메뉴 건너뛰기




Volumn 12, Issue 5, 2000, Pages 1207-1245

New support vector algorithms

Author keywords

[No Author keywords available]

Indexed keywords


EID: 17444438778     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015565     Document Type: Article
Times cited : (2482)

References (41)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 3
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 1-47.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 1-47
    • Burges, C.J.C.1
  • 7
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6), 1455-1480.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 11
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
    • Mattera, D., & Haykin, S. (1999). Support vector machines for dynamic reconstruction of a chaotic system. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 211-241). Cambridge, MA: MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 211-241
    • Mattera, D.1    Haykin, S.2
  • 13
    • 0028544395 scopus 로고
    • Network information criterion -determining the number of hidden units for artificial neural network models
    • Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion -determining the number of hidden units for artificial neural network models. IEEE Transactions on Neural Networks, 5, 865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 14
    • 0001562735 scopus 로고    scopus 로고
    • Reducing run-time complexity in support vector machines
    • B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
    • Osuna, E., & Girosi, F. (1999). Reducing run-time complexity in support vector machines. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 271-283). Cambridge, MA: MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 271-283
    • Osuna, E.1    Girosi, F.2
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of SVMs using sequential minimal optimization
    • B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
    • Platt, J. (1999). Fast training of SVMs using sequential minimal optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods-Support vector learning (pp. 185-208). Cambridge, MA: MIT Press.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 16
    • 0040973461 scopus 로고    scopus 로고
    • From regression to classification in support vector machines
    • M. Verleysen (Ed.), Brussels: D Facto
    • Pontil, M., Rifkin, R., & Evgeniou, T. (1999). From regression to classification in support vector machines. In M. Verleysen (Ed.), Proceedings ESANN (pp. 225-230). Brussels: D Facto.
    • (1999) Proceedings ESANN , pp. 225-230
    • Pontil, M.1    Rifkin, R.2    Evgeniou, T.3
  • 22
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 24
    • 0001527882 scopus 로고
    • Nonparametric estimation of residual variance revisited
    • Seifert, B., Gasser, T., & Wolf, A. (1993). Nonparametric estimation of residual variance revisited. Biometrika, 80, 373-383.
    • (1993) Biometrika , vol.80 , pp. 373-383
    • Seifert, B.1    Gasser, T.2    Wolf, A.3
  • 27
    • 0004094721 scopus 로고    scopus 로고
    • Doctoral dissertation, Technische Universität Berlin
    • Smola, A. J. (1998). Learning with kernels. Doctoral dissertation, Technische Universität Berlin. Also: GMD Research Series No. 25, Birlinghoven, Germany.
    • (1998) Learning with Kernels
    • Smola, A.J.1
  • 28
    • 85037775618 scopus 로고    scopus 로고
    • Birlinghoven, Germany
    • Smola, A. J. (1998). Learning with kernels. Doctoral dissertation, Technische Universität Berlin. Also: GMD Research Series No. 25, Birlinghoven, Germany.
    • GMD Research Series No. 25 , vol.25
  • 29
    • 84898946392 scopus 로고    scopus 로고
    • Semiparametric support vector and linear programming machines
    • M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge, MA: MIT Press
    • Smola, A., Frieß, T., & Schölkopf, B. (1999). Semiparametric support vector and linear programming machines. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11 (pp. 585-591). Cambridge, MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 585-591
    • Smola, A.1    Frieß, T.2    Schölkopf, B.3
  • 31
    • 24044515976 scopus 로고    scopus 로고
    • On a kernel-based method for pattern recognition, regression, approximation and operator inversion
    • Smola, A., & Schölkopf, B. (1998). On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica, 22, 211-231.
    • (1998) Algorithmica , vol.22 , pp. 211-231
    • Smola, A.1    Schölkopf, B.2
  • 32
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola, A., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.-R.3
  • 34
  • 38
    • 0005071949 scopus 로고
    • German Translation: Akademie-Verlag, Berlin
    • Vapnik, V., & Chervonenkis, A. (1974). Theory of pattern recognition [in Russian]. Nauka: Moscow. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979).
    • (1979) Theorie der Zeichenerkennung
    • Wapnik, W.1    Tscherwonenkis, A.2
  • 39
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hubert spaces and the randomized GACV
    • B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
    • Wahba, G. (1999). Support vector machines, reproducing kernel Hubert spaces and the randomized GACV. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 69-88). Cambridge, MA: MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 40
    • 0040379173 scopus 로고
    • Parametric statistical estimation with artificial neural networks: A condensed discussion
    • V. Cherkassky, J. H. Friedman, & H. Wechsler (Eds.), Berlin: Springer
    • White, H. (1994). Parametric statistical estimation with artificial neural networks: A condensed discussion. In V. Cherkassky, J. H. Friedman, & H. Wechsler (Eds.), From statistics to neural networks. Berlin: Springer.
    • (1994) From Statistics to Neural Networks
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.