-
1
-
-
0031208638
-
Learning distributions by their density levels: A paradigm for learning without a teacher
-
Ben-David, S., & Lindenbaum, M. (1997). Learning distributions by their density levels: A paradigm for learning without a teacher. Journal of Computer and System Sciences, 55, 171-182.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 171-182
-
-
Ben-David, S.1
Lindenbaum, M.2
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussier (Ed.), Pittsburgh, PA: ACM Press
-
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussier (Ed.), Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (pp. 144-152). Pittsburgh, PA: ACM Press.
-
(1992)
Proceedings of the 5th Annual Acm Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
6
-
-
0031329212
-
A plug-in approach to support estimation
-
1997
-
Cuevas, A., & Fraiman, R. (1997). A plug-in approach to support estimation. Annals of Statistics, 25(6), 2300-2312. 1997.
-
(1997)
Annals of Statistics
, vol.25
, Issue.6
, pp. 2300-2312
-
-
Cuevas, A.1
Fraiman, R.2
-
7
-
-
0000476095
-
Detection of abnormal behaviour via nonparametric estimation of the support
-
Devroye, L., & Wise, G. L. (1980). Detection of abnormal behaviour via nonparametric estimation of the support. SIAM Journal on Applied Mathematics, 38(3), 480-488.
-
(1980)
SIAM Journal on Applied Mathematics
, vol.38
, Issue.3
, pp. 480-488
-
-
Devroye, L.1
Wise, G.L.2
-
8
-
-
0001765899
-
Generalized quantile processes
-
Einmal, J. H. J., & Mason, D. M. (1992). Generalized quantile processes. Annals of Statistics, 20(2), 1062-1078.
-
(1992)
Annals of Statistics
, vol.20
, Issue.2
, pp. 1062-1078
-
-
Einmal, J.H.J.1
Mason, D.M.2
-
9
-
-
0037580803
-
Estimation of functional of density support
-
Gayraud, G. (1997). Estimation of functional of density support. Mathematical Methods of Statistics, 6(1), 26-46.
-
(1997)
Mathematical Methods of Statistics
, vol.6
, Issue.1
, pp. 26-46
-
-
Gayraud, G.1
-
11
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6), 1455-1480.
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
13
-
-
0000360739
-
Support vector novelty detection applied to jet engine vibration spectra
-
in press. T. Leen, T. Dietterich, & V. Tresp (Eds)
-
Hayton, P., Schölkopf, B., Tarassenko, L., & Anuzis, P. (in press). Support vector novelty detection applied to jet engine vibration spectra. In T. Leen, T. Dietterich, & V. Tresp (Eds)., Advances in neural information processing systems, 13.
-
Advances in Neural Information Processing Systems
, pp. 13
-
-
Hayton, P.1
Schölkopf, B.2
Tarassenko, L.3
Anuzis, P.4
-
14
-
-
0002714543
-
Making large-scale svm learning practical
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Cambridge, MA: MIT Press
-
Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 169-184). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
15
-
-
0004098720
-
Improvements to platt's SMO algorithm for SVM classifier design
-
Singapore: Department of Mechanical and Production Engineering, National University of Singapore
-
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (1999). Improvements to Platt's SMO algorithm for SVM classifier design (Tech. Rep. No. CD-99-14). Singapore: Department of Mechanical and Production Engineering, National University of Singapore.
-
(1999)
Tech. Rep. No. CD-99-14
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
19
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Cambridge, MA: MIT Press
-
Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning, (pp. 185-208). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
20
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9).
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.9
-
-
Poggio, T.1
Girosi, F.2
-
21
-
-
0002491164
-
Density estimation under qualitative assumptions in higher dimensions
-
Polonik, W. (1995a). Density estimation under qualitative assumptions in higher dimensions. Journal of Multivariate Analysis, 55(1), 61-81.
-
(1995)
Journal of Multivariate Analysis
, vol.55
, Issue.1
, pp. 61-81
-
-
Polonik, W.1
-
22
-
-
0001030653
-
Measuring mass concentrations and estimating density contour clusters - An excess mass approach
-
Polonik, W. (1995b). Measuring mass concentrations and estimating density contour clusters - an excess mass approach. Annals of Statistics, 23(3), 855-881.
-
(1995)
Annals of Statistics
, vol.23
, Issue.3
, pp. 855-881
-
-
Polonik, W.1
-
23
-
-
0031592717
-
Minimum volume sets and generalized quantile processes
-
Polonik, W. (1997). Minimum volume sets and generalized quantile processes. Stochastic Processes and their Applications, 69, 1-24.
-
(1997)
Stochastic Processes and Their Applications
, vol.69
, pp. 1-24
-
-
Polonik, W.1
-
24
-
-
85144895276
-
An iterative method for estimating a multivariate mode and isopleth
-
Sager, T. W. (1979). An iterative method for estimating a multivariate mode and isopleth. Journal of the American Statistical Association, 74(366), 329-339.
-
(1979)
Journal of the American Statistical Association
, vol.74
, Issue.366
, pp. 329-339
-
-
Sager, T.W.1
-
25
-
-
0003798627
-
-
Cambridge, MA: MIT Press
-
Schölkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Advances in kernel methods -Support vector learning. Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods -support Vector Learning
-
-
Schölkopf, B.1
Burges, C.J.C.2
Smola, A.J.3
-
26
-
-
0002845829
-
Extracting support data for a given task
-
U. M. Fayyad & R. Uthurusamy (Eds.), Menlo Park, CA: AAAI Press
-
Schölkopf, B., Burges, C., & Vapnik, V. (1995). Extracting support data for a given task. In U. M. Fayyad & R. Uthurusamy (Eds.), Proceedings, First International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press.
-
(1995)
Proceedings, First International Conference on Knowledge Discovery and Data Mining
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
27
-
-
0038091288
-
Estimating the support of a high-dimensional distribution
-
Redmond, WA: Microsoft Research. TR_ID=MSR-TR-99-87
-
Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (1999). Estimating the support of a high-dimensional distribution (Tech. Rep. No. 87). Redmond, WA: Microsoft Research. Available online at: http://www.research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-99-87.
-
(1999)
Tech. Rep. No. 87
, vol.87
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
28
-
-
4243890535
-
Kernel method for percentile feature extraction
-
Redmond, WA: Microsoft Research
-
Schölkopf, B., Platt, J., & Smola, A. J. (2000). Kernel method for percentile feature extraction (Tech. Rep. No. 22). Redmond, WA: Microsoft Research.
-
(2000)
Tech. Rep. No. 22
, vol.22
-
-
Schölkopf, B.1
Platt, J.2
Smola, A.J.3
-
29
-
-
0002570938
-
Kernel principal component analysis
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Cambridge, MA: MIT Press
-
Schölkopf, B., Smola, A., & Müller, K. R. (1999). Kernel principal component analysis. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 327-352). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 327-352
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.R.3
-
30
-
-
17444438778
-
New support vector algorithms
-
Schölkopf, B., Smola, A., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12, 1207-1245.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
31
-
-
24444478695
-
Single-class support vector machines
-
J. Buhmann, W. Maass, H. Ritter, & N. Tishby, editors (Eds.) Dagstuhl, Germany
-
Schölkopf, B., Williamson, R., Smola, A., & Shawe-Taylor, J. (1999). Single-class support vector machines. In J. Buhmann, W. Maass, H. Ritter, & N. Tishby, editors (Eds.) Unsupervised learning (Rep. No. 235) (pp. 19-20). Dagstuhl, Germany.
-
(1999)
Unsupervised Learning (Rep. No. 235)
, vol.235
, pp. 19-20
-
-
Schölkopf, B.1
Williamson, R.2
Smola, A.3
Shawe-Taylor, J.4
-
34
-
-
77952545428
-
Generalization performance of classifiers in terms of observed covering numbers
-
New York: Springer-Verlag
-
Shawe-Taylor, J., & Williamson, R. C. (1999). Generalization performance of classifiers in terms of observed covering numbers. In Computational Learning Theory: 4th European Conference (pp. 274-284). New York: Springer-Verlag.
-
(1999)
Computational Learning Theory: 4th European Conference
, pp. 274-284
-
-
Shawe-Taylor, J.1
Williamson, R.C.2
-
36
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola, A., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
37
-
-
84898987780
-
Regularized principal manifolds
-
in press
-
Smola, A., Mika, S., Schölkopf, B., & Williamson, R. C. (in press). Regularized principal manifolds. Machine Learning.
-
Machine Learning
-
-
Smola, A.1
Mika, S.2
Schölkopf, B.3
Williamson, R.C.4
-
38
-
-
0038928835
-
Four-legged walking gait control using a neuromorphic chip interfaced to a support vector learning algorithm
-
in press. T. Leen, T. Diettrich, & P. Anuzis (Eds.), Cambridge, MA: MIT Press
-
Still, S., & Schölkopf, B. (in press). Four-legged walking gait control using a neuromorphic chip interfaced to a support vector learning algorithm. In T. Leen, T. Diettrich, & P. Anuzis (Eds.), Advances in neural information processing systems, 13. Cambridge, MA: MIT Press.
-
Advances in Neural Information Processing Systems
, pp. 13
-
-
Still, S.1
Schölkopf, B.2
-
39
-
-
0032664993
-
Improving the manufacturability of electronic designs
-
Stoneking, D. (1999). Improving the manufacturability of electronic designs. IEEE Spectrum, 36(6), 70-76.
-
(1999)
IEEE Spectrum
, vol.36
, Issue.6
, pp. 70-76
-
-
Stoneking, D.1
-
40
-
-
0029237466
-
Novelty detection for the identification of masses in mammograms
-
Cambridge
-
Tarassenko, L., Hayton, P., Cerneaz, N., & Brady, M. (1995). Novelty detection for the identification of masses in mammograms. In Proceedings Fourth IEE International Conference on Artificial Neural Networks (pp. 442-447). Cambridge.
-
(1995)
In Proceedings Fourth IEE International Conference on Artificial Neural Networks
, pp. 442-447
-
-
Tarassenko, L.1
Hayton, P.2
Cerneaz, N.3
Brady, M.4
-
41
-
-
0001986205
-
Data domain description by support vectors
-
M. Verleysen (Ed.), Brussels: D Facto
-
Tax, D. M. J., & Duin, R. P. W. (1999). Data domain description by support vectors. In M. Verleysen (Ed.), Proceedings ESANN (pp. 251-256). Brussels: D Facto.
-
(1999)
Proceedings ESANN
, pp. 251-256
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
42
-
-
0031478562
-
On nonparametric estimation of density level sets
-
Tsybakov, A. B. (1997). On nonparametric estimation of density level sets. Annals of Statistics, 25(3), 948-969.
-
(1997)
Annals of Statistics
, vol.25
, Issue.3
, pp. 948-969
-
-
Tsybakov, A.B.1
-
45
-
-
0038928834
-
Bounds on error expectation for SVM
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
-
Vapnik, V., & Chapelle, O. (2000). Bounds on error expectation for SVM. In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 261-280). Cambridge, MA: MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 261-280
-
-
Vapnik, V.1
Chapelle, O.2
-
46
-
-
0004272441
-
-
Nauka, Moscow. [In Russian] (German translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979)
-
Vapnik, V., & Chervonenkis, A. (1974). Theory of pattern recognition. Nauka, Moscow. [In Russian] (German translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979).
-
(1974)
Theory of Pattern Recognition
-
-
Vapnik, V.1
Chervonenkis, A.2
-
47
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
Vapnik, V., & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24.
-
(1963)
Automation and Remote Control
, pp. 24
-
-
Vapnik, V.1
Lerner, A.2
-
48
-
-
0003731482
-
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
-
(Tech. Rep. No. 19) NeuroCOLT. Available online 1998. Also: in press
-
Williamson, R. C., Smola, A. J., & Schölkopf, B. (1998). Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators (Tech. Rep. No. 19) NeuroCOLT. Available online at: http://www.neurocolt.com, 1998. Also: IEEE Transactions on Information Theory (in press).
-
(1998)
IEEE Transactions on Information Theory
-
-
Williamson, R.C.1
Smola, A.J.2
Schölkopf, B.3
-
49
-
-
0347606830
-
Entropy numbers of linear function classes
-
N. Cesa-Bianchi & S. Goldman (Eds.), San Mateo, CA: Morgan Kaufman
-
Williamson, R. C., Smola, A. J., & Schölkopf, B. (2000). Entropy numbers of linear function classes. In N. Cesa-Bianchi & S. Goldman (Eds.), Proceedings of the 13th Annual Conference on Computational Learning Theory (pp. 309-319). San Mateo, CA: Morgan Kaufman.
-
(2000)
Proceedings of the 13th Annual Conference on Computational Learning Theory
, pp. 309-319
-
-
Williamson, R.C.1
Smola, A.J.2
Schölkopf, B.3
|