메뉴 건너뛰기




Volumn 6, Issue 4, 2009, Pages 605-614

Laplacian linear discriminant analysis approach to unsupervised feature selection

Author keywords

Graph Laplacian; Linear discriminant analysis; Microarray data analysis; Unsupervised feature selection

Indexed keywords

BIO-MARKER DISCOVERY; DATA SETS; EXPLORATORY DATA ANALYSIS; FEATURE SELECTION; FILTER METHOD; FISHER SCORE; GENOMICS; GRAPH LAPLACIAN; HIGH DIMENSIONALITY; LAPLACIANS; LINEAR DISCRIMINANT ANALYSIS; MASS SPECTROMETRY DATA; MICROARRAY DATA; MICROARRAY DATA ANALYSIS; NOVEL ALGORITHM; PROTEOMICS; PUBLIC DATA; RECURSIVE FEATURE ELIMINATION; SMALL SAMPLE SIZE; TWO-STATE; UNSUPERVISED FEATURE SELECTION; UNSUPERVISED METHOD;

EID: 75449099314     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2007.70257     Document Type: Article
Times cited : (44)

References (34)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine, "Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays," Proc. Nat'l Academy of Sciences USA, vol.96, pp. 6745-6750, 1999.
    • (1999) Proc. Nat'l Academy of Sciences USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    MacK, D.6    Levine, A.J.7
  • 2
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • O. Alter, P.O. Brown, and D. Botstein, "Singular Value Decomposition for Genome-Wide Expression Data Processing and Modeling," Proc. Nat'l Academy of Sciences USA, vol.97, pp. 10101-10106, 2000.
    • (2000) Proc. Nat'l Academy of Sciences USA , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 5
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • Dec.
    • D. Cai, X. He, and J. Han, "Document Clustering Using Locality Preserving Indexing," IEEE Trans. Knowledge and Data Eng., vol.17, no.12, pp. 1624-1637, Dec. 2005.
    • (2005) IEEE Trans. Knowledge and Data Eng. , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 7
    • 0038494599 scopus 로고    scopus 로고
    • Unsupervised feature selection via two-way ordering in gene expression analysis
    • C.H.Q. Ding, "Unsupervised Feature Selection via Two-Way Ordering in Gene Expression Analysis," Bioinformatics, vol.19, no.10, pp. 1259-1266, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1259-1266
    • Ding, C.H.Q.1
  • 8
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. Speed, "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," J. Am. Statistical Assoc., vol.97, pp. 77-87, 2002.
    • (2002) J. Am. Statistical Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 12
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol.3, pp. 1157-1182, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning, vol.46, pp. 389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • Y. Weiss, B. Schölkopf, and J. Platt, eds., MIT Press
    • X. He, D. Cai, and P. Niyogi, "Laplacian Score for Feature Selection," Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds., pp. 507-514, MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 507-514
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 18
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • H. Li, T. Jiang, and K. Zhang, "Efficient and Robust Feature Extraction by Maximum Margin Criterion," IEEE Trans. Neural Networks, vol.17, no.1, pp. 157-165, 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 19
    • 27544442586 scopus 로고    scopus 로고
    • Analysis of recursive gene selection approaches from microarray data
    • F. Li and Y. Yang, "Analysis of Recursive Gene Selection Approaches from Microarray Data," Bioinformatics, vol.21, no.19, pp. 3741-3747, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.19 , pp. 3741-3747
    • Li, F.1    Yang, Y.2
  • 20
    • 33746916014 scopus 로고    scopus 로고
    • Face recognition using kernel scatter-difference-based discriminant analysis
    • Q. Liu, X. Tang, H. Lu, and S. Ma, "Face Recognition Using Kernel Scatter-Difference-Based Discriminant Analysis," IEEE Trans. Neural Networks, vol.17, no.4, pp. 1081-1085, 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 1081-1085
    • Liu, Q.1    Tang, X.2    Lu, H.3    Ma, S.4
  • 21
    • 33947119112 scopus 로고    scopus 로고
    • On an alternative formulation of the fisher criterion that overcomes the small sample problem
    • M. Loog, "On an Alternative Formulation of the Fisher Criterion That Overcomes the Small Sample Problem," Pattern Recognition, vol.40, pp. 1753-1755, 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 1753-1755
    • Loog, M.1
  • 22
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • DOI 10.1016/S0140-6736(05)17866-0
    • S. Michiels, S. Koscielny, and C. Hill, "Prediction of Cancer Outcome with Microarrays: A Multiple Random Validation Strategy," Lancet, vol.365, pp. 488-492, 2005. (Pubitemid 40215731)
    • (2005) Lancet , vol.365 , Issue.9458 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 23
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. Dietterich, S. Becker, and Z. Ghahramani, eds., MIT Press
    • A.Y. Ng, M.I. Jordan, and Y. Weiss, "On Spectral Clustering: Analysis and an Algorithm," Advances in Neural Information Processing Systems 14, T. Dietterich, S. Becker, and Z. Ghahramani, eds., pp. 849-856, MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 24
    • 33846945056 scopus 로고    scopus 로고
    • Recursive gene selection based on maximum margin criterion: A comparison with SVM-RFE
    • S. Niijima and S. Kuhara, "Recursive Gene Selection Based on Maximum Margin Criterion: A Comparison with SVM-RFE," BMC Bioinformatics, vol.7, 543, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 543
    • Niijima, S.1    Kuhara, S.2
  • 26
    • 27344439726 scopus 로고    scopus 로고
    • Laplacian linear discriminant analysis
    • H. Tang, T. Fang, and P.-F. Shi, "Laplacian Linear Discriminant Analysis," Pattern Recognition, vol.39, pp. 136-139, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 136-139
    • Tang, H.1    Fang, T.2    Shi, P.-F.3
  • 28
    • 33747883187 scopus 로고    scopus 로고
    • Novel unsupervised feature filtering of biological data
    • R. Varshavsky, A. Gottlieb, M. Linial, and D. Horn, "Novel Unsupervised Feature Filtering of Biological Data," Bioinformatics, vol.22, no.14, pp. e507-e513, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Varshavsky, R.1    Gottlieb, A.2    Linial, M.3    Horn, D.4
  • 30
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • L. Wolf and A. Shashua, "Feature Selection for Unsupervised and Supervised Inference: The Emergence of Sparsity in a Weight-Based Approach," J. Machine Learning Research, vol.6, pp. 1855-1887, 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 32
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • J. Ye, "Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems," J. Machine Learning Research, vol.6, pp. 483-502, 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 483-502
    • Ye, J.1
  • 33
    • 14744274588 scopus 로고    scopus 로고
    • Using uncorrelated discriminant analysis for tissue classification with gene expression data
    • Oct.-Dec.
    • J. Ye, T. Li, T. Xiong, and R. Janardan, "Using Uncorrelated Discriminant Analysis for Tissue Classification with Gene Expression Data," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol.1, no.4, pp. 181-190, Oct.-Dec. 2004.
    • (2004) IEEE/ACM Trans. Computational Biology and Bioinformatics , vol.1 , Issue.4 , pp. 181-190
    • Ye, J.1    Li, T.2    Xiong, T.3    Janardan, R.4
  • 34
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • J. Zhu and T. Hastie, "Classification of Gene Microarrays by Penalized Logistic Regression," Biostatistics, vol.5, no.3, pp. 427-443, 2004.
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 427-443
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.