메뉴 건너뛰기




Volumn 12, Issue 10, 2000, Pages 2385-2404

Generalized discriminant analysis using a kernel approach

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; DISCRIMINATION LEARNING; NONLINEAR SYSTEM; PLANT SEED;

EID: 0034296402     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300014980     Document Type: Article
Times cited : (1602)

References (24)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman, M. A., Braverman, E. M., & Rozonoér, L. I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoér, L.I.3
  • 2
    • 0032584958 scopus 로고    scopus 로고
    • Probabilistic self organizing map and radial basis function
    • Anouar, F., Badran, F., & Thiria, S. (1998). Probabilistic self organizing map and radial basis function. Journal Neurocomputing, 20, 83-96.
    • (1998) Journal Neurocomputing , vol.20 , pp. 83-96
    • Anouar, F.1    Badran, F.2    Thiria, S.3
  • 3
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • D. Haussler (Ed.), Pittsburgh, PA: ACM Press
    • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), Fifth Annual ACM Workshop on COLT (pp. 144-152). Pittsburgh, PA: ACM Press.
    • (1992) Fifth Annual ACM Workshop on COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 5
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector machines
    • M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Burges, C. J. C., & Schölkopf, B. (1997). Improving the accuracy and speed of support vector machines. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9. Cambridge, MA: MIT Press.
    • (1997) Neural Information Processing Systems , vol.9
    • Burges, C.J.C.1    Schölkopf, B.2
  • 7
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenics, 7, 179-188.
    • (1936) Annual Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 10
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Image Speech and Intelligent Systems Research Group, University of Southampton. Available online at
    • Gunn, S. R. (1997). Support vector machines for classification and regression (Tech. rep.). Image Speech and Intelligent Systems Research Group, University of Southampton. Available online at: http://www.isis.ecs.soton.ac.uk/ resource/svminfo/.
    • (1997) Tech. Rep.
    • Gunn, S.R.1
  • 11
    • 0039238521 scopus 로고
    • Flexible discriminant analysis by optimal scoring
    • AT&T Bell Labs
    • Hastie, T., Tibshirani, R., & Buja, A. (1993). Flexible discriminant analysis by optimal scoring (Res. Rep.). AT&T Bell Labs.
    • (1993) Res. Rep.
    • Hastie, T.1    Tibshirani, R.2    Buja, A.3
  • 14
    • 0016765357 scopus 로고
    • On optimal nonlinear associative recall
    • Poggio, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics, 19, 201-209.
    • (1975) Biological Cybernetics , vol.19 , pp. 201-209
    • Poggio, T.1
  • 17
    • 0003836788 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • MPI fur biologische kybernetik
    • Schölkopf, B., Smola, A., & Müller, K. R. (1996). Nonlinear component analysis as a kernel eigenvalue problem (Tech. Rep. No. 44). MPI fur biologische kybernetik.
    • (1996) Tech. Rep. No. 44
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 18
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 19
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109-118.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 21
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Vapnik, V., Golowich, S. E., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9. Cambridge, MA: MIT Press.
    • (1997) Neural Information Processing Systems , vol.9
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 23
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge, MA: MIT Press
    • Jaakkola, T. S., & Haussler, D. (1999). Exploiting generative models in discriminative classifiers. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11. Cambridge, MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Jaakkola, T.S.1    Haussler, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.