-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman, M. A., Braverman, E. M., & Rozonoér, L. I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozonoér, L.I.3
-
2
-
-
0032584958
-
Probabilistic self organizing map and radial basis function
-
Anouar, F., Badran, F., & Thiria, S. (1998). Probabilistic self organizing map and radial basis function. Journal Neurocomputing, 20, 83-96.
-
(1998)
Journal Neurocomputing
, vol.20
, pp. 83-96
-
-
Anouar, F.1
Badran, F.2
Thiria, S.3
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler (Ed.), Pittsburgh, PA: ACM Press
-
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), Fifth Annual ACM Workshop on COLT (pp. 144-152). Pittsburgh, PA: ACM Press.
-
(1992)
Fifth Annual ACM Workshop on COLT
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
5
-
-
84898957872
-
Improving the accuracy and speed of support vector machines
-
M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Burges, C. J. C., & Schölkopf, B. (1997). Improving the accuracy and speed of support vector machines. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9. Cambridge, MA: MIT Press.
-
(1997)
Neural Information Processing Systems
, vol.9
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
6
-
-
84899013173
-
Support vector regression machines
-
M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9. Cambridge, MA: MIT Press.
-
(1997)
Neural Information Processing Systems
, vol.9
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
7
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenics, 7, 179-188.
-
(1936)
Annual Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
10
-
-
0003425664
-
Support vector machines for classification and regression
-
Image Speech and Intelligent Systems Research Group, University of Southampton. Available online at
-
Gunn, S. R. (1997). Support vector machines for classification and regression (Tech. rep.). Image Speech and Intelligent Systems Research Group, University of Southampton. Available online at: http://www.isis.ecs.soton.ac.uk/ resource/svminfo/.
-
(1997)
Tech. Rep.
-
-
Gunn, S.R.1
-
11
-
-
0039238521
-
Flexible discriminant analysis by optimal scoring
-
AT&T Bell Labs
-
Hastie, T., Tibshirani, R., & Buja, A. (1993). Flexible discriminant analysis by optimal scoring (Res. Rep.). AT&T Bell Labs.
-
(1993)
Res. Rep.
-
-
Hastie, T.1
Tibshirani, R.2
Buja, A.3
-
13
-
-
0027149371
-
A minimum error neural network (MNN)
-
Musavi, M. T., Kalantri, K., Ahmed, W., & Chan, K. H. (1993). A minimum error neural network (MNN). Neural Networks, 6, 397-407.
-
(1993)
Neural Networks
, vol.6
, pp. 397-407
-
-
Musavi, M.T.1
Kalantri, K.2
Ahmed, W.3
Chan, K.H.4
-
14
-
-
0016765357
-
On optimal nonlinear associative recall
-
Poggio, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics, 19, 201-209.
-
(1975)
Biological Cybernetics
, vol.19
, pp. 201-209
-
-
Poggio, T.1
-
17
-
-
0003836788
-
Nonlinear component analysis as a kernel eigenvalue problem
-
MPI fur biologische kybernetik
-
Schölkopf, B., Smola, A., & Müller, K. R. (1996). Nonlinear component analysis as a kernel eigenvalue problem (Tech. Rep. No. 44). MPI fur biologische kybernetik.
-
(1996)
Tech. Rep. No. 44
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.R.3
-
18
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.R.3
-
19
-
-
0025206332
-
Probabilistic neural networks
-
Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109-118.
-
(1990)
Neural Networks
, vol.3
, Issue.1
, pp. 109-118
-
-
Specht, D.F.1
-
21
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Vapnik, V., Golowich, S. E., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9. Cambridge, MA: MIT Press.
-
(1997)
Neural Information Processing Systems
, vol.9
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
23
-
-
84898982939
-
Exploiting generative models in discriminative classifiers
-
M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge, MA: MIT Press
-
Jaakkola, T. S., & Haussler, D. (1999). Exploiting generative models in discriminative classifiers. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11. Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
-
-
Jaakkola, T.S.1
Haussler, D.2
-
24
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
Mika, S., Rätsch, G., Weston, J., Schölkopf, B., & Müller, K. R. (1999). Fisher discriminant analysis with kernels. In Proc. IEEE Neural Networks for Signal Processing Workshop, NNSP.
-
(1999)
Proc. IEEE Neural Networks for Signal Processing Workshop, NNSP.
-
-
Mika, S.1
Rätsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.R.5
|