메뉴 건너뛰기




Volumn 52, Issue 8, 2004, Pages 2275-2285

The kernel recursive least-squares algorithm

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; LEAST SQUARES APPROXIMATIONS; RECURSIVE FUNCTIONS; REGRESSION ANALYSIS; TIME SERIES ANALYSIS;

EID: 3543096272     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2004.830985     Document Type: Article
Times cited : (1005)

References (31)
  • 9
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G. Kimeldorf and G. Wahba, "Some results on Tchebycheffian spline functions," J. Math. Anal. Applic., vol. 33, pp. 82-95, 1971.
    • (1971) J. Math. Anal. Applic. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 10
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge MA: MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 42-65.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 42-65
    • Platt, J.1
  • 11
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • R. Collobert and S. Bengio, "SVMTorch: support vector machines for large-scale regression problems," J. Machine Learning Res., vol. 1, pp. 143-160, 2001.
    • (2001) J. Machine Learning Res. , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 12
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," Adv. Comput. Math., vol. 13, no. 1, pp. 1-50, 2000.
    • (2000) Adv. Comput. Math. , vol.13 , Issue.1 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 13
    • 0002400882 scopus 로고    scopus 로고
    • Simplified support vector decision rules
    • C. Burges, "Simplified support vector decision rules," in Proc. Int. Conf. Machine Learning, 1996, pp. 71-77.
    • (1996) Proc. Int. Conf. Machine Learning , pp. 71-77
    • Burges, C.1
  • 14
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy speed of support vector machines
    • Systems Cambridge MA: MIT Press
    • C. Burges and B. Schölkopf, "Improving the accuracy and speed of support vector machines," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, vol. 9.
    • (1997) Advances in Neural Information Processing , vol.9
    • Burges, C.1    Schölkopf, B.2
  • 15
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • C. Williams and M. Seeger, "Using the Nyström method to speed up kernel machines," Adv. Neural Inform. Processing Syst., vol. 13, pp. 682-688, 2001.
    • (2001) Adv. Neural Inform. Processing Syst. , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 16
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • June
    • M. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Machine Learning Res., vol. 1, pp. 211-244, June 2001.
    • (2001) J. Machine Learning Res. , vol.1 , pp. 211-244
    • Tipping, M.1
  • 18
    • 0001260194 scopus 로고    scopus 로고
    • Exact simplification of support vector solutions
    • Dec
    • T. Downs, K. Gates, and A. Masters, "Exact simplification of support vector solutions," J. Machine Learning Res., vol. 2, pp. 293-297, Dec. 2001.
    • (2001) J. Machine Learning Res. , vol.2 , pp. 293-297
    • Downs, T.1    Gates, K.2    Masters, A.3
  • 19
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • San Francisco, CA
    • A. Smola and B. Schölkopf, "Sparse greedy matrix approximation for machine learning," in Proc. 17th Int. Conf. Machine Learning, San Francisco, CA, 2000, pp. 911-918.
    • (2000) Proc. 17th Int. Conf. Machine Learning , pp. 911-918
    • Smola, A.1    Schölkopf, B.2
  • 20
    • 84899000575 scopus 로고    scopus 로고
    • Sparse greedy Gaussian process regression
    • Cambridge, MA: MIT Press
    • A. Smola and P. Bartlett, "Sparse greedy Gaussian process regression," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, vol. 13, pp. 619-625.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 619-625
    • Smola, A.1    Bartlett, P.2
  • 21
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • P. Vincent and Y. Bengio "Kernel matching pursuit," Machine Learning, vol. 48, pp. 165-187, 2002.
    • (2002) Machine Learning , vol.48 , pp. 165-187
    • Vincent, P.1    Bengio, Y.2
  • 22
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • L. Csató and M. Opper, "Sparse on-line Gaussian processes," Neural Comput., vol. 14, pp. 641-668, 2002.
    • (2002) Neural Comput. , vol.14 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 23
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B. Natarajan, "Sparse approximate solutions to linear systems," SIAM J. Comput., vol. 24, no. 2, pp. 227-234, 1995.
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.1
  • 28
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol. 10, pp. 1299-1319, 1998.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 31
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • Nov
    • D. Sebald and J. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Processing, vol. 48, pp. 3217-3226, Nov. 2000.
    • (2000) IEEE Trans. Signal Processing , vol.48 , pp. 3217-3226
    • Sebald, D.1    Bucklew, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.