메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Topographic processing of relational data

Author keywords

Batch clustering; NG; Relational data; SOM; Visualization

Indexed keywords

BATCH CLUSTERING; COMPLEX APPLICATIONS; DIRECT VISUALIZATION; EUCLIDEAN EMBEDDING; MULTI-DIMENSIONAL SCALING; NG; RELATIONAL DATA; SOM;

EID: 84893449108     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (21)

References (32)
  • 2
    • 33746893766 scopus 로고    scopus 로고
    • Fast algorithm and implementation of dissimilarity self-organizing maps
    • B. Conan-Guez, F. Rossi, and A. El Golli (2006), Fast Algorithm and Implementation of Dissimilarity Self-Organizing Maps, Neural Networks 19:855-863.
    • (2006) Neural Networks , vol.19 , pp. 855-863
    • Conan-Guez, B.1    Rossi, F.2    El Golli, A.3
  • 4
    • 84899020966 scopus 로고    scopus 로고
    • Classification on pairwise proximity data
    • M. I. Jordan, M. J. Kearns, and S. A. Solla (Eds.) MIT Press
    • T. Graepel, R. Herbrich, P. Bollmann-Sdorra and K. Obermayer (1999), Classification on pairwise proximity data, In M. I. Jordan, M. J. Kearns, and S. A. Solla (Eds.), NIPS, Vol. 11, MIT Press, p. 438-444.
    • (1999) NIPS , vol.11 , pp. 438-444
    • Graepel, T.1    Herbrich, R.2    Bollmann-Sdorra, P.3    Obermayer, K.4
  • 5
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self-organizing map for proximity data
    • T. Graepel and K. Obermayer (1999), A stochastic self-organizing map for proximity data, Neural Computation 11:139-155.
    • (1999) Neural Computation , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 9
    • 0028667335 scopus 로고
    • Nerf c-means: Non-euclidean relational fuzzy clustering
    • R. J. Hathaway and J. C. Bezdek. Nerf c-means: Non-euclidean relational fuzzy clustering. Pattern Recognition 27(3):429-437, 1994.
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 429-437
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 11
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • T. Heskes (2001). Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 12:1299-1305.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1299-1305
    • Heskes, T.1
  • 13
    • 34147093858 scopus 로고    scopus 로고
    • On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification
    • A. Juan and E. Vidal (2000), On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification, in ICPR 2000, Vol. 2, p. 680-683.
    • (2000) ICPR 2000 , vol.2 , pp. 680-683
    • Juan, A.1    Vidal, E.2
  • 16
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • J. B. Kruskal (1964), Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychome-trika 29:1-27.
    • (1964) Psychome-trika , vol.29 , pp. 1-27
    • Kruskal, J.B.1
  • 17
    • 0020068152 scopus 로고
    • Self-organized formation of topologi-cally correct feature maps
    • T. Kohonen (1982), Self-Organized formation of topologi-cally correct feature maps, Biological Cybernetics, 43:59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 18
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • T. Kohonen and P. Somervuo (2002), How to make large self-organizing maps for nonvectorial data, Neural Networks 15:945-952.
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 19
    • 0019189775 scopus 로고
    • Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes
    • C. Lundsteen, J. Phillip, and E. Granum (1980), Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes, Clinical Genetics 18:355-370.
    • (1980) Clinical Genetics , vol.18 , pp. 355-370
    • Lundsteen, C.1    Phillip, J.2    Granum, E.3
  • 20
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • T. Martinetz, S.G. Berkovich, and K.J. Schulten (1993), 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE Transactions on Neural Networks 4:558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.G.2    Schulten, K.J.3
  • 21
    • 0029921179 scopus 로고    scopus 로고
    • Quantifying the local reliability of a sequence alignment
    • H. Mevissen and M. Vingron (1996), Quantifying the local reliability of a sequence alignment, Protein Engineering 9:127-132.
    • (1996) Protein Engineering , vol.9 , pp. 127-132
    • Mevissen, H.1    Vingron, M.2
  • 22
    • 33745360257 scopus 로고    scopus 로고
    • Edit distance based kernel functions for structural pattern classification
    • M. Neuhaus and H. Bunke (2006), Edit distance based kernel functions for structural pattern classification Pattern Recognition 39(10):1852-1863.
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1852-1863
    • Neuhaus, M.1    Bunke, H.2
  • 23
    • 10044243405 scopus 로고    scopus 로고
    • Kernel neural gas algorithms with application to cluster analysis
    • A.K. Qin and P.N. Suganthan (2004), Kernel neural gas algorithms with application to cluster analysis, ICPR 2004 Vol. 4, pp. 617-620.
    • (2004) ICPR 2004 , vol.4 , pp. 617-620
    • Qin, A.K.1    Suganthan, P.N.2
  • 24
    • 0002129811 scopus 로고    scopus 로고
    • Self-organizing maps in non-euclidean spaces
    • Eds.: E. Oja and S. Kaski
    • H. Ritter (1999), Self-organizing Maps in non-euclidean Spaces, Kohonen Maps, 97-108, Eds.: E. Oja and S. Kaski.
    • (1999) Kohonen Maps , pp. 97-108
    • Ritter, H.1
  • 25
    • 84893516016 scopus 로고    scopus 로고
    • Accelerating relational clustering algorithms with sparse prototype representation
    • submitted to
    • F. Rossi, A. Hasenfuss, B. Hammer, Accelerating relational clustering algorithms with sparse prototype representation, submitted to WSOM'07.
    • WSOM'07
    • Rossi, F.1    Hasenfuss, A.2    Hammer, B.3
  • 27
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • J. W. Sammon Jr. (1969), A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18:401-409.
    • (1969) IEEE Transactions on Computers , vol.18 , pp. 401-409
    • Sammon Jr., J.W.1
  • 28
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • S. Seo and K. Obermayer (2004), Self-organizing maps and clustering methods for matrix data, Neural Networks 17:1211-1230.
    • (2004) Neural Networks , vol.17 , pp. 1211-1230
    • Seo, S.1    Obermayer, K.2
  • 31
    • 1242331444 scopus 로고    scopus 로고
    • H-MDS: A new approach for interactive visualization with multidimensional scaling in the hyperbolic space
    • J. Walter (2004), H-MDS: a new approach for interactive visualization with multidimensional scaling in the hyperbolic space. Information Systems, 29(4):273-292.
    • (2004) Information Systems , vol.29 , Issue.4 , pp. 273-292
    • Walter, J.1
  • 32
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density network
    • H. Yin (2006), On the equivalence between kernel self-organising maps and self-organising mixture density network, Neural Networks 19(6):780-784.
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 780-784
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.