-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.1
Braverman, E.2
Rozonoer, L.3
-
3
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525-536.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
5
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler (Ed.), Pittsburgh, PA: ACM Press
-
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (pp. 144-152). Pittsburgh, PA: ACM Press.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
6
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 1-47.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 1-47
-
-
Burges, C.J.C.1
-
7
-
-
34249753618
-
Support vector networks
-
Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6), 1455-1480.
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
11
-
-
0002941010
-
Support vector machines for dynamic reconstruction of a chaotic system
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Mattera, D., & Haykin, S. (1999). Support vector machines for dynamic reconstruction of a chaotic system. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 211-241). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 211-241
-
-
Mattera, D.1
Haykin, S.2
-
12
-
-
0002457362
-
Predicting time series with support vector machines
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., and Vapnik, V. (1999). Predicting time series with support vector machines. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 243-253). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 243-253
-
-
Müller, K.-R.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
13
-
-
0028544395
-
Network information criterion -determining the number of hidden units for artificial neural network models
-
Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion -determining the number of hidden units for artificial neural network models. IEEE Transactions on Neural Networks, 5, 865-872.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
14
-
-
0001562735
-
Reducing run-time complexity in support vector machines
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Osuna, E., & Girosi, F. (1999). Reducing run-time complexity in support vector machines. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 271-283). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 271-283
-
-
Osuna, E.1
Girosi, F.2
-
15
-
-
0003120218
-
Fast training of SVMs using sequential minimal optimization
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Platt, J. (1999). Fast training of SVMs using sequential minimal optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods-Support vector learning (pp. 185-208). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
16
-
-
0040973461
-
From regression to classification in support vector machines
-
M. Verleysen (Ed.), Brussels: D Facto
-
Pontil, M., Rifkin, R., & Evgeniou, T. (1999). From regression to classification in support vector machines. In M. Verleysen (Ed.), Proceedings ESANN (pp. 225-230). Brussels: D Facto.
-
(1999)
Proceedings ESANN
, pp. 225-230
-
-
Pontil, M.1
Rifkin, R.2
Evgeniou, T.3
-
18
-
-
0001149082
-
Support vector regression with automatic accuracy control
-
L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Berlin: Springer-Verlag
-
Schölkopf, B., Bartlett, P. L., Smola, A., & Williamson, R. C. (1998). Support vector regression with automatic accuracy control. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Proceedings of the 8th International Conference on Artificial Neural Networks (pp. 111-116). Berlin: Springer-Verlag.
-
(1998)
Proceedings of the 8th International Conference on Artificial Neural Networks
, pp. 111-116
-
-
Schölkopf, B.1
Bartlett, P.L.2
Smola, A.3
Williamson, R.C.4
-
19
-
-
0003798627
-
-
Cambridge, MA: MIT Press
-
Schölkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Advances in kernel methods-Support vector learning. Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
-
-
Schölkopf, B.1
Burges, C.J.C.2
Smola, A.J.3
-
20
-
-
85118436573
-
Extracting support data for a given task
-
U. M. Fayyad & R. Uthurusamy (Eds.), Menlo Park, CA: AAAI Press
-
Schölkopf, B., Burges, C., & Vapnik, V. (1995). Extracting support data for a given task. In U. M. Fayyad & R. Uthurusamy (Eds.), Proceedings, First International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press.
-
(1995)
Proceedings, First International Conference on Knowledge Discovery and Data Mining
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
21
-
-
0033349592
-
Kernel-dependent support vector error bounds
-
London: IEE
-
Schölkopf, B., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (1999). Kernel-dependent support vector error bounds. In Ninth International Conference on Artificial Neural Networks (pp. 103-108). London: IEE.
-
(1999)
Ninth International Conference on Artificial Neural Networks
, pp. 103-108
-
-
Schölkopf, B.1
Shawe-Taylor, J.2
Smola, A.J.3
Williamson, R.C.4
-
22
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
23
-
-
0031272926
-
Comparing support vector machines with gaussian kernels to radial basis function classifiers
-
Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., & Vapnik, V. (1997). Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans. Sign. Processing, 45, 2758-2765.
-
(1997)
IEEE Trans. Sign. Processing
, vol.45
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
24
-
-
0001527882
-
Nonparametric estimation of residual variance revisited
-
Seifert, B., Gasser, T., & Wolf, A. (1993). Nonparametric estimation of residual variance revisited. Biometrika, 80, 373-383.
-
(1993)
Biometrika
, vol.80
, pp. 373-383
-
-
Seifert, B.1
Gasser, T.2
Wolf, A.3
-
25
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M. (1998). Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5), 1926-1940.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
27
-
-
0004094721
-
-
Doctoral dissertation, Technische Universität Berlin
-
Smola, A. J. (1998). Learning with kernels. Doctoral dissertation, Technische Universität Berlin. Also: GMD Research Series No. 25, Birlinghoven, Germany.
-
(1998)
Learning with Kernels
-
-
Smola, A.J.1
-
28
-
-
85037775618
-
-
Birlinghoven, Germany
-
Smola, A. J. (1998). Learning with kernels. Doctoral dissertation, Technische Universität Berlin. Also: GMD Research Series No. 25, Birlinghoven, Germany.
-
GMD Research Series No. 25
, vol.25
-
-
-
29
-
-
84898946392
-
Semiparametric support vector and linear programming machines
-
M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge, MA: MIT Press
-
Smola, A., Frieß, T., & Schölkopf, B. (1999). Semiparametric support vector and linear programming machines. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11 (pp. 585-591). Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 585-591
-
-
Smola, A.1
Frieß, T.2
Schölkopf, B.3
-
30
-
-
0037721392
-
Asymptotically optimal choice of ε-loss for support vector machines
-
L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Berlin: Springer-Verlag
-
Smola, A., Murata, N., Schölkopf, B., & Müller, K.-R. (1998). Asymptotically optimal choice of ε-loss for support vector machines. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Proceedings of the 8th International Conference on Artificial Neural Networks (pp. 105-110). Berlin: Springer-Verlag.
-
(1998)
Proceedings of the 8th International Conference on Artificial Neural Networks
, pp. 105-110
-
-
Smola, A.1
Murata, N.2
Schölkopf, B.3
Müller, K.-R.4
-
31
-
-
24044515976
-
On a kernel-based method for pattern recognition, regression, approximation and operator inversion
-
Smola, A., & Schölkopf, B. (1998). On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica, 22, 211-231.
-
(1998)
Algorithmica
, vol.22
, pp. 211-231
-
-
Smola, A.1
Schölkopf, B.2
-
32
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola, A., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
33
-
-
84947777641
-
Regularized principal manifolds
-
Berlin: Springer-Verlag
-
Smola, A., Williamson, R. C., Mika, S., & Schölkopf, B. (1999). Regularized principal manifolds. In Computational Learning Theory: 4th European Conference (pp. 214-229). Berlin: Springer-Verlag.
-
(1999)
Computational Learning Theory: 4th European Conference
, pp. 214-229
-
-
Smola, A.1
Williamson, R.C.2
Mika, S.3
Schölkopf, B.4
-
34
-
-
0002081773
-
Support vector regression with ANOVA decomposition kernels
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Stitson, M., Gammerman, A., Vapnik, V., Vovk, V., Watkins, C., & Weston, J. (1999). Support vector regression with ANOVA decomposition kernels. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods-Support vector learning (pp. 285-291). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 285-291
-
-
Stitson, M.1
Gammerman, A.2
Vapnik, V.3
Vovk, V.4
Watkins, C.5
Weston, J.6
-
38
-
-
0005071949
-
-
German Translation: Akademie-Verlag, Berlin
-
Vapnik, V., & Chervonenkis, A. (1974). Theory of pattern recognition [in Russian]. Nauka: Moscow. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979).
-
(1979)
Theorie der Zeichenerkennung
-
-
Wapnik, W.1
Tscherwonenkis, A.2
-
39
-
-
0001873883
-
Support vector machines, reproducing kernel Hubert spaces and the randomized GACV
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Wahba, G. (1999). Support vector machines, reproducing kernel Hubert spaces and the randomized GACV. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 69-88). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
40
-
-
0040379173
-
Parametric statistical estimation with artificial neural networks: A condensed discussion
-
V. Cherkassky, J. H. Friedman, & H. Wechsler (Eds.), Berlin: Springer
-
White, H. (1994). Parametric statistical estimation with artificial neural networks: A condensed discussion. In V. Cherkassky, J. H. Friedman, & H. Wechsler (Eds.), From statistics to neural networks. Berlin: Springer.
-
(1994)
From Statistics to Neural Networks
-
-
White, H.1
|