor, J.4
Platt, J.C.5
-
247
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwartz. Estimating the dimension of a model. Ann. Statist., 6(2):461–464, 1978.
-
(1978)
Ann. Statist
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwartz, G.1
-
248
-
-
0034323731
-
Support vector machine techniques for nonlinear equalization
-
D. J. Sebald and J. A. Bucklew. Support vector machine techniques for nonlinear equalization. IEEE Trans. Signal Processing, 48(11):3217–3226, 2000.
-
(2000)
IEEE Trans. Signal Processing
, vol.48
, Issue.11
, pp. 3217-3226
-
-
Sebald, D.J.1
Bucklew, J.A.2
-
250
-
-
77957297596
-
Virus-mploc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites
-
H. B. Shen and K. C. Chou. Virus-mPLoc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. J. Biomol. Struct. Dyn., 26:175–186, 2010.
-
(2010)
J. Biomol. Struct. Dyn
, vol.26
, pp. 175-186
-
-
Shen, H.B.1
Chou, K.C.2
-
251
-
-
51749084180
-
Prior knowledge in support vector kernels
-
P. Simard, A. Smola, B. Schölkopf, and V. Vapnik. Prior knowledge in support vector kernels. Advances in Neural Information Processing Systems 10. 640–646, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 640-646
-
-
Simard, P.1
Smola, A.2
Schölkopf, B.3
Vapnik, V.4
-
252
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
D. Singh, P. G. Febbo, K. Ross et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2):203–209, 2002.
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
Febbo, P.G.2
Ross, K.3
-
253
-
-
46749118074
-
Online classification using kernels and projection-based adaptive algorithms
-
I. Yamada, K. Slavakis, and S. Theodoridis. Online classification using kernels and projection-based adaptive algorithms. IEEE Trans. Signal Processing, 56(7):2781–2797, 2008.
-
(2008)
IEEE Trans. Signal Processing
, vol.56
, Issue.7
, pp. 2781-2797
-
-
Yamada, I.1
Slavakis, K.2
Theodoridis, S.3
-
255
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
A. J. Smola, B. Schölkopf, and K. R. Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11:637–649, 1998.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.R.3
-
256
-
-
0003652453
-
-
Cambridge, MA: MIT Press
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans. Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
-
-
Smola, A.J.1
Bartlett, P.L.2
Schölkopf, B.3
Schuurmans, D.4
-
258
-
-
0036827078
-
Prediction of protein retention times in anionexchange chromatography systems using support vector regression
-
M. Song, C. Breneman, J. Bi et al. Prediction of protein retention times in anionexchange chromatography systems using support vector regression. J. Chem. Information Computer Sci., 42:1347–1357, 2002.
-
(2002)
J. Chem. Information Computer Sci
, vol.42
, pp. 1347-1357
-
-
Song, M.1
Breneman, C.2
Bi, J.3
-
259
-
-
28844500635
-
Support vector machine based arrhythmia classification using reduced features
-
M. H. Song, J. Lee, S. P. Cho, K. J. Lee, and S. K. Yoo. Support vector machine based arrhythmia classification using reduced features. Int. J. Control, Automation, Systems, 3:571–579, 2005.
-
(2005)
Int. J. Control, Automation, Systems
, vol.3
, pp. 571-579
-
-
Song, M.H.1
Lee, J.2
Cho, S.P.3
Lee, K.J.4
Yoo, S.K.5
-
260
-
-
0037478605
-
Repeated observation of breast tumor subtypes in independent gene expression data sets
-
T. Sørlie, R. Tibshirani, J. Parker et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. PNAS, 100(14):8418–8423, 2003.
-
(2003)
PNAS
, vol.100
, Issue.14
, pp. 8418-8423
-
-
Sørlie, T.1
Tibshirani, R.2
Parker, J.3
-
261
-
-
0025206332
-
Probabilistic neural networks
-
D. F. Specht. Probabilistic neural networks. Neural Networks, 3:109–118, 1990.
-
(1990)
Neural Networks
, vol.3
, pp. 109-118
-
-
Specht, D.F.1
-
262
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
-
P. T. Spellman, G. Sherlock, M. Q. Zhang et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9(12):3273–3297, 1998.
-
(1998)
Mol. Biol. Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
-
263
-
-
0003970170
-
-
Technical Report CSD-TR-96-18, Computational Intelligence Group, Royal Holloway, University of London
-
M. O. Stitson and J. A. E. Weston. Implementational issues of support vector machines. Technical Report CSD-TR-96-18, Computational Intelligence Group, Royal Holloway, University of London, 1996.
-
(1996)
Implementational Issues of Support Vector Machines
-
-
Stitson, M.O.1
Weston, J.A.2
-
265
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Lett., 9(3):293–300, 1999.
-
(1999)
Neural Processing Lett
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
266
-
-
84926160996
-
-
SVMlight
-
SVMlight. http://svmlight.joachims.org/.
-
-
-
-
267
-
-
33751187857
-
Multi-class biclustering and classification based on modeling of gene regulatory networks
-
Minneapolis,MN, pages
-
I. Tagkopoulos, N. Slavov, and S. Y. Kung. Multi-class biclustering and classification based on modeling of gene regulatory networks. In Proceedings, Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’05). Minneapolis,MN, pages 89–96, 2005.
-
(2005)
Proceedings, Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’05)
, pp. 89-96
-
-
Tagkopoulos, I.1
Slavov, N.2
Kung, S.Y.3
-
268
-
-
0033027794
-
Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
-
P. Tamayo, D. Slonim, J. Mesirov et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Nat. Acad. Sci. USA, 96:2907–2912, 1999.
-
(1999)
Proc. Nat. Acad. Sci
, vol.96
, pp. 2907-2912
-
-
Tamayo, P.1
Slonim, D.2
Mesirov, J.3
-
269
-
-
0033028596
-
Systematic determination of genetic network architecture
-
S. Tavazoie, D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determination of genetic network architecture. Nature Genetics, 22:281–285, 1999.
-
(1999)
Nature Genetics
, vol.22
, pp. 281-285
-
-
Tavazoie, S.1
Hughes, D.2
Campbell, M.J.3
Cho, R.J.4
Church, G.M.5
-
270
-
-
0001986205
-
Data domain description using support vectors
-
M. Verleysen (Editor), Brussels, pages
-
D. M. J. Tax and R. P.W. Duin. Data domain description using support vectors. In M. Verleysen (Editor), Proceedings of the European Symposium on Artificial Neural Networks, ESANN’99, Brussels, pages 251–256, 1999.
-
(1999)
Proceedings of the European Symposium on Artificial Neural Networks, ESANN’99
, pp. 251-256
-
-
Tax, D.1
Duin, R.P.2
-
271
-
-
0033220728
-
Support vector domain description
-
D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern Recognition Lett., 20:1191–1199, 1999.
-
(1999)
Pattern Recognition Lett
, vol.20
, pp. 1191-1199
-
-
Tax, D.1
Duin, R.P.2
-
273
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the LASSO. J. Royal Statist. Soc. B, 58:267–288, 1996.
-
(1996)
J. Royal Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
276
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. J. Machine Learning Res., 2:45–66, 2002.
-
(2002)
J. Machine Learning Res
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
277
-
-
0003424374
-
-
Philadelphia, PA: Society for Industrial and Applied Mathematics
-
L. N. Trefethen and D Bau III. Numerical Linear Algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997.
-
(1997)
Numerical Linear Algebra
-
-
Trefethen, L.N.1
D Bau, I.2
-
280
-
-
0000418073
-
On the stability of inverse problems
-
A. N. Tychonoff. On the stability of inverse problems. Dokl. Akad. Nauk SSSR, 39(5):195–198, 1943.
-
(1943)
Dokl. Akad. Nauk SSSR
, vol.39
, Issue.5
, pp. 195-198
-
-
Tychonoff, A.N.1
-
281
-
-
6444228650
-
Two-mode clustering methods: A structured overview
-
I. Van Mechelen, H. H. Bock, and P. De Boeck. Two-mode clustering methods: A structured overview. Statist. Methods Med. Res., 13(5):363–394, 2004.
-
(2004)
Statist. Methods Med. Res
, vol.13
, Issue.5
, pp. 363-394
-
-
Van Mechelen, I.1
Bock, H.H.2
De Boeck, P.3
-
282
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
L. J. van’t Veer, Hongyue Dai, M. J. van de Vijver, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530–536, 2002.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
Van’T Veer, L.J.1
Dai, H.2
Van De Vijver, M.J.3
-
283
-
-
0003969585
-
-
[, in Russian]. Moscow, Nauka, (English translation New York: Springer, 1982.)
-
V. Vapnik. Estimation of dependences based on empirical data [in Russian]. Moscow, Nauka, 1979. (English translation New York: Springer, 1982.)
-
(1979)
Estimation of Dependences Based on Empirical Data
-
-
Vapnik, V.1
-
284
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. Mozer,M. Jordan, and T. Petsche (editors), Cambridge, MA: MIT Press
-
V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer,M. Jordan, and T. Petsche (editors), Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, pages 281–287, 1997.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
287
-
-
52949141834
-
Decision trees for hierarchical multi-label classification
-
C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel. Decision trees for hierarchical multi-label classification. Machine Learning, 2(73):185–214, 2008.
-
(2008)
Machine Learning
, vol.2
, Issue.73
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Dzeroski, S.4
Blockeel, H.5
-
288
-
-
84893464084
-
A comparison between dissimilarity som and kernel som clustering the vertices of a graph
-
Bielefeld: Bielefeld University
-
N. Villa and F. Rossi. A comparison between dissimilarity SOM and kernel SOM clustering the vertices of a graph. In Proceedings of the 6th International Workshop on Self-Organizing Maps. Bielefeld: Bielefeld University, 2007.
-
Proceedings of the 6Th International Workshop on Self-Organizing Maps
, pp. 2007
-
-
Villa, N.1
Rossi, F.2
-
290
-
-
84868295522
-
Mgoasvm: Multi-label protein subcellular localization based on gene ontology and support vector machines
-
Shibiao Wan, Man-Wai Mak, and S. Y. Kung. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines. BMCBioinformatics, 13:290, 2012 (available at http://link.springer.com/article/10.1186/1471- 2105-13-290/fulltext.html).
-
(2012)
BMC
, vol.13
-
-
Wan, S.1
Mak, M.-W.2
Kung, S.Y.3
-
291
-
-
84890467045
-
Adaptive thresholding for multi-label svm classification with application to protein subcellular localization prediction
-
Shibiao Wan, Man-Wai Mak, and S. Y. Kung. Adaptive thresholding for multi-label SVM classification with application to protein subcellular localization prediction. In Proceedings of ICASSP’13, Vancouver, pages 3547–3551, 2013.
-
(2013)
Proceedings of ICASSP’13
, pp. 3547-3551
-
-
Wan, S.1
Mak, M.-W.2
Kung, S.Y.3
-
292
-
-
39649101072
-
A cluster validity measure with outlier detection for support vector clustering
-
Jeen-Shing Wang and Jen-Chieh Chiang. A cluster validity measure with outlier detection for support vector clustering. IEEE Trans. Systems, Man, Cybernet. B, 38:78–89, 2008.
-
(2008)
IEEE Trans. Systems, Man, Cybernet. B
, vol.38
, pp. 78-89
-
-
Wang, J.-S.1
Chiang, J.-C.2
-
293
-
-
33746154240
-
The doubly regularized support vector machine
-
L. Wang, J. Zhu, and H. Zou. The doubly regularized support vector machine. Statist. Sinica, 16:589–615, 2006.
-
(2006)
Statist. Sinica
, vol.16
, pp. 589-615
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
294
-
-
84926167170
-
Kung
-
Princeton, MA: IEEE Press
-
Y. Wang, A. Reibman, F. Juang, T. Chen, and S. Y. Kung. In Proceedings of the IEEE Workshops on Multimedia Signal Processing. Princeton, MA: IEEE Press, 1997.
-
Proceedings of the IEEE Workshops on Multimedia Signal Processing
, pp. 1997
-
-
Wang, Y.1
Reibman, A.2
Juang, F.3
Chen, T.4
-
295
-
-
4544353015
-
Computational intelligence approach for gene expression data mining and classification
-
Princeton, MA: IEEE Press
-
Z. Wang, S. Y. Kung, J. Zhang, et al. Computational intelligence approach for gene expression data mining and classification. In Proceedings of the IEEE International Conference on Multimedia & Expo. Princeton, MA: IEEE Press, 2003.
-
Proceedings of the IEEE International Conference on Multimedia & Expo
, pp. 2003
-
-
Wang, Z.1
Kung, S.Y.2
Zhang, J.3
-
296
-
-
0141990708
-
Discriminatory mining of gene expression microarray data
-
Z. Wang, Y. Wang, J. Lu, et al. Discriminatory mining of gene expression microarray data. J. Signal Processing Systems, 35:255–272, 2003.
-
(2003)
J. Signal Processing Systems
, vol.35
, pp. 255-272
-
-
Wang, Z.1
Wang, Y.2
Lu, J.3
-
297
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
J. H. Ward. Hierarchical grouping to optimize an objective function. J. Am. Statist. Assoc., 58:236–244, 1963.
-
(1963)
J. Am. Statist. Assoc
, vol.58
, pp. 236-244
-
-
Ward, J.H.1
-
301
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of the zero-norm with linear models and kernel methods. J. Machine Learning Res., 3:1439–1461, 2003.
-
(2003)
J. Machine Learning Res
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
-
305
-
-
33947301110
-
Support vector machine implementations for classification clustering
-
published online
-
S. Winters-Hilt, A. Yelundur, C. McChesney, and M. Landry. Support vector machine implementations for classification clustering. BMC Bioinformatics, 7:S4, published online, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.S4
-
-
Winters-Hilt, S.1
Yelundur, A.2
McChesney, C.3
Landry, M.4
-
306
-
-
27844550205
-
Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
-
L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach. J. Machine Learning Res., 6:1855–1887, 2005.
-
(2005)
J. Machine Learning Res
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
-
307
-
-
0003742929
-
-
Statistical Research Group Memorandum Report 42, MR38136, Princeton University, Princeton, NJ
-
M. A. Woodbury. Inverting modified matrices. In Statistical Research Group Memorandum Report 42, MR38136, Princeton University, Princeton, NJ, 1950.
-
Inverting Modified Matrices
, pp. 1950
-
-
Woodbury, M.A.1
-
309
-
-
84905244806
-
Cost-effective kernel ridge regression implementation for keystroke-based active authentication system
-
Florence, Italy
-
Peiyuan Wu, C. C. Fang, J. M. Chang, S. Gilbert, and S. Y. Kung. Cost-effective kernel ridge regression implementation for keystroke-based active authentication system. In Proceedings of ICASSP’14, Florence, Italy, 2014.
-
Proceedings of ICASSP’14
, pp. 2014
-
-
Peiyuan, W.1
Fang, C.C.2
Chang, J.M.3
Gilbert, S.4
Kung, S.Y.5
-
311
-
-
79959667141
-
A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
-
X. Xiao, Z. C. Wu, and K. C. Chou. iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J. Theor. Biol., 284:42–51, 2011.
-
(2011)
J. Theor. Biol
, vol.284
, pp. 42-51
-
-
Xiao, X.1
Wu, Z.C.2
-
312
-
-
0000959484
-
Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts
-
E. P. Xing and R. M. Karp. CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics, 17(90001):306–315, 2001.
-
(2001)
Bioinformatics
, vol.17
, Issue.90001
, pp. 306-315
-
-
Xing, E.P.1
Cliff, R.M.K.2
-
313
-
-
84863338002
-
Robust regression and lasso
-
Cambridge, MA: MIT Press, pages
-
H. Xu, C. Caramanis, and S. Mannor. Robust regression and LASSO. In Advances in Neural Information Processing Systems 21. Cambridge, MA: MIT Press, pages 1801–1808, 2009.
-
(2009)
Advances in Neural Information Processing Systems 21
, pp. 1801-1808
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
314
-
-
16444383160
-
Survey of clustering algorithms
-
Rui Xu and D.Wunsch II. Survey of clustering algorithms. IEEE Trans. Neural Networks, 16(3):645–678, 2005.
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.3
, pp. 645-678
-
-
Rui, X.1
II, D.2
-
315
-
-
1942451946
-
Optimizing classifier performance via the wilcoxon–mann–whitney statistics
-
L. Yan, R. Dodier, M. C. Mozer, and Wolniewicz R. Optimizing classifier performance via the Wilcoxon–Mann–Whitney statistics. In Proceedings of the International Conference on Machine Learning, pages 848–855, 2003.
-
(2003)
Proceedings of the International Conference on Machine Learning
, pp. 848-855
-
-
Yan, L.1
Dodier, R.2
Mozer, M.C.3
Wolniewicz, R.4
-
316
-
-
35048832408
-
Outliers treatment in support vector regression for financial time series prediction
-
Haiqin Yang, Kaizhu Huang, Laiwan Chan, I. King, and M. R. Lyu. Outliers treatment in support vector regression for financial time series prediction. In ICONIP’04, pages 1260–1265, 2004.
-
(2004)
ICONIP’04
, pp. 1260-1265
-
-
Yang, H.1
Huang, K.2
Chan, L.3
King, I.4
Lyu, M.R.5
-
318
-
-
84890481440
-
A classification scheme for “high-dimensional– small-sample-size” data using soda and ridge-svm with medical applications
-
Yinan Yu, T. McKelvey, and S. Y. Kung. A classification scheme for “high-dimensional– small-sample-size” data using SODA and ridge-SVM with medical applications. In Proceedings, 2013 International Conference on Acoustics, Speech, and Signal Processing, 2013.
-
(2013)
Proceedings, 2013 International Conference on Acoustics, Speech, and Signal Processing
-
-
Yinan, Y.1
McKelvey, T.2
Kung, S.Y.3
-
319
-
-
84899432831
-
Kernel soda: A feature reduction technique using kernel based analysis
-
Yinan Yu, T. McKelvey, and S. Y. Kung. Kernel SODA: A feature reduction technique using kernel based analysis. In Proceedings, 12th International Conference on Machine Learning and Applications (ICMLA’13), volume 4B, page 340.
-
Proceedings, 12Th International Conference on Machine Learning and Applications (ICMLA’13)
, vol.4B
-
-
Yinan, Y.1
McKelvey, T.2
Kung, S.Y.3
-
320
-
-
84865422696
-
Recent advances of large-scale linear classification
-
C.-H. Yuan, G.-X. Ho and C.-J. Lin. Recent advances of large-scale linear classification. Proc. IEEE, 100:2584–2603, 2012.
-
(2012)
Proc. IEEE
, vol.100
, pp. 2584-2603
-
-
Yuan, C.-H.1
Ho, G.-X.2
Lin, C.-J.3
-
321
-
-
84865211015
-
Multikernel adaptive filtering
-
M. Yukawa. Multikernel adaptive filtering. IEEE Trans. Signal Processing, 60(9):4672–4682, 2012.
-
(2012)
IEEE Trans. Signal Processing
, vol.60
, Issue.9
, pp. 4672-4682
-
-
Yukawa, M.1
-
323
-
-
4444347719
-
A novel kernelized fuzzy c-means algorithm with application in medical image segmentation
-
D.-Q. Zhang and S.-C. Chen. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med., 32:37–50, 2004.
-
(2004)
Artif. Intell. Med
, vol.32
, pp. 37-50
-
-
Zhang, D.-Q.1
Chen, S.-C.2
-
324
-
-
0035158947
-
Support vector machine learning for image retrieval
-
Lei Zhang, Fuzong Lin, and Bo Zhang. Support vector machine learning for image retrieval. In Proceedings of the 2001 International Conference on Image Processing, volume 2, pages 721–724, 2001.
-
(2001)
Proceedings of the 2001 International Conference on Image Processing
, vol.2
, pp. 721-724
-
-
Zhang, L.1
Lin, F.2
Bo, Z.3
-
325
-
-
0036733640
-
Computational prediction of eukaryotic protein-coding genes
-
M. Q. Zhang. Computational prediction of eukaryotic protein-coding genes. Nature Rev. Genetics, 3(9):698–709, 2002.
-
(2002)
Nature Rev. Genetics
, vol.3
, Issue.9
, pp. 698-709
-
-
Zhang, M.Q.1
-
326
-
-
33646377650
-
Recursive svm feature selection and sample classification for mass-spectrometry and microarray data
-
X. G. Zhang, X. Lu, Q. Shi, et al.Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7(197), 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.197
-
-
Zhang, X.G.1
Lu, X.2
Shi, Q.3
-
327
-
-
84867612782
-
Color–frequency–orientation histogram based image retrieval
-
Kyoto
-
Z. Zhang, X. D. Gu, and S. Y. Kung. Color–frequency–orientation histogram based image retrieval. In Proceedings of ICASSP, Kyoto, 2012.
-
(2012)
Proceedings of ICASSP
-
-
Zhang, Z.1
Gu, X.D.2
Kung, S.Y.3
-
328
-
-
0009849972
-
Applying classification separability analysis to microarray data
-
S. M. Lin and K. F. Johnson, editors, Boston, MA: Kluwer Academic Publishers
-
Z. Zhang, G. Page, and H. Zhang. Applying classification separability analysis to microarray data. In S. M. Lin and K. F. Johnson, editors, Methods of Microarray Data Analysis, CAMDA’00. Boston, MA: Kluwer Academic Publishers, pages 125–136, 2001.
-
(2001)
Methods of Microarray Data Analysis, CAMDA’00
, pp. 125-136
-
-
Zhang, Z.1
Page, G.2
Zhang, H.3
-
329
-
-
24644515558
-
Tibshirani. 1-norm svms
-
Cambridge, MA: MIT press
-
J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm SVMS. In Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT press, 2004.
-
Advances in Neural Information Processing Systems 16
, pp. 2004
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
-
330
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. Royal Statist. Soc., Ser. B, 67(2):301–320, 2005.
-
(2005)
J. Royal Statist. Soc., Ser. B
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|