메뉴 건너뛰기




Volumn 42, Issue 6, 2002, Pages 1347-1357

Prediction of protein retention times in anion-exchange chromatography systems using support vector regression

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CHROMATOGRAPHY; CRYSTAL STRUCTURE; ION EXCHANGE; NEGATIVE IONS; REGRESSION ANALYSIS; VECTORS;

EID: 0036827078     PISSN: 00952338     EISSN: None     Source Type: Journal    
DOI: 10.1021/ci025580t     Document Type: Article
Times cited : (164)

References (50)
  • 1
    • 0000062644 scopus 로고
    • Correlation between retention indexes and connectivity indexes of alcohols and methyl-esters with complex cyclic structure
    • Kaliszan, R. Correlation between Retention Indexes and Connectivity Indexes of Alcohols and Methyl-Esters with Complex Cyclic Structure. Chromatographia 1977, 10, 529-531.
    • (1977) Chromatographia , vol.10 , pp. 529-531
    • Kaliszan, R.1
  • 3
    • 0033946386 scopus 로고    scopus 로고
    • High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
    • Montana, M.P.; Pappano, N.B.; Debattista, N.B.; Raba, J.; Luco, J.M. High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling. Chromatographia 2000, 51, 727-735.
    • (2000) Chromatographia , vol.51 , pp. 727-735
    • Montana, M.P.1    Pappano, N.B.2    Debattista, N.B.3    Raba, J.4    Luco, J.M.5
  • 4
    • 0030913886 scopus 로고    scopus 로고
    • Prediction of gas chromatographic retention indices of alkylbenzenes
    • Sutter, J.M.; Peterson, T.A.; Jurs, P.C. Prediction of gas chromatographic retention indices of alkylbenzenes. Anal. Chim. Acta 1997, 342, 113-122.
    • (1997) Anal. Chim. Acta , vol.342 , pp. 113-122
    • Sutter, J.M.1    Peterson, T.A.2    Jurs, P.C.3
  • 5
    • 0034731664 scopus 로고    scopus 로고
    • Artificial neural networks in liquid chromatography: Efficient and improved quantitative structure-retention relationship models
    • Loukas, Y.L. Artificial neural networks in liquid chromatography: efficient and improved quantitative structure-retention relationship models. J. Chromatogr. A 2000, 904, 119-129.
    • (2000) J. Chromatogr. A , vol.904 , pp. 119-129
    • Loukas, Y.L.1
  • 6
    • 0035891173 scopus 로고    scopus 로고
    • Prediction of protein retention in ion-exchange systems using molecular descriptors obtained from crystal structure
    • Mazza, C.B.; Sukumar, N.; Breneman, C.M.; Cramer, S.M. Prediction of protein retention in ion-exchange systems using molecular descriptors obtained from crystal structure. Anal. Chem. 2001, 73, 5457-5461.
    • (2001) Anal. Chem. , vol.73 , pp. 5457-5461
    • Mazza, C.B.1    Sukumar, N.2    Breneman, C.M.3    Cramer, S.M.4
  • 7
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Networks 1999, 10, 988-999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 9
    • 84872266105 scopus 로고    scopus 로고
    • Tripos Assoiciate Inc. 1699 S. Hanley Rd., Suite 303, St. Louis, MO 63144-2913
    • SYBYL 6.5, Tripos Assoiciate Inc. 1699 S. Hanley Rd., Suite 303, St. Louis, MO 63144-2913.
    • SYBYL 6.5
  • 10
    • 0000886672 scopus 로고
    • Electron-density modeling of large systems using the transferable atom equivalent method
    • Breneman, C.M.; Thompson, T.R.; Rhem, M.; Dung, M. Electron-Density Modeling of Large Systems Using the Transferable Atom Equivalent Method. Comput. Chem. 1995, 19, 161-179.
    • (1995) Comput. Chem. , vol.19 , pp. 161-179
    • Breneman, C.M.1    Thompson, T.R.2    Rhem, M.3    Dung, M.4
  • 11
    • 0001728908 scopus 로고    scopus 로고
    • Quantum-chemical descriptors in QSAR/QSPR studies
    • Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 1996, 96, 1027-1043.
    • (1996) Chem. Rev. , vol.96 , pp. 1027-1043
    • Karelson, M.1    Lobanov, V.S.2    Katritzky, A.R.3
  • 13
    • 0035857244 scopus 로고    scopus 로고
    • Theoretical reconstruction of the electron density of large molecules from fragments determined as proper open quantum systems: The properties of the oripavine PEO, enkephalins, and morphine
    • Matta, C.F. Theoretical reconstruction of the electron density of large molecules from fragments determined as proper open quantum systems: The properties of the oripavine PEO, enkephalins, and morphine. J. Phys. Chem. A 2001, 105, 11088-11101.
    • (2001) J. Phys. Chem. A , vol.105 , pp. 11088-11101
    • Matta, C.F.1
  • 14
    • 0004110665 scopus 로고
    • Transferable atom equivalents. Molecular electrostatic potentials from the electric multipoles of PROAIMS atomic basins
    • Plenum Press
    • Breneman, C.M. Transferable Atom Equivalents. Molecular Electrostatic Potentials from the Electric Multipoles of PROAIMS Atomic Basins. The Application of Charge Density Research to Chemistry and Drug Design; Plenum Press: 1991; pp 357-358.
    • (1991) The Application of Charge Density Research to Chemistry and Drug Design , pp. 357-358
    • Breneman, C.M.1
  • 15
    • 0000431584 scopus 로고    scopus 로고
    • QSPR analysis of HPLC column capacity factors for a set of high-energy materials using electronic van der Waals surface property descriptors computed by transferable atom equivalent method
    • Breneman, C.M.; Rhem, M. QSPR analysis of HPLC column capacity factors for a set of high-energy materials using electronic van der Waals surface property descriptors computed by transferable atom equivalent method. J. Comput. Chem. 1997, 18, 182-197.
    • (1997) J. Comput. Chem. , vol.18 , pp. 182-197
    • Breneman, C.M.1    Rhem, M.2
  • 16
    • 0034351504 scopus 로고    scopus 로고
    • A widely applicable set of descriptors
    • Labute, P. A widely applicable set of descriptors. J. Mol. Graph. Model. 2000, 18, 464-477.
    • (2000) J. Mol. Graph. Model. , vol.18 , pp. 464-477
    • Labute, P.1
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-Vector Networks. Machine Learning 1995, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26, 5-14.
    • (2001) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 21
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding, C.H.Q.; Dubchak, I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 2001, 17, 349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 22
    • 0036166451 scopus 로고    scopus 로고
    • Classifying G-protein coupled receptors with support vector machines
    • Karchin, R.; Karplus, K.; Haussler, D. Classifying G-protein coupled receptors with support vector machines. Bioinformatics 2002, 18, 147-159.
    • (2002) Bioinformatics , vol.18 , pp. 147-159
    • Karchin, R.1    Karplus, K.2    Haussler, D.3
  • 23
    • 0037196307 scopus 로고    scopus 로고
    • Support vector machines for predicting HIV protease cleavage sites in protein
    • Cai, Y.D.; Liu, X.J.; Xu, X.B.; Chou, K.C. Support vector machines for predicting HIV protease cleavage sites in protein. J. Comput. Chem. 2002, 23, 267-274.
    • (2002) J. Comput. Chem. , vol.23 , pp. 267-274
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3    Chou, K.C.4
  • 24
    • 0035150169 scopus 로고    scopus 로고
    • Use of support vector machine in pattern classification: Application to QSAR studies
    • Czerminski, R.; Yasri, A.; Hartsough, D. Use of Support Vector Machine in pattern classification: Application to QSAR studies. Quant. Struct.-Act. Relat. 2001, 20, 227-240.
    • (2001) Quant. Struct.-Act. Relat. , vol.20 , pp. 227-240
    • Czerminski, R.1    Yasri, A.2    Hartsough, D.3
  • 28
    • 0034265479 scopus 로고    scopus 로고
    • Unsupervised forward selection: A method for eliminating redundant variables
    • Whitley, D.C.; Ford, M.G.; Livingstone, D.J. Unsupervised forward selection: A method for eliminating redundant variables. J. Chem. Inf. Comput. Sci. 2000, 40, 1160-1168.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 1160-1168
    • Whitley, D.C.1    Ford, M.G.2    Livingstone, D.J.3
  • 29
    • 0029230341 scopus 로고
    • Automated descriptor selection for quantitative structure-activity-relationships using generalized simulated annealing
    • Sutter, J.M.; Dixon, S.L.; Jurs, P.C. Automated Descriptor Selection for Quantitative Structure-Activity-Relationships Using Generalized Simulated Annealing. J. Chem. Inf. Comput. Sci. 1995, 35, 77-84.
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , pp. 77-84
    • Sutter, J.M.1    Dixon, S.L.2    Jurs, P.C.3
  • 30
    • 0028467707 scopus 로고
    • Application of genetic function approximation to quantitative structure-activity-relationships and quantitative structure-property relationships
    • Rogers, D.; Hopfinger, A.J. Application of Genetic Function Approximation to Quantitative Structure-Activity-Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 1994, 34, 854-866.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 854-866
    • Rogers, D.1    Hopfinger, A.J.2
  • 31
    • 0030472786 scopus 로고    scopus 로고
    • Genetic neural networks for quantitative structure-activity relationships: Improvements and application of benzodiazepine affinity for benzodiazepine/GABA(A) receptors
    • So, S.S.; Karplus, M. Genetic neural networks for quantitative structure-activity relationships: Improvements and application of benzodiazepine affinity for benzodiazepine/GABA(A) receptors. J. Med. Chem. 1996, 39, 5246-5256.
    • (1996) J. Med. Chem. , vol.39 , pp. 5246-5256
    • So, S.S.1    Karplus, M.2
  • 32
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
    • Zheng, W.F.; Tropsha, A. Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J. Chem. Inf. Comput. Sci. 2000, 40, 185-194.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 185-194
    • Zheng, W.F.1    Tropsha, A.2
  • 33
    • 0028548591 scopus 로고
    • Evolutionary programming applied to the development of quantitative structure-activity-relationships and quantitative structure-property relationships
    • Luke, B.T. Evolutionary Programming Applied to the Development of Quantitative Structure-Activity-Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 1994, 34, 1279-1287.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 1279-1287
    • Luke, B.T.1
  • 34
    • 0028046665 scopus 로고
    • Variable selection in qsar studies. 1: An evolutionary algorithm
    • Kubinyi, H. Variable Selection in Qsar Studies. 1. An Evolutionary Algorithm. Quant. Struct.-Act. Relat. 1994, 13, 285-294.
    • (1994) Quant. Struct.-Act. Relat. , vol.13 , pp. 285-294
    • Kubinyi, H.1
  • 35
    • 0035227873 scopus 로고    scopus 로고
    • A novel method for building regression tree models for QSAR based on artificial ant colony systems
    • Izrailev, S.; Agrafiotis, D. A novel method for building regression tree models for QSAR based on artificial ant colony systems. J. Chem. Inf. Comput. Sci. 2001, 41, 176-180.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 176-180
    • Izrailev, S.1    Agrafiotis, D.2
  • 36
    • 0036581948 scopus 로고    scopus 로고
    • Variable selection for QSAR by artificial ant colony systems
    • Izrailev, S.; Agrafiotis, D.K. Variable selection for QSAR by artificial ant colony systems. SAR QSAR Environ. Res. 2002, 13, 417-423.
    • (2002) SAR QSAR Environ. Res. , vol.13 , pp. 417-423
    • Izrailev, S.1    Agrafiotis, D.K.2
  • 37
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • Agrafiotis, D.K.; Cedeno, W. Feature selection for structure-activity correlation using binary particle swarms. J. Med. Chem. 2002, 45, 1098-1107.
    • (2002) J. Med. Chem. , vol.45 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 40
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. Bagging predictors. Machine Learning 1996, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 41
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • Breiman, L. Using iterated bagging to debias regressions. Machine Learning 2001, 45, 261-277.
    • (2001) Machine Learning , vol.45 , pp. 261-277
    • Breiman, L.1
  • 45
    • 0003609726 scopus 로고    scopus 로고
    • Data Analysis Products Division, Mathsoft Inc., Seattle, Washington, 98109
    • S-PLUS 2000; Data Analysis Products Division, Mathsoft Inc., Seattle, Washington, 98109.
    • (2000) S-PLUS 2000
  • 46
    • 49149147973 scopus 로고
    • Iterative partial equalization of orbital electronegativity - A rapid access to atomic charges
    • Gasteiger, J.; Marsili, M. Iterative Partial Equalization of Orbital Electronegativity - a Rapid Access to Atomic Charges. Tetrahedron 1980, 36, 3219-3228.
    • (1980) Tetrahedron , vol.36 , pp. 3219-3228
    • Gasteiger, J.1    Marsili, M.2
  • 47
    • 0027892996 scopus 로고
    • Quantitative structure-retention relationships applied to reversed-phase high-performance liquid-chromatography
    • Kaliszan, R. Quantitative Structure-Retention Relationships Applied to Reversed-Phase High-Performance Liquid-Chromatography. J. Chromatogr. A 1993, 656, 417-435.
    • (1993) J. Chromatogr. A , vol.656 , pp. 417-435
    • Kaliszan, R.1
  • 50
    • 0037204951 scopus 로고    scopus 로고
    • Probing protein electrostatics with a synthetic fluorescent amino acid
    • Cohen, B.E.; McAnaney, T.B.; Park, E.S.; Jan, Y.N.; Boxer, S.G. et al. Probing protein electrostatics with a synthetic fluorescent amino acid. Science 2002, 296, 1700-1703.
    • (2002) Science , vol.296 , pp. 1700-1703
    • Cohen, B.E.1    McAnaney, T.B.2    Park, E.S.3    Jan, Y.N.4    Boxer, S.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.