메뉴 건너뛰기




Volumn 65, Issue 1, 2011, Pages 5-21

PDA-SVM hybrid: A unified model for kernel-based supervised classification

Author keywords

Error margin; PDA SVM Hybrid; Perturbational discriminant analysis (PDA); SVM; Unified model for supervised classifcation; Weight error curve (WEC)

Indexed keywords

HARDWARE; INFORMATION SYSTEMS;

EID: 84890443960     PISSN: 19398018     EISSN: 19398115     Source Type: Journal    
DOI: 10.1007/s11265-011-0588-8     Document Type: Article
Times cited : (4)

References (25)
  • 1
    • 76249132145 scopus 로고    scopus 로고
    • Kernel approaches to unsupervised and supervised machine learning
    • Springer-Verlag
    • Kung, S. Y. (2009). Kernel approaches to unsupervised and supervised machine learning. In Proc. PCM'2009. Lecture notes in computer science (Vol. 5879, pp. 1-32). Springer-Verlag.
    • (2009) Proc. PCM'2009. Lecture Notes in Computer Scienceh , vol.5879 , pp. 1-32
    • Kung, S.Y.1
  • 2
    • 0000874557 scopus 로고
    • Theoretical foundation of the potential function method in pattern recognition learning
    • Aizerman, M., et al. (1964). Theoretical foundation of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.1
  • 5
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 10
  • 12
    • 0005073887 scopus 로고    scopus 로고
    • An improved training algorithm for kernel Fisher discriminants
    • T. Jaakkola, & T. Richardson (Eds.), San Francisco: Morgan Kaufmann
    • Mika, S., Smola, A. J., & Scholkopf, B. (2001). An improved training algorithm for kernel Fisher discriminants. In T. Jaakkola, & T. Richardson (Eds.), Proceedings AISTATS (Vol. 2001, pp. 98-104). San Francisco: Morgan Kaufmann.
    • (2001) Proceedings AISTATS 2001 , pp. 98-104
    • Mika, S.1    Smola, A.J.2    Scholkopf, B.3
  • 14
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis
    • Gestel, T. V., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., Moor, B. D., & Vandewalle, J. (2002). Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis. Neural Computation, 14(5), 1115-1147
    • (2001) Neural Computation , vol.14 , Issue.5 , pp. 1115-1147
    • Gestel, T.V.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    Moor, B.D.5    Vandewalle, J.6
  • 15
    • 0008351159 scopus 로고
    • Inverting modified matrices
    • Princeton: Princeton University pp. Memorandum Rept.
    • Woodbury, M. A. (1950). Inverting modified matrices. In Statistical research group. Princeton: Princeton University, pp. Memorandum Rept. 42, MR38136.
    • (1950) Statistical Research Group , vol.42
    • Woodbury, M.A.1
  • 16
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge: MIT Press
    • Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel methods-Support vector learning. Cambridge: MIT Press.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Joachims, T.1
  • 18
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction
    • Pochet, N., De Smet, F., Suykens, J. A. K., & De Moor, B. L. R. (2004). Systematic benchmarking of microarray data classification: Assessing the role of nonlinearity and dimensionality reduction. Bioinformatics, 20(17), 3185-3195.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.K.3    De Moor, B.L.R.4
  • 19
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • Iizuka, N., et al. (2003). Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet, 361(9361), 923-929.
    • (2003) The Lancet , vol.361 , Issue.9361 , pp. 923-929
    • Iizuka, N.1
  • 20
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., et al. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12), 6745-6750.
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6
  • 21
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • Nutt, C. L., et al. (2003). Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 63(7), 1602-1607.
    • (2003) Cancer Research , vol.63 , Issue.7 , pp. 1602-1607
    • Nutt, C.L.1
  • 22
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T. R., Slonim, D. K., Huard, C., Tamayo, P., Gaasenbeek, M., Mesirov, J. P., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Huard, C.3    Tamayo, P.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 23
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh, D., et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer cell, 1(2), 203-209.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 203-209
    • Singh, D.1
  • 24
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van 't Veer, L., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-535.
    • (2001) Nature , vol.415 , pp. 530-535
    • Van 'T Veer, L.1
  • 25
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I.,Weston, J., Barnhill, S.,&Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
    • (2001) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.