메뉴 건너뛰기




Volumn 9781107024960, Issue , 2014, Pages 1-591

Kernel methods and machine learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; BIOMEDICAL ENGINEERING; ENGINEERING EDUCATION; ITERATIVE METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATLAB; STUDENTS;

EID: 84926222195     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781139176224     Document Type: Book
Times cited : (263)

References (330)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proceedings of ACM SIGMOD, pages 37–46, 2001.
    • (2001) Proceedings of ACM SIGMOD , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 2
    • 0002016642 scopus 로고
    • On least squares and linear combinations of observations
    • A. C. Aitken. On least squares and linear combinations of observations. Proc. Royal Soc. Edinburgh, 55:42–48, 1935.
    • (1935) Proc. Royal Soc. Edinburgh , vol.55 , pp. 42-48
    • Aitken, A.C.1
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike. A new look at the statistical model identification. IEEE Trans. Automatic Control, 19(6):716–723, 1974.
    • (1974) IEEE Trans. Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
    • A. A. Alizadeh, M. B. Eisen, R. E. Davis et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403:503–511, 2000.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3
  • 5
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon,N. Barkai, D. A. Notterman, et al
    • U. Alon,N. Barkai, D. A. Notterman et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA, 96(12):6745, 1999.
    • (1999) Proc. Nat. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745
  • 6
    • 2342599235 scopus 로고    scopus 로고
    • Kernel-kohonen networks
    • P. Andras. Kernel-Kohonen networks. Int. J. Neural Systems, 12;117–135, 2002.
    • (2002) Int. J. Neural Systems , vol.12 , pp. 117-135
    • Andras, P.1
  • 7
    • 18544375333 scopus 로고    scopus 로고
    • Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • S. A. Armstrong, J. E. Staunton, L. B. Silverman et al.MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics, 30(1):41–47, 2002.
    • (2002) Nature Genetics , vol.30 , Issue.1 , pp. 41-47
    • Armstrong, S.A.1    Staunton, J.E.2    Silverman, L.B.3
  • 8
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337–404, 1950.
    • (1950) Trans. Am. Math. Soc , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 10
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 12:2385–2404, 2000.
    • (2000) Neural Computation , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 11
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • D. G. Beer, S. L. R. Kardia, C.-C. Huang et al.Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Med., 8:816–824, 2002.
    • (2002) Nature Med , vol.8 , pp. 816-824
    • Beer, D.G.1    Kardia, S.L.2    Huang, C.-C.3
  • 12
    • 85012688561 scopus 로고
    • Princeton, NJ: Princeton University Press
    • R. Bellman. Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 14
    • 0031208638 scopus 로고    scopus 로고
    • A paradigm for learning without a teacher
    • S. Ben-David and M. Lindenbaum. Learning distributions by their density levels: A paradigm for learning without a teacher. J. Computer System Sci., 55:171–182, 1997.
    • (1997) J. Computer System Sci , vol.55 , pp. 171-182
    • Ben-David, S.1    Levels, M.L.2
  • 15
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • A. Ben-Dor, L. Bruhn, N. Friedman et al. Tissue classification with gene expression profiles. J. Computat. Biol., 7:559–583, 2000.
    • (2000) J. Computat. Biol , vol.7 , pp. 559-583
    • Ben-Dor, A.1    Bruhn, L.2    Friedman, N.3
  • 16
    • 0008070394 scopus 로고    scopus 로고
    • A support vector method for hierarchical clustering
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA: MIT Press
    • A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik. A support vector method for hierarchical clustering. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press.
    • Advances in Neural Information Processing Systems , vol.13
    • Ben-Hur, A.1    Horn, D.2    Siegelmann, H.3    Vapnik, V.4
  • 21
    • 0001740650 scopus 로고
    • Training with noise is equivalent to tikhonov regularization
    • C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Comput., 7:108–116, 1995.
    • (1995) Neural Comput , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 25
    • 40849145323 scopus 로고    scopus 로고
    • Batch kernel som and related laplacian methods for social network analysis
    • R. Boulet, B. Jouve, F. Rossi, and N. Villa. Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing, 71(7–9):1257–1273, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.79 , pp. 1257-1273
    • Boulet, R.1    Jouve, B.2    Rossi, F.3    Villa, N.4
  • 26
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757–1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 28
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • U. M. Braga-Neto and E. R. Dougherty. Is cross-validation valid for small-sample microarray classification? Bioinformatics, 20(3):378–380, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 378-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 29
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data using support vector machines
    • M. P. S. Brown, W. N. Grundy, D. Lin, et al.Knowledge-based analysis of microarray gene expression data using support vector machines. Proc. Nat. Acad. Sci. USA, 97 (1):262–267, 2000.
    • (2000) Proc. Nat. Acad. Sci. USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.1    Grundy, W.N.2    Lin, D.3
  • 30
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Knowledge Discovery Data Mining, 2(2):121–167, 1998.
    • (1998) Knowledge Discovery Data Mining , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 34
    • 84883285664 scopus 로고    scopus 로고
    • Capturing cognitive fingerprints from keystroke dynamics
    • J. Morris Chang, C. C. Fang, K. H. Ho et al.Capturing cognitive fingerprints from keystroke dynamics. IT Professional, 15(4):24–28, 2013.
    • (2013) IT Professional , vol.15 , Issue.4 , pp. 24-28
    • Morris Chang, J.1    Fang, C.C.2    Ho, K.H.3
  • 35
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • Software available at
    • Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Trans. Intelligent Systems Technol., 2(27):1–27, 2011. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2011) ACM Trans. Intelligent Systems Technol , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 36
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogram-based image classification
    • O. Chapelle, P. Haffner, and V. N. Vapnik. Support vector machines for histogram-based image classification. IEEE Trans. Neural Networks, 10:1055–1064, 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.N.3
  • 37
    • 0036161011 scopus 로고    scopus 로고
    • Choosing kernel parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukhejee. Choosing kernel parameters for support vector machines. In Machine Learning, 46: 131–159, 2002.
    • (2002) Machine Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukhejee, S.4
  • 38
    • 85032398707 scopus 로고    scopus 로고
    • Schölkopf
    • P. H. Chen, C. J. Lin, and B. Schölkopf. A tutorial on ν-support vector machines, 2003 (http://www.kernel-machines.org).
    • (2003) A Tutorial On
    • Chen, P.H.1    Lin, C.J.2
  • 42
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 45
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Computers, 14:326–334, 1965.
    • (1965) IEEE Trans. Electron. Computers , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 47
    • 84926163490 scopus 로고    scopus 로고
    • Data set provider
    • Data set provider. http://www.igi.tugraz.at/aschwaig.
  • 48
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ecg morphology and heartbeat interval features
    • P. de Chazal, M. O’Dwyer, and R. B. Reilly. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng., 51(7):1196–1206, 2004.
    • (2004) IEEE Trans. Biomed. Eng , vol.51 , Issue.7 , pp. 1196-1206
    • De Chazal, P.1    O’Dwyer, M.2    Reilly, R.B.3
  • 49
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc., Ser. B, 39(1):1–38, 1977.
    • (1977) J. Royal Statist. Soc., Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 53
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res., 2:263–286, 1995.
    • (1995) J. Artif. Intell. Res , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 58
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Statist. Assoc., 97:77–88, 2002.
    • (2002) J. Am. Statist. Assoc , vol.97 , pp. 77-88
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 59
    • 0023657610 scopus 로고
    • An analogue approach to the travelling salesman problem using an elastic net method
    • R. Durbin and D. J. Willshaw. An analogue approach to the travelling salesman problem using an elastic net method. Nature, 326:689–691, 1987.
    • (1987) Nature , vol.326 , pp. 689-691
    • Durbin, R.1    Willshaw, D.J.2
  • 60
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7: 1–26, 1979.
    • (1979) Ann. Statist , vol.7 , pp. 1-26
    • Efron, B.1
  • 62
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Am. Statist. Assoc., 78:316–331, 1983.
    • (1983) J. Am. Statist. Assoc , vol.78 , pp. 316-331
    • Efron, B.1
  • 64
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least-squares algorithm
    • Y. Engel, S. Mannor, and R. Meir. The kernel recursive least-squares algorithm. IEEE Trans. Signal Processing, 52(8):2275–2285, 2004.
    • (2004) IEEE Trans. Signal Processing , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 66
    • 0000874557 scopus 로고
    • Theoretical foundation of the potential function method in pattern recognition learning
    • M. Aizerman, E. A. Braverman, and L. Rozonoer. Theoretical foundation of the potential function method in pattern recognition learning. Automation Remote Control, 25:821– 837, 1964.
    • (1964) automation remote control , pp. 837
    • Aizerman, M.1    Braverman, E.A.2
  • 68
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub, D. K. Slonim, P. Tamayo et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 70
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7:179–188, 1936.
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 72
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • E. W. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21:768–769, 1965.
    • (1965) Biometrics , vol.21 , pp. 768-769
    • Forgy, E.W.1
  • 73
    • 33645643565 scopus 로고    scopus 로고
    • A two-sample bayesian t-test for microarray data
    • R. J. Fox and M. W. Dimmic. A two-sample Bayesian t-test for microarray data. BMC Bioinformatics, 7(1):126, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 126
    • Fox, R.J.1    Dimmic, M.W.2
  • 74
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277–296, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.2
  • 76
    • 0035789613 scopus 로고    scopus 로고
    • Proximal support vector machine classifiers
    • San Francisco
    • G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In Proceedings, ACM KDD01, San Francisco, 2001.
    • (2001) Proceedings, ACM KDD01
    • Fung, G.1    Mangasarian, O.L.2
  • 77
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. S. Furey, N. Cristianini, N. Duffy et al.Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906–914, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3
  • 78
    • 0348143190 scopus 로고    scopus 로고
    • Scoring clustering solutions by their biological relevance
    • I. Gat-Viks, R. Sharan, and R. Shamir. Scoring clustering solutions by their biological relevance. Bioinformatics, 19(18):2381–2389, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.18 , pp. 2381-2389
    • Gat-Viks, I.1    Sharan, R.2    Shamir, R.3
  • 79
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel fisher discriminant analysis
    • T. V. Gestel, J. A. K Suykens, G. Lanckriet et al.Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis. Neural Comput., 14(5):1115–1147, 2002.
    • (2002) Neural Comput , vol.14 , Issue.5 , pp. 1115-1147
    • Gestel, T.V.1    Suykens, J.A.2    Lanckriet, G.3
  • 80
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • F. D. Gibbons and F. P. Roth. Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res., 12:1574–1581, 2002.
    • (2002) Genome Res , vol.12 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 81
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel based clustering in feature space
    • M. Girolami. Mercer kernel based clustering in feature space. IEEE Trans. Neural Networks, 13(3):780–784, 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 82
    • 0004236492 scopus 로고    scopus 로고
    • 3rd edition. Battimore, MD: Johns Hopkins University Press
    • G. Golub and C. F. Van Loan. Matrix Computations, 3rd edition. Battimore, MD: Johns Hopkins University Press, 1996.
    • (1996) Matrix Computations
    • Golub, G.1    Van Loan, C.F.2
  • 84
    • 0000333571 scopus 로고
    • An analysis of the total least squares problem
    • G. Golub and C. van Loan. An analysis of the total least squares problem. SIAM J. Numerical Anal., 17:883–893, 1980.
    • (1980) SIAM J. Numerical Anal , vol.17 , pp. 883-893
    • Golub, G.1    Van Loan, C.2
  • 85
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub, D. K. Slonim, C. Huard et al.Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Huard, C.3
  • 87
    • 0039136604 scopus 로고    scopus 로고
    • Note on free lunches and cross-validation
    • C. Goutte. Note on free lunches and cross-validation. Neural Comput., 9:1211–1215, 1997.
    • (1997) Neural Comput , vol.9 , pp. 1211-1215
    • Goutte, C.1
  • 89
    • 0001001930 scopus 로고
    • Errors-in-the-variables bias in nonlinear contexts
    • Z. Griliches and V. Ringstad. Errors-in-the-variables bias in nonlinear contexts. Econometrica, 38(2):368–370, 1970.
    • (1970) Econometrica , vol.38 , Issue.2 , pp. 368-370
    • Griliches, Z.1    Ringstad, V.2
  • 92
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389–422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 95
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • J. A. Hartigan. Direct clustering of a data matrix. J. Am. Statist. Assoc., 67(337):123–129, 1972.
    • (1972) J. Am. Statist. Assoc , vol.67 , Issue.337 , pp. 123-129
    • Hartigan, J.A.1
  • 96
    • 0034568109 scopus 로고    scopus 로고
    • Gene shaving as a method for identifying distinct sets of genes with similar expression patterns
    • research0003.1– research0003.21
    • T. Hastie, R. Tibshirani, M. Eisen et al.“Gene shaving” as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol., 1(2):research0003.1– research0003.21, 2000.
    • (2000) Genome Biol , vol.1 , Issue.2
    • Hastie, T.1    Tibshirani, R.2    Eisen, M.3
  • 97
    • 0003807773 scopus 로고    scopus 로고
    • 3rd edition. Englewood Cliffs, NJ: Prentice Hall
    • S. Haykin. Adaptive Filter Theory, 3rd edition. Englewood Cliffs, NJ: Prentice Hall, 1996.
    • (1996) Adaptive Filter Theory
    • Haykin, S.1
  • 101
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Intell. Rev., 22:85–126, 2004.
    • (2004) Intell. Rev , vol.22 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 102
    • 0033906922 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42(1):80–86, 1970.
    • (1970) Technometrics , vol.42 , Issue.1 , pp. 80-86
    • Hoerl, A.E.1    Kennard, R.W.2
  • 103
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. Ann. Statist., 36(3):1171–1220, 2008.
    • (2008) Ann. Statist , vol.36 , Issue.3 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.J.3
  • 104
    • 0001710505 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling. Analysis of a complex of statistical variables into principal components. J. Educational Psychol., 24: 498–520, 1933.
    • (1933) J. Educational Psychol , vol.24 , pp. 498-520
    • Hotelling, H.1
  • 105
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C. W. Hsu and C. J. Lin. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks, 13(2):415–425, 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 107
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • S. Hua and Z. Sun. A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach. J. Molec. Biol., 308(2):397–407, 2001.
    • (2001) J. Molec. Biol , vol.308 , Issue.2 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 108
    • 0347093598 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations using fuzzy k-nn method
    • Y. Huang and Y. D. Li. Prediction of protein subcellular locations using fuzzy K-NN method. Bioinformatics, 20(1):21–28, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.1 , pp. 21-28
    • Huang, Y.1    Li, Y.D.2
  • 109
    • 0000171374 scopus 로고
    • Robust statistics: A review
    • P. J. Huber. Robust statistics: A review. Ann. Math. Statist., 43:1041–1067, 1972.
    • (1972) Ann. Math. Statist , vol.43 , pp. 1041-1067
    • Huber, P.J.1
  • 110
  • 111
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • N. Iizuka, M. Oka, H. Yamada-Okabe et al.Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet, 361(9361):923–929, 2003.
    • (2003) Lancet , vol.361 , Issue.9361 , pp. 923-929
    • Iizuka, N.1    Oka, M.2    Yamada-Okabe, H.3
  • 113
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • L. B. Jack and A. K. Nandi. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems Signal Processing, 16:373–390, 2002.
    • (2002) Mechanical Systems Signal Processing , vol.16 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 114
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • P. Jafari and F. Azuaje. An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors. BMC Med. Inform., 6:27, 2006.
    • (2006) BMC Med. Inform , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 117
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Berlin: Springer
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. Proceedings of European Conference on Machine Learning, Berlin: Springer, pages 137–142, 1997.
    • (1997) Proceedings of European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 123
    • 0003792312 scopus 로고
    • Englewood Cliffs, NJ: Prentice Hall
    • T. Kailath. Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980.
    • (1980) Linear Systems
    • Kailath, T.1
  • 125
    • 34250090755 scopus 로고
    • Snakes: Active contour models
    • M. Kass, A.Witkin, and D. Terzopoulos. Snakes: Active contour models. Int. J. Computer Vision, 1:321–331, 1987.
    • (1987) Int. J. Computer Vision , vol.1 , pp. 321-331
    • Kass, M.1
  • 126
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to platt’s smo algorithm for svm classifier design
    • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput., 13:637–649, 2001.
    • (2001) Neural Comput , vol.13 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.4
  • 127
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • J. Khan, J. S. Wei, M. Ringner et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6):673–679, 2001.
    • (2001) Nature Medicine , vol.7 , Issue.6 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringner, M.3
  • 128
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • J. Khan, J. S. Wei, M. Ringner et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7:673–679, 2001.
    • (2001) Nature Medicine , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringner, M.3
  • 129
    • 0033700952 scopus 로고    scopus 로고
    • Texture classification with kernel principal component analysis
    • K. I. Kim, K. Jung, S. H. Park, and H. J. Kim. Texture classification with kernel principal component analysis. Electron. Lett., 36(12):1021–1022, 2000.
    • (2000) Electron. Lett , vol.36 , Issue.12 , pp. 1021-1022
    • Kim, K.I.1    Jung, K.2    Park, S.H.3    Kim, H.J.4
  • 130
    • 0015000439 scopus 로고
    • Some results on tchebycheffian spline functions
    • G. S. Kimeldarf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applications, 33:82-95, 1971.
    • (1971) J. Math. Anal. Applications , vol.33 , pp. 82-95
    • Kimeldarf, G.S.1    Wahba, G.2
  • 131
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Gelat, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelat, C.D.2    Vecchi, M.P.3
  • 132
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • R. Kohavi and G. H. John. Wrappers for feature selection. Artif. Intell., 97(1–2):273–324, 1997.
    • (1997) Artif. Intell , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 133
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature map
    • T. Kohonen. Self-organized formation of topologically correct feature map. Biol. Cybernet., 43:59–69, 1982.
    • (1982) Biol. Cybernet , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 137
    • 0019923189 scopus 로고
    • Why systolic architectures?
    • H. T. Kung. Why systolic architectures? IEEE Computer, 15(1):37–46, 1982.
    • (1982) IEEE Computer , vol.15 , Issue.1 , pp. 37-46
    • Kung, H.T.1
  • 138
    • 0003859414 scopus 로고
    • Englewood Cliffs, NJ: Prentice Hall
    • S. Y. Kung. VLSI Array Processors. Englewood Cliffs, NJ: Prentice Hall, 1988.
    • (1988) VLSI Array Processors
    • Kung, S.Y.1
  • 139
  • 140
    • 76249132145 scopus 로고    scopus 로고
    • Kernel approaches to unsupervised and supervised machine learning
    • Bangkok, Berlin: Springer-Verlag
    • S. Y. Kung. Kernel approaches to unsupervised and supervised machine learning. In Proceedings of PCM 2009, Bangkok, pages 1–32. Berlin: Springer-Verlag, 2009.
    • (2009) Proceedings of PCM 2009 , pp. 1-32
    • Kung, S.Y.1
  • 141
    • 0028427087 scopus 로고
    • Adaptive principal component extraction (Apex) and applications
    • S. Y. Kung, K. I. Diamantaras, and J. S. Taur. Adaptive principal component extraction (APEX) and applications. IEEE Trans. Signal Processing, 42(5):1202–1217, 1994.
    • (1994) IEEE Trans. Signal Processing , vol.42 , Issue.5 , pp. 1202-1217
    • Kung, S.Y.1    Diamantaras, K.I.2    Taur, J.S.3
  • 143
    • 84890443960 scopus 로고    scopus 로고
    • Pda–svm hybrid: A unified model for kernel-based supervised classification
    • S. Y. Kung and Man-Wai Mak. PDA–SVM hybrid: A unified model for kernel-based supervised classification. J. Signal Processing Systems, 65(1):5–21, 2011.
    • (2011) J. Signal Processing Systems , vol.65 , Issue.1 , pp. 5-21
    • Kung, S.Y.1    Mak, M.-W.2
  • 147
    • 33646483117 scopus 로고    scopus 로고
    • Symmetric and asymmetric multimodality biclustering analysis for microarray data matrix
    • S. Y. Kung, M. W. Mak, and I. Tagkopoulos. Symmetric and asymmetric multimodality biclustering analysis for microarray data matrix. J. Bioinformatics Comput. Biol., 4(3):275–298, 2006.
    • (2006) J. Bioinformatics Comput. Biol , vol.4 , Issue.3 , pp. 275-298
    • Kung, S.Y.1    Mak, M.W.2    Tagkopoulos, I.3
  • 150
    • 80053187942 scopus 로고    scopus 로고
    • Recursive kernel trick for network segmentation
    • S. Y. Kung and Yuhui Luo. Recursive kernel trick for network segmentation. Int. J. Robust Nonlinear Control, 21(15):1807–1822, 2011.
    • (2011) Int. J. Robust Nonlinear Control , vol.21 , Issue.15 , pp. 1807-1822
    • Kung, S.Y.1    Luo, Y.2
  • 153
    • 80051660612 scopus 로고    scopus 로고
    • Improving kernel-energy trade-offs for machine learning in implantable and wearable biomedical applications
    • K. H. Lee, S. Y. Kung, and N. Verma. Improving kernel-energy trade-offs for machine learning in implantable and wearable biomedical applications. In Proceedings of ICASSP, pages 1597–1600, 2011.
    • (2011) Proceedings of ICASSP , pp. 1597-1600
    • Lee, K.H.1    Kung, S.Y.2    Verma, N.3
  • 154
    • 84866051903 scopus 로고    scopus 로고
    • Low-energy formulations of support vector machine kernel functions for biomedical sensor applications
    • Berlin: Springer, published online
    • K. H. Lee, S. Y. Kung, and N. Verma. Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. Journal of Signal Processing Systems, Berlin: Springer, published online, 2012.
    • (2012) Journal of Signal Processing Systems
    • Lee, K.H.1    Kung, S.Y.2    Verma, N.3
  • 157
    • 84863388188 scopus 로고    scopus 로고
    • Prediction of protein subcellular multi-localization based on the general form of chou’s pseudo amino acid composition
    • L. Q. Li, Y. Zhang, L. Y. Zou, Y. Zhou, and X. Q. Zheng. Prediction of protein subcellular multi-localization based on the general form of Chou’s pseudo amino acid composition. Protein Peptide Lett., 19:375–387, 2012.
    • (2012) Protein Peptide Lett , vol.19 , pp. 375-387
    • Li, L.Q.1    Zhang, Y.2    Zou, L.Y.3    Zhou, Y.4    Zheng, X.Q.5
  • 158
    • 33646739998 scopus 로고    scopus 로고
    • Toward intelligent music information retrieval
    • T. Li and M. Ogihara. Toward intelligent music information retrieval. IEEE Trans. Multimedia, 8(3):564–574, 2006.
    • (2006) IEEE Trans. Multimedia , vol.8 , Issue.3 , pp. 564-574
    • Li, T.1    Ogihara, M.2
  • 159
    • 84866939028 scopus 로고    scopus 로고
    • Transcriptional network analysis identifies bach1 as a master regulator of breast cancer bone metastasis
    • Y. Liang, H. Wu, R. Lei et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J. Biol. Chem., 287(40):33533–33544, 2012.
    • (2012) J. Biol. Chem , vol.287 , Issue.40 , pp. 33533-33544
    • Liang, Y.1    Wu, H.2    Lei, R.3
  • 160
    • 85032394978 scopus 로고    scopus 로고
    • Opensource EEG libraries and toolkit
    • Opensource EEG libraries and toolkit. http://www.goomedic.com/opensource-eeglibraries- and-toolkits-for-developers.html.
  • 164
    • 0027555471 scopus 로고
    • Analysis of the convergence properties of topology preserving neural networks
    • Z.-P. Lo, Y. Yu, and B. Bavarian. Analysis of the convergence properties of topology preserving neural networks. IEEE Trans. Neural Networks, 4:207–220, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 207-220
    • Lo, Z.-P.1    Yu, Y.2    Bavarian, B.3
  • 165
    • 27844598851 scopus 로고    scopus 로고
    • Searching for hypothetical proteins: Theory and practice based upon original data and literature
    • G. Lubec, L Afjehi-Sadat, J.W. Yang, and J. P. John. Searching for hypothetical proteins: Theory and practice based upon original data and literature. Prog. Neurobiol., 77:90–127, 2005.
    • (2005) Prog. Neurobiol , vol.77 , pp. 90-127
    • Lubec, G.1    Afjehi-Sadat, L.2    Yang, J.W.3    John, J.P.4
  • 166
    • 28944437658 scopus 로고    scopus 로고
    • Regularized roc method for disease classification and biomarker selection with microarray data
    • S. Ma and J. Huang. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics, 21(24):4356–4362, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 168
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observation
    • (L. M. LeCun and J. Neyman, editors, volume, Berkeley, CA: University of California Press
    • M. MacQueen. Some methods for classification and analysis of multivariate observation. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probabilities L. M. LeCun and J. Neyman, editors, volume 1, pages 281–297. Berkeley, CA: University of California Press, 1967.
    • (1967) Proceedings of the 5Th Berkeley Symposium on Mathematical Statistics and Probabilities , vol.1 , pp. 281-297
    • MacQueen, M.1
  • 169
    • 0002975203 scopus 로고
    • On the generalised distance in statistics
    • P. C. Mahalanobis. On the generalised distance in statistics. J. Proc. Asiatic Soc. Bengal, 2:49–55, 1936.
    • (1936) J. Proc. Asiatic Soc. Bengal , vol.2 , pp. 49-55
    • Mahalanobis, P.C.1
  • 170
    • 49249090580 scopus 로고    scopus 로고
    • Pairprosvm: Protein subcellular localization based on local pairwise profile alignment and svm
    • M. W. Mak, J. Guo, and S. Y. Kung. PairProSVM: Protein subcellular localization based on local pairwise profile alignment and SVM. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 5(3):416–422, 2008.
    • (2008) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.5 , Issue.3 , pp. 416-422
    • Mak, M.W.1    Guo, J.2    Kung, S.Y.3
  • 171
  • 172
    • 56549119290 scopus 로고    scopus 로고
    • Fusion of feature selection methods for pairwise scoring svm
    • M. W. Mak and S. Y. Kung. Fusion of feature selection methods for pairwise scoring SVM. Neurocomputing, 71(16–18):3104–3113, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.1618 , pp. 3104-3113
    • Mak, M.W.1    Kung, S.Y.2
  • 173
    • 84867597425 scopus 로고    scopus 로고
    • Low-power svm classifiers for sound event classification on mobile devices
    • Kyoto
    • M.W. Mak and S. Y. Kung. Low-power SVM classifiers for sound event classification on mobile devices. In Proceedings of ICASSP, Kyoto, 2012.
    • (2012) Proceedings of ICASSP
    • Mak, M.W.1    Kung, S.Y.2
  • 175
    • 0002322469 scopus 로고
    • On a test whether one of two random variables is stochastically larger than the other
    • H. B. Mann and D. R. Whitney. On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Statist., 18:50–60, 1947.
    • (1947) Ann. Math. Statist , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 176
    • 84926187554 scopus 로고    scopus 로고
    • Mathworks-SVM. Mathworks bioinformatics toolbox
    • Mathworks-SVM. Mathworks bioinformatics toolbox.
  • 177
    • 33646516358 scopus 로고    scopus 로고
    • A geometric approach to support vector machine (Svm) classification
    • M. Mavroforakis and S. Theodoridis. A geometric approach to support vector machine (SVM) classification. IEEE Trans. Neural Networks, 17(3):671–682, 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.3 , pp. 671-682
    • Mavroforakis, M.1    Theodoridis, S.2
  • 179
    • 0001500115 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • J. Mercer. Functions of positive and negative type, and their connection with the theory of integral equations. Trans. London Phil. Soc., A209:415–446, 1909.
    • (1909) Trans. London Phil. Soc , vol.209 , pp. 415-446
    • Mercer, J.1
  • 180
    • 1542337814 scopus 로고    scopus 로고
    • PhD thesis, The Technical University of Berlin, Berlin
    • S. Mika. Kernel Fisher Discriminants. PhD thesis, The Technical University of Berlin, Berlin, 2002.
    • (2002) Kernel Fisher Discriminants
    • Mika, S.1
  • 181
    • 84898965347 scopus 로고    scopus 로고
    • A mathematical programming approach to the kernel fisher algorithm
    • Cambridge, MA: MIT press, pages
    • S. Mika, G. Ratsch, and K. R. Muller. A mathematical programming approach to the kernel Fisher algorithm. In Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT press, pages 591–597, 2001.
    • (2001) Advances in Neural Information Processing Systems 14 , pp. 591-597
    • Mika, S.1    Ratsch, G.2    Muller, K.R.3
  • 183
    • 0005073887 scopus 로고    scopus 로고
    • An improved training algorithm for kernel fisher discriminants
    • T. Jaakkola and T. Richardson, editors, San Francisco, CA, New York: Morgan Kaufmann
    • S. Mika, A. J. Smola, and B. Schölkopf. An improved training algorithm for kernel Fisher discriminants. In T. Jaakkola and T. Richardson, editors, Proceedings AISTATS, San Francisco, CA, pages 98–104. New York: Morgan Kaufmann, 2001.
    • (2001) Proceedings AISTATS , pp. 98-104
    • Mika, S.1    Smola, A.J.2    Schölkopf, B.3
  • 187
    • 84926151241 scopus 로고    scopus 로고
    • MSPsim
    • MSPsim. http://www.sics.se/project/mspsim.
  • 188
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using support vector machines
    • J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Amelia Island, FL
    • S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time series using support vector machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Proceedings, IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL, pages 276–285, 1997.
    • (1997) Proceedings, IEEE Workshop on Neural Networks for Signal Processing , pp. 276-285
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 192
    • 84898987101 scopus 로고    scopus 로고
    • Adaptive on-line learning in changing environments
    • M. C. Mozer, M. I. Jordan, and T Petsche, editors, Cambridge, MA: MIT press
    • N. Murata, K. R. Muller, A. Ziehe, and S. Amari. Adaptive on-line learning in changing environments. In M. C. Mozer, M. I. Jordan, and T Petsche, editors, Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT press, pages 599–605, 1997.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 599-605
    • Murata, N.1    Muller, K.R.2    Ziehe, A.3    Amari, S.4
  • 194
    • 84926210774 scopus 로고    scopus 로고
    • Accurate detection of aneuploidies in array cgh and gene expression microarray data
    • Published online, Oxford University Press
    • C.L. Myers, M. Dunham, S.Y. Kung, and O. Troyanskaya. Accurate detection of aneuploidies in array cgh and gene expression microarray data. In Bioinfomotics. Published online, Oxford University Press, 2005.
    • Bioinfomotics , pp. 2005
    • Myers, C.L.1    Dunham, M.2    Kung, S.Y.3    Troyanskaya, O.4
  • 196
    • 85032421253 scopus 로고    scopus 로고
    • Neural network frequently asked questions
    • Neural network frequently asked questions. http://www.faqs.org/faqs/ai-faq/neuralnets/part3/section-12.html.
  • 197
    • 0000992663 scopus 로고
    • On the use and interpretation of certain test criteria for purposes of statistical inference
    • J. Neyman and E. S. Pearson. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika, 20:175–240, 1928.
    • (1928) Biometrika , vol.20 , pp. 175-240
    • Neyman, J.1    Pearson, E.S.2
  • 198
    • 75449099314 scopus 로고    scopus 로고
    • Laplacian linear discriminant analysis approach to unsupervised feature selection
    • S. Niijima and Y. Okuno. Laplacian linear discriminant analysis approach to unsupervised feature selection. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 6(4):605–614, 2009.
    • (2009) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.6 , Issue.4 , pp. 605-614
    • Niijima, S.1    Okuno, Y.2
  • 199
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • C. L. Nutt, D. R. Mani, R. A. Betensky et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res., 63(7):1602–1607, 2003.
    • (2003) Cancer Res , vol.63 , Issue.7 , pp. 1602-1607
    • Nutt, C.L.1    Mani, D.R.2    Betensky, R.A.3
  • 200
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja. A simplified neuron model as a principal component analyzer. J. Math. Biol., 15:267–273, 1982.
    • (1982) J. Math. Biol , vol.15 , pp. 267-273
    • Oja, E.1
  • 201
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines
    • J. Principe, L. Giles, N. Morgan, and E.Wilson, Editors, Amelia Island, FL, pages
    • E. Osuna, R. Freund, and E. Girosi. An improved training algorithm for support vector machines. In J. Principe, L. Giles, N. Morgan, and E.Wilson, Editors, Proceedings, IEEE Workshop on Neural Networks for Signal Processing VII, Amelia Island, FL, pages 276–285, 1997.
    • (1997) Proceedings, IEEE Workshop on Neural Networks for Signal Processing VII , pp. 276-285
    • Osuna, E.1    Freund, R.2    Girosi, E.3
  • 202
    • 0004225001 scopus 로고
    • Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT, Cambridge, MA
    • D. Parker. Learning logic. Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT, Cambridge, MA, 1985.
    • (1985) Learning Logic
    • Parker, D.1
  • 203
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen. On estimation of a probability density function and mode. Ann. Math. Statist., 33:1065–1076, 1962.
    • (1962) Ann. Math. Statist , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 205
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson. On lines and planes of closest fit to systems of points in space. Phil. Mag. Ser.6, 2:559–572, 1901.
    • (1901) Phil. Mag. Ser , vol.6 , Issue.2 , pp. 559-572
    • Pearson, K.1
  • 207
    • 84926204449 scopus 로고    scopus 로고
    • PhysioNet
    • PhysioNet. http://www.physionet.org.
  • 208
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge,MA: MIT Press
    • J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods – Support Vector Learning, Cambridge,MA: MIT Press, pages 185–208, 1999.
    • (1999) Advances in Kernel Methods – Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 210
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction
    • N. Pochet, F. De Smet, J. A. K. Suykens, and B. L. R. DeMoor. Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction. Bioinformatics, 20(17):3185–3195, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.3    DeMoor, B.L.4
  • 211
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi. Networks for approximation and learning. Proc. IEEE, 78(9):1481–1497, 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 212
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • S. L. Pomeroy, P. Tamayo, M. Gaasenbeek et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870):436–442, 2002.
    • (2002) Nature , vol.415 , Issue.6870 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3
  • 216
    • 26444489630 scopus 로고    scopus 로고
    • Proteomic cancer classification with mass spectrometry data
    • J. C. Rajapakse, K. B. Duan, and W. K. Yeo. Proteomic cancer classification with mass spectrometry data. Am. J. Pharmacogenomics, 5(5):281–292, 2005.
    • (2005) Am. J. Pharmacogenomics , vol.5 , Issue.5 , pp. 281-292
    • Rajapakse, J.C.1    Duan, K.B.2    Yeo, W.K.3
  • 217
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • S. Ramaswamy, P. Tamayo, R. Rifkin et al. Multiclass cancer diagnosis using tumor gene expression signatures. PNAS, 98(26):15149–15154, 2001.
    • (2001) PNAS , vol.98 , Issue.26 , pp. 15149-15154
    • Ramaswamy, S.1    Tamayo, P.2    Rifkin, R.3
  • 219
    • 4444336823 scopus 로고    scopus 로고
    • Genecluster 2.0: An advanced toolset for bioarray analysis
    • M. Reich, K. Ohm, M. Angelo, P. Tamayo, and J. P. Mesirov GeneCluster 2.0: An advanced toolset for bioarray analysis. Bioinformatics, 20(11):1797–1798, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1797-1798
    • Reich, M.1    Ohm, K.2    Angelo, M.3    Tamayo, P.4    Mesirov, J.P.5
  • 220
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • A. Reinhardt and T. Hubbard. Using neural networks for prediction of the subcellular location of proteins. Nucl. Acids Res., 26:2230–2236, 1998.
    • (1998) Nucl. Acids Res , vol.26 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 222
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen. A universal prior for integers and estimation by minimum description length. Ann. Statist., 11(2):416–431, 1983.
    • (1983) Ann. Statist , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 224
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization of the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization of the brain. Psychol. Rev., 65:42–99, 1958.
    • (1958) Psychol. Rev , vol.65 , pp. 42-99
    • Rosenblatt, F.1
  • 225
    • 0001529784 scopus 로고
    • Remarks on some nonparametric estimates of a density function
    • M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27:832–837, 1956.
    • (1956) Ann. Math. Statist , vol.27 , pp. 832-837
    • Rosenblatt, M.1
  • 226
    • 0000661887 scopus 로고
    • Density estimates and markov sequences
    • M. Puri, editor, London: Cambridge University Press
    • M. Rosenblatt. Density estimates and Markov sequences. In M. Puri, editor, Nonparametric Techniques in Statistical Inference. London: Cambridge University Press, pages 199–213, 1970.
    • (1970) Nonparametric Techniques in Statistical Inference , pp. 199-213
    • Rosenblatt, M.1
  • 228
    • 84898984897 scopus 로고    scopus 로고
    • Nonlinear discriminant analysis using kernel functions
    • S. A. Sola, T. K. Leen, and K. -R. Muller, editors, Cambridge, MA: MIT Press, pages
    • V. Roth and V. Steinhage. Nonlinear discriminant analysis using kernel functions. In S. A. Sola, T. K. Leen, and K. -R. Muller, editors, Advances in Neural Information Processing Systems 12. Cambridge, MA: MIT Press, pages 568–574, 2000.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 568-574
    • Roth, V.1    Steinhage, V.2
  • 231
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 12:459–473, 1989.
    • (1989) Neural Networks , vol.12 , pp. 459-473
    • Sanger, T.D.1
  • 233
    • 0028467001 scopus 로고
    • A state space approach to adaptive rls filtering
    • A. Sayed and T. Kailath. A state space approach to adaptive RLS filtering. IEEE Signal Processing Mag., 11:18–60, 1994.
    • (1994) IEEE Signal Processing Mag , vol.11 , pp. 18-60
    • Sayed, A.1    Kailath, T.2
  • 235
    • 0033905095 scopus 로고    scopus 로고
    • A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3):135–168, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Boostexter, Y.S.2
  • 237
    • 9944239689 scopus 로고    scopus 로고
    • Nonparametric regression in the presence of measurement error
    • S. M. Schennach. Nonparametric regression in the presence of measurement error. Econometric Theory, 20(6):1046–1093, 2004.
    • (2004) Econometric Theory , vol.20 , Issue.6 , pp. 1046-1093
    • Schennach, S.M.1
  • 242
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10:1299–1319, 1998.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 247
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz. Estimating the dimension of a model. Ann. Statist., 6(2):461–464, 1978.
    • (1978) Ann. Statist , vol.6 , Issue.2 , pp. 461-464
    • Schwartz, G.1
  • 248
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • D. J. Sebald and J. A. Bucklew. Support vector machine techniques for nonlinear equalization. IEEE Trans. Signal Processing, 48(11):3217–3226, 2000.
    • (2000) IEEE Trans. Signal Processing , vol.48 , Issue.11 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 250
    • 77957297596 scopus 로고    scopus 로고
    • Virus-mploc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites
    • H. B. Shen and K. C. Chou. Virus-mPLoc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. J. Biomol. Struct. Dyn., 26:175–186, 2010.
    • (2010) J. Biomol. Struct. Dyn , vol.26 , pp. 175-186
    • Shen, H.B.1    Chou, K.C.2
  • 252
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • D. Singh, P. G. Febbo, K. Ross et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2):203–209, 2002.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3
  • 253
    • 46749118074 scopus 로고    scopus 로고
    • Online classification using kernels and projection-based adaptive algorithms
    • I. Yamada, K. Slavakis, and S. Theodoridis. Online classification using kernels and projection-based adaptive algorithms. IEEE Trans. Signal Processing, 56(7):2781–2797, 2008.
    • (2008) IEEE Trans. Signal Processing , vol.56 , Issue.7 , pp. 2781-2797
    • Yamada, I.1    Slavakis, K.2    Theodoridis, S.3
  • 254
    • 40849099796 scopus 로고
    • Comparison of biosequences
    • T. F. Smith and M. S. Waterman. Comparison of biosequences. Adv. Appl. Math., 2:482–489, 1981.
    • (1981) Adv. Appl. Math , vol.2 , pp. 482-489
    • Smith, T.F.1    Waterman, M.S.2
  • 255
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A. J. Smola, B. Schölkopf, and K. R. Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11:637–649, 1998.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.R.3
  • 258
    • 0036827078 scopus 로고    scopus 로고
    • Prediction of protein retention times in anionexchange chromatography systems using support vector regression
    • M. Song, C. Breneman, J. Bi et al. Prediction of protein retention times in anionexchange chromatography systems using support vector regression. J. Chem. Information Computer Sci., 42:1347–1357, 2002.
    • (2002) J. Chem. Information Computer Sci , vol.42 , pp. 1347-1357
    • Song, M.1    Breneman, C.2    Bi, J.3
  • 260
    • 0037478605 scopus 로고    scopus 로고
    • Repeated observation of breast tumor subtypes in independent gene expression data sets
    • T. Sørlie, R. Tibshirani, J. Parker et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. PNAS, 100(14):8418–8423, 2003.
    • (2003) PNAS , vol.100 , Issue.14 , pp. 8418-8423
    • Sørlie, T.1    Tibshirani, R.2    Parker, J.3
  • 261
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D. F. Specht. Probabilistic neural networks. Neural Networks, 3:109–118, 1990.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 262
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • P. T. Spellman, G. Sherlock, M. Q. Zhang et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9(12):3273–3297, 1998.
    • (1998) Mol. Biol. Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 263
    • 0003970170 scopus 로고    scopus 로고
    • Technical Report CSD-TR-96-18, Computational Intelligence Group, Royal Holloway, University of London
    • M. O. Stitson and J. A. E. Weston. Implementational issues of support vector machines. Technical Report CSD-TR-96-18, Computational Intelligence Group, Royal Holloway, University of London, 1996.
    • (1996) Implementational Issues of Support Vector Machines
    • Stitson, M.O.1    Weston, J.A.2
  • 265
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Lett., 9(3):293–300, 1999.
    • (1999) Neural Processing Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 266
    • 84926160996 scopus 로고    scopus 로고
    • SVMlight
    • SVMlight. http://svmlight.joachims.org/.
  • 268
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • P. Tamayo, D. Slonim, J. Mesirov et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Nat. Acad. Sci. USA, 96:2907–2912, 1999.
    • (1999) Proc. Nat. Acad. Sci , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 271
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern Recognition Lett., 20:1191–1199, 1999.
    • (1999) Pattern Recognition Lett , vol.20 , pp. 1191-1199
    • Tax, D.1    Duin, R.P.2
  • 273
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the LASSO. J. Royal Statist. Soc. B, 58:267–288, 1996.
    • (1996) J. Royal Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 276
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. J. Machine Learning Res., 2:45–66, 2002.
    • (2002) J. Machine Learning Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 277
    • 0003424374 scopus 로고    scopus 로고
    • Philadelphia, PA: Society for Industrial and Applied Mathematics
    • L. N. Trefethen and D Bau III. Numerical Linear Algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997.
    • (1997) Numerical Linear Algebra
    • Trefethen, L.N.1    D Bau, I.2
  • 280
    • 0000418073 scopus 로고
    • On the stability of inverse problems
    • A. N. Tychonoff. On the stability of inverse problems. Dokl. Akad. Nauk SSSR, 39(5):195–198, 1943.
    • (1943) Dokl. Akad. Nauk SSSR , vol.39 , Issue.5 , pp. 195-198
    • Tychonoff, A.N.1
  • 281
  • 282
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • L. J. van’t Veer, Hongyue Dai, M. J. van de Vijver, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530–536, 2002.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van’T Veer, L.J.1    Dai, H.2    Van De Vijver, M.J.3
  • 283
  • 284
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer,M. Jordan, and T. Petsche (editors), Cambridge, MA: MIT Press
    • V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer,M. Jordan, and T. Petsche (editors), Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, pages 281–287, 1997.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 288
    • 84893464084 scopus 로고    scopus 로고
    • A comparison between dissimilarity som and kernel som clustering the vertices of a graph
    • Bielefeld: Bielefeld University
    • N. Villa and F. Rossi. A comparison between dissimilarity SOM and kernel SOM clustering the vertices of a graph. In Proceedings of the 6th International Workshop on Self-Organizing Maps. Bielefeld: Bielefeld University, 2007.
    • Proceedings of the 6Th International Workshop on Self-Organizing Maps , pp. 2007
    • Villa, N.1    Rossi, F.2
  • 290
    • 84868295522 scopus 로고    scopus 로고
    • Mgoasvm: Multi-label protein subcellular localization based on gene ontology and support vector machines
    • Shibiao Wan, Man-Wai Mak, and S. Y. Kung. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines. BMCBioinformatics, 13:290, 2012 (available at http://link.springer.com/article/10.1186/1471- 2105-13-290/fulltext.html).
    • (2012) BMC , vol.13
    • Wan, S.1    Mak, M.-W.2    Kung, S.Y.3
  • 291
    • 84890467045 scopus 로고    scopus 로고
    • Adaptive thresholding for multi-label svm classification with application to protein subcellular localization prediction
    • Shibiao Wan, Man-Wai Mak, and S. Y. Kung. Adaptive thresholding for multi-label SVM classification with application to protein subcellular localization prediction. In Proceedings of ICASSP’13, Vancouver, pages 3547–3551, 2013.
    • (2013) Proceedings of ICASSP’13 , pp. 3547-3551
    • Wan, S.1    Mak, M.-W.2    Kung, S.Y.3
  • 292
    • 39649101072 scopus 로고    scopus 로고
    • A cluster validity measure with outlier detection for support vector clustering
    • Jeen-Shing Wang and Jen-Chieh Chiang. A cluster validity measure with outlier detection for support vector clustering. IEEE Trans. Systems, Man, Cybernet. B, 38:78–89, 2008.
    • (2008) IEEE Trans. Systems, Man, Cybernet. B , vol.38 , pp. 78-89
    • Wang, J.-S.1    Chiang, J.-C.2
  • 293
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • L. Wang, J. Zhu, and H. Zou. The doubly regularized support vector machine. Statist. Sinica, 16:589–615, 2006.
    • (2006) Statist. Sinica , vol.16 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 296
    • 0141990708 scopus 로고    scopus 로고
    • Discriminatory mining of gene expression microarray data
    • Z. Wang, Y. Wang, J. Lu, et al. Discriminatory mining of gene expression microarray data. J. Signal Processing Systems, 35:255–272, 2003.
    • (2003) J. Signal Processing Systems , vol.35 , pp. 255-272
    • Wang, Z.1    Wang, Y.2    Lu, J.3
  • 297
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J. H. Ward. Hierarchical grouping to optimize an objective function. J. Am. Statist. Assoc., 58:236–244, 1963.
    • (1963) J. Am. Statist. Assoc , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 302
    • 0001254045 scopus 로고    scopus 로고
    • Multi-class support vector machines
    • Brussels
    • J. Weston and C. Watkins. Multi-class support vector machines. In Proceedings of ESANN, Brussels, 1999.
    • (1999) Proceedings of ESANN
    • Weston, J.1    Watkins, C.2
  • 305
    • 33947301110 scopus 로고    scopus 로고
    • Support vector machine implementations for classification clustering
    • published online
    • S. Winters-Hilt, A. Yelundur, C. McChesney, and M. Landry. Support vector machine implementations for classification clustering. BMC Bioinformatics, 7:S4, published online, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.S4
    • Winters-Hilt, S.1    Yelundur, A.2    McChesney, C.3    Landry, M.4
  • 306
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • L. Wolf and A. Shashua. Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach. J. Machine Learning Res., 6:1855–1887, 2005.
    • (2005) J. Machine Learning Res , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 307
    • 0003742929 scopus 로고    scopus 로고
    • Statistical Research Group Memorandum Report 42, MR38136, Princeton University, Princeton, NJ
    • M. A. Woodbury. Inverting modified matrices. In Statistical Research Group Memorandum Report 42, MR38136, Princeton University, Princeton, NJ, 1950.
    • Inverting Modified Matrices , pp. 1950
    • Woodbury, M.A.1
  • 309
    • 84905244806 scopus 로고    scopus 로고
    • Cost-effective kernel ridge regression implementation for keystroke-based active authentication system
    • Florence, Italy
    • Peiyuan Wu, C. C. Fang, J. M. Chang, S. Gilbert, and S. Y. Kung. Cost-effective kernel ridge regression implementation for keystroke-based active authentication system. In Proceedings of ICASSP’14, Florence, Italy, 2014.
    • Proceedings of ICASSP’14 , pp. 2014
    • Peiyuan, W.1    Fang, C.C.2    Chang, J.M.3    Gilbert, S.4    Kung, S.Y.5
  • 311
    • 79959667141 scopus 로고    scopus 로고
    • A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
    • X. Xiao, Z. C. Wu, and K. C. Chou. iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J. Theor. Biol., 284:42–51, 2011.
    • (2011) J. Theor. Biol , vol.284 , pp. 42-51
    • Xiao, X.1    Wu, Z.C.2
  • 312
    • 0000959484 scopus 로고    scopus 로고
    • Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts
    • E. P. Xing and R. M. Karp. CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics, 17(90001):306–315, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.90001 , pp. 306-315
    • Xing, E.P.1    Cliff, R.M.K.2
  • 314
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Rui Xu and D.Wunsch II. Survey of clustering algorithms. IEEE Trans. Neural Networks, 16(3):645–678, 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Rui, X.1    II, D.2
  • 316
    • 35048832408 scopus 로고    scopus 로고
    • Outliers treatment in support vector regression for financial time series prediction
    • Haiqin Yang, Kaizhu Huang, Laiwan Chan, I. King, and M. R. Lyu. Outliers treatment in support vector regression for financial time series prediction. In ICONIP’04, pages 1260–1265, 2004.
    • (2004) ICONIP’04 , pp. 1260-1265
    • Yang, H.1    Huang, K.2    Chan, L.3    King, I.4    Lyu, M.R.5
  • 320
    • 84865422696 scopus 로고    scopus 로고
    • Recent advances of large-scale linear classification
    • C.-H. Yuan, G.-X. Ho and C.-J. Lin. Recent advances of large-scale linear classification. Proc. IEEE, 100:2584–2603, 2012.
    • (2012) Proc. IEEE , vol.100 , pp. 2584-2603
    • Yuan, C.-H.1    Ho, G.-X.2    Lin, C.-J.3
  • 321
    • 84865211015 scopus 로고    scopus 로고
    • Multikernel adaptive filtering
    • M. Yukawa. Multikernel adaptive filtering. IEEE Trans. Signal Processing, 60(9):4672–4682, 2012.
    • (2012) IEEE Trans. Signal Processing , vol.60 , Issue.9 , pp. 4672-4682
    • Yukawa, M.1
  • 323
    • 4444347719 scopus 로고    scopus 로고
    • A novel kernelized fuzzy c-means algorithm with application in medical image segmentation
    • D.-Q. Zhang and S.-C. Chen. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med., 32:37–50, 2004.
    • (2004) Artif. Intell. Med , vol.32 , pp. 37-50
    • Zhang, D.-Q.1    Chen, S.-C.2
  • 325
    • 0036733640 scopus 로고    scopus 로고
    • Computational prediction of eukaryotic protein-coding genes
    • M. Q. Zhang. Computational prediction of eukaryotic protein-coding genes. Nature Rev. Genetics, 3(9):698–709, 2002.
    • (2002) Nature Rev. Genetics , vol.3 , Issue.9 , pp. 698-709
    • Zhang, M.Q.1
  • 326
    • 33646377650 scopus 로고    scopus 로고
    • Recursive svm feature selection and sample classification for mass-spectrometry and microarray data
    • X. G. Zhang, X. Lu, Q. Shi, et al.Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7(197), 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.197
    • Zhang, X.G.1    Lu, X.2    Shi, Q.3
  • 327
    • 84867612782 scopus 로고    scopus 로고
    • Color–frequency–orientation histogram based image retrieval
    • Kyoto
    • Z. Zhang, X. D. Gu, and S. Y. Kung. Color–frequency–orientation histogram based image retrieval. In Proceedings of ICASSP, Kyoto, 2012.
    • (2012) Proceedings of ICASSP
    • Zhang, Z.1    Gu, X.D.2    Kung, S.Y.3
  • 328
    • 0009849972 scopus 로고    scopus 로고
    • Applying classification separability analysis to microarray data
    • S. M. Lin and K. F. Johnson, editors, Boston, MA: Kluwer Academic Publishers
    • Z. Zhang, G. Page, and H. Zhang. Applying classification separability analysis to microarray data. In S. M. Lin and K. F. Johnson, editors, Methods of Microarray Data Analysis, CAMDA’00. Boston, MA: Kluwer Academic Publishers, pages 125–136, 2001.
    • (2001) Methods of Microarray Data Analysis, CAMDA’00 , pp. 125-136
    • Zhang, Z.1    Page, G.2    Zhang, H.3
  • 330
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. Royal Statist. Soc., Ser. B, 67(2):301–320, 2005.
    • (2005) J. Royal Statist. Soc., Ser. B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.