-
1
-
-
76249132145
-
Kernel approaches to unsupervised and supervised machine learning
-
Springer-Verlag
-
Kung, S. Y. (2009). Kernel approaches to unsupervised and supervised machine learning. In Proc. PCM'2009. Lecture notes in computer science (Vol. 5879, pp. 1-32). Springer-Verlag.
-
(2009)
Proc. PCM'2009. Lecture Notes in Computer Scienceh
, vol.5879
, pp. 1-32
-
-
Kung, S.Y.1
-
2
-
-
0000874557
-
Theoretical foundation of the potential function method in pattern recognition learning
-
Aizerman, M., et al. (1964). Theoretical foundation of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.1
-
5
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
10
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
Y. H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.)
-
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. R. (1999). Fisher discriminant analysis with kernels. In Y. H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.), Neural networks for signal processing IX (pp. 41-48).
-
(1999)
Neural Networks for Signal Processing
, vol.9
, pp. 41-48
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Scholkopf, B.4
Mullers, K.R.5
-
11
-
-
84898965347
-
A mathematical programming approach to the kernel Fisher algorithm
-
Mika, S., Ratsch, G., & Muller, K. R. (2001). A mathematical programming approach to the kernel Fisher algorithm. Advances in Neural Information Processing Systems, 13, 591-597.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 591-597
-
-
Mika, S.1
Ratsch, G.2
Muller, K.R.3
-
12
-
-
0005073887
-
An improved training algorithm for kernel Fisher discriminants
-
T. Jaakkola, & T. Richardson (Eds.), San Francisco: Morgan Kaufmann
-
Mika, S., Smola, A. J., & Scholkopf, B. (2001). An improved training algorithm for kernel Fisher discriminants. In T. Jaakkola, & T. Richardson (Eds.), Proceedings AISTATS (Vol. 2001, pp. 98-104). San Francisco: Morgan Kaufmann.
-
(2001)
Proceedings AISTATS 2001
, pp. 98-104
-
-
Mika, S.1
Smola, A.J.2
Scholkopf, B.3
-
13
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2), 181-201.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Scholkopf, B.5
-
14
-
-
0036582564
-
Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis
-
Gestel, T. V., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., Moor, B. D., & Vandewalle, J. (2002). Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis. Neural Computation, 14(5), 1115-1147
-
(2001)
Neural Computation
, vol.14
, Issue.5
, pp. 1115-1147
-
-
Gestel, T.V.1
Suykens, J.A.K.2
Lanckriet, G.3
Lambrechts, A.4
Moor, B.D.5
Vandewalle, J.6
-
15
-
-
0008351159
-
Inverting modified matrices
-
Princeton: Princeton University pp. Memorandum Rept.
-
Woodbury, M. A. (1950). Inverting modified matrices. In Statistical research group. Princeton: Princeton University, pp. Memorandum Rept. 42, MR38136.
-
(1950)
Statistical Research Group
, vol.42
-
-
Woodbury, M.A.1
-
16
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge: MIT Press
-
Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel methods-Support vector learning. Cambridge: MIT Press.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
-
-
Joachims, T.1
-
18
-
-
10244252786
-
Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction
-
Pochet, N., De Smet, F., Suykens, J. A. K., & De Moor, B. L. R. (2004). Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction. Bioinformatics, 20(17), 3185-3195.
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3185-3195
-
-
Pochet, N.1
De Smet, F.2
Suykens, J.A.K.3
De Moor, B.L.R.4
-
19
-
-
0037443891
-
Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
-
Iizuka, N., et al. (2003). Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet, 361(9361), 923-929.
-
(2003)
The Lancet
, vol.361
, Issue.9361
, pp. 923-929
-
-
Iizuka, N.1
-
20
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., et al. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12), 6745-6750.
-
(1999)
Proceedings of the National Academy of Sciences
, vol.96
, Issue.12
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
-
21
-
-
0037381008
-
Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
-
Nutt, C. L., et al. (2003). Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 63(7), 1602-1607.
-
(2003)
Cancer Research
, vol.63
, Issue.7
, pp. 1602-1607
-
-
Nutt, C.L.1
-
22
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub, T. R., Slonim, D. K., Huard, C., Tamayo, P., Gaasenbeek, M., Mesirov, J. P., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Huard, C.3
Tamayo, P.4
Gaasenbeek, M.5
Mesirov, J.P.6
-
23
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
Singh, D., et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer cell, 1(2), 203-209.
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
-
24
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
van 't Veer, L., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-535.
-
(2001)
Nature
, vol.415
, pp. 530-535
-
-
Van 'T Veer, L.1
-
25
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I.,Weston, J., Barnhill, S.,&Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
-
(2001)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
|