메뉴 건너뛰기




Volumn 23, Issue 1, 2015, Pages 55-63

Response of host inflammasomes to viral infection

Author keywords

Caspase; IL 1 ; Inflammasome; NLRP3; Pattern recognition receptors; Viroporin

Indexed keywords

CASPASE; CRYOPYRIN; DOUBLE STRANDED RNA; INFLAMMASOME; INTERFERON INDUCIBLE IFI200 FAMILY MEMBER ABSENT IN MELANOMA PROTEIN 2; INTERLEUKIN 18; INTERLEUKIN 1BETA; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR FAMILY PYRIN DOMAIN CONTAINING PROTEIN 1; RETINOIC ACID INDUCIBLE PROTEIN I; UNCLASSIFIED DRUG; AIM2 PROTEIN, HUMAN; CARRIER PROTEIN; CYTOSKELETON PROTEIN; DDX58 PROTEIN, HUMAN; DEAD BOX PROTEIN; DNA BINDING PROTEIN; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; MARENOSTRIN; MITOCHONDRIAL PROTEIN; NLRP3 PROTEIN, HUMAN; NLRX1 PROTEIN, HUMAN; VIRUS PROTEIN;

EID: 84920547918     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2014.09.007     Document Type: Review
Times cited : (167)

References (89)
  • 1
    • 0031050034 scopus 로고    scopus 로고
    • Innate immunity: impact on the adaptive immune response
    • Medzhitov R., Janeway C.A. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 1997, 9:4-9.
    • (1997) Curr. Opin. Immunol. , vol.9 , pp. 4-9
    • Medzhitov, R.1    Janeway, C.A.2
  • 2
    • 0037066502 scopus 로고    scopus 로고
    • Decoding the patterns of self and nonself by the innate immune system
    • Medzhitov R., Janeway C.A. Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298-300.
    • (2002) Science , vol.296 , pp. 298-300
    • Medzhitov, R.1    Janeway, C.A.2
  • 5
    • 34247566510 scopus 로고    scopus 로고
    • The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling
    • O'Neill L.A., Bowie A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 2007, 7:353-364.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 353-364
    • O'Neill, L.A.1    Bowie, A.G.2
  • 6
    • 57449083602 scopus 로고    scopus 로고
    • The fungal pattern recognition receptor, dectin-1, and the associated cluster of C-type lectin-like receptors
    • Huysamen C., Brown G.D. The fungal pattern recognition receptor, dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiol. Lett. 2009, 290:121-128.
    • (2009) FEMS Microbiol. Lett. , vol.290 , pp. 121-128
    • Huysamen, C.1    Brown, G.D.2
  • 7
    • 40449140937 scopus 로고    scopus 로고
    • The NLR gene family: a standard nomenclature
    • Ting J.P., et al. The NLR gene family: a standard nomenclature. Immunity 2008, 28:285-287.
    • (2008) Immunity , vol.28 , pp. 285-287
    • Ting, J.P.1
  • 8
    • 60749104535 scopus 로고    scopus 로고
    • HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA
    • Roberts T.L., et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009, 323:1057-1060.
    • (2009) Science , vol.323 , pp. 1057-1060
    • Roberts, T.L.1
  • 9
    • 22544455673 scopus 로고    scopus 로고
    • Cell type-specific involvement of RIG-I in antiviral response
    • Kato H., et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005, 23:19-28.
    • (2005) Immunity , vol.23 , pp. 19-28
    • Kato, H.1
  • 10
    • 84890235827 scopus 로고    scopus 로고
    • The interleukin-1 family: back to the future
    • Garlanda C., et al. The interleukin-1 family: back to the future. Immunity 2013, 39:1003-1018.
    • (2013) Immunity , vol.39 , pp. 1003-1018
    • Garlanda, C.1
  • 11
    • 33845497181 scopus 로고    scopus 로고
    • Inflammatory caspases and inflammasomes: master switches of inflammation
    • Martinon F., Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007, 14:10-22.
    • (2007) Cell Death Differ. , vol.14 , pp. 10-22
    • Martinon, F.1    Tschopp, J.2
  • 12
    • 0036671894 scopus 로고    scopus 로고
    • The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β
    • Martinon F., et al. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 2002, 10:417-426.
    • (2002) Mol. Cell , vol.10 , pp. 417-426
    • Martinon, F.1
  • 13
    • 23044452084 scopus 로고    scopus 로고
    • NACHT-LRR proteins (NLRs) in bacterial infection and immunity
    • Kufer T.A., et al. NACHT-LRR proteins (NLRs) in bacterial infection and immunity. Trends Microbiol. 2005, 13:381-388.
    • (2005) Trends Microbiol. , vol.13 , pp. 381-388
    • Kufer, T.A.1
  • 14
    • 36849045915 scopus 로고    scopus 로고
    • The inflammasome: a danger sensing complex triggering innate immunity
    • Petrilli V., et al. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 2007, 19:615-622.
    • (2007) Curr. Opin. Immunol. , vol.19 , pp. 615-622
    • Petrilli, V.1
  • 15
    • 1642285783 scopus 로고    scopus 로고
    • NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder
    • Agostini L., et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004, 20:319-325.
    • (2004) Immunity , vol.20 , pp. 319-325
    • Agostini, L.1
  • 16
    • 0036892403 scopus 로고    scopus 로고
    • Genetic clues to understanding periodic fevers, and possible therapies
    • McDermott M.F. Genetic clues to understanding periodic fevers, and possible therapies. Trends Mol. Med. 2002, 8:550-554.
    • (2002) Trends Mol. Med. , vol.8 , pp. 550-554
    • McDermott, M.F.1
  • 17
    • 65549154784 scopus 로고    scopus 로고
    • An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans
    • Hise A.G., et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 2009, 5:487-497.
    • (2009) Cell Host Microbe , vol.5 , pp. 487-497
    • Hise, A.G.1
  • 18
    • 32944470765 scopus 로고    scopus 로고
    • Cryopyrin activates the inflammasome in response to toxins and ATP
    • Mariathasan S., et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006, 440:228-232.
    • (2006) Nature , vol.440 , pp. 228-232
    • Mariathasan, S.1
  • 19
    • 70449448992 scopus 로고    scopus 로고
    • Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome
    • Duncan J.A., et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J. Immunol. 2009, 182:6460-6469.
    • (2009) J. Immunol. , vol.182 , pp. 6460-6469
    • Duncan, J.A.1
  • 20
    • 33846014297 scopus 로고    scopus 로고
    • Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA
    • Kanneganti T.D., et al. Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 2006, 281:36560-36568.
    • (2006) J. Biol. Chem. , vol.281 , pp. 36560-36568
    • Kanneganti, T.D.1
  • 21
    • 67649831360 scopus 로고    scopus 로고
    • NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury
    • Yamasaki K., et al. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem. 2009, 284:12762-12771.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12762-12771
    • Yamasaki, K.1
  • 22
    • 68149170478 scopus 로고    scopus 로고
    • Cutting edge: necrosis activates the NLRP3 inflammasome
    • Li H., et al. Cutting edge: necrosis activates the NLRP3 inflammasome. J. Immunol. 2009, 183:1528-1532.
    • (2009) J. Immunol. , vol.183 , pp. 1528-1532
    • Li, H.1
  • 23
    • 43249125839 scopus 로고    scopus 로고
    • Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica
    • Dostert C., et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320:674-677.
    • (2008) Science , vol.320 , pp. 674-677
    • Dostert, C.1
  • 24
    • 34250835251 scopus 로고    scopus 로고
    • The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes
    • Feldmeyer L., et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes. Curr. Biol. 2007, 17:1140-1145.
    • (2007) Curr. Biol. , vol.17 , pp. 1140-1145
    • Feldmeyer, L.1
  • 25
    • 47849097202 scopus 로고    scopus 로고
    • Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
    • Hornung V., et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008, 9:847-856.
    • (2008) Nat. Immunol. , vol.9 , pp. 847-856
    • Hornung, V.1
  • 26
    • 34247118826 scopus 로고    scopus 로고
    • Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling
    • Kanneganti T.D., et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 2007, 26:433-443.
    • (2007) Immunity , vol.26 , pp. 433-443
    • Kanneganti, T.D.1
  • 27
    • 34047261260 scopus 로고    scopus 로고
    • ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages
    • Cruz C.M., et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 2007, 282:2871-2879.
    • (2007) J. Biol. Chem. , vol.282 , pp. 2871-2879
    • Cruz, C.M.1
  • 28
    • 75649096002 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein links oxidative stress to inflammasome activation
    • Zhou R., et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010, 11:136-140.
    • (2010) Nat. Immunol. , vol.11 , pp. 136-140
    • Zhou, R.1
  • 29
    • 84871797522 scopus 로고    scopus 로고
    • Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors
    • Rossol M., et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 2012, 3:1329.
    • (2012) Nat. Commun. , vol.3 , pp. 1329
    • Rossol, M.1
  • 30
    • 84870508924 scopus 로고    scopus 로고
    • The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP
    • Lee G.S., et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012, 492:123-127.
    • (2012) Nature , vol.492 , pp. 123-127
    • Lee, G.S.1
  • 31
    • 84863978096 scopus 로고    scopus 로고
    • Critical role for calcium mobilization in activation of the NLRP3 inflammasome
    • Murakami T., et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11282-11287.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11282-11287
    • Murakami, T.1
  • 32
    • 84875908991 scopus 로고    scopus 로고
    • TRPM2 links oxidative stress to NLRP3 inflammasome activation
    • Zhong Z., et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun. 2013, 4:1611.
    • (2013) Nat. Commun. , vol.4 , pp. 1611
    • Zhong, Z.1
  • 33
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469:221-225.
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1
  • 34
    • 84887086945 scopus 로고    scopus 로고
    • Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection
    • Ichinohe T., et al. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:17963-17968.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 17963-17968
    • Ichinohe, T.1
  • 35
    • 84876237736 scopus 로고    scopus 로고
    • The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
    • Subramanian N., et al. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 2013, 153:348-361.
    • (2013) Cell , vol.153 , pp. 348-361
    • Subramanian, N.1
  • 36
    • 84885437002 scopus 로고    scopus 로고
    • The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity
    • Park S., et al. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol. 2013, 191:4358-4366.
    • (2013) J. Immunol. , vol.191 , pp. 4358-4366
    • Park, S.1
  • 37
    • 60549112774 scopus 로고    scopus 로고
    • Inflammasome recognition of influenza virus is essential for adaptive immune responses
    • Ichinohe T., et al. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 2009, 206:79-87.
    • (2009) J. Exp. Med. , vol.206 , pp. 79-87
    • Ichinohe, T.1
  • 38
    • 64049096334 scopus 로고    scopus 로고
    • The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1
    • Thomas P.G., et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 2009, 30:566-575.
    • (2009) Immunity , vol.30 , pp. 566-575
    • Thomas, P.G.1
  • 39
    • 64049111768 scopus 로고    scopus 로고
    • The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA
    • Allen I.C., et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 2009, 30:556-565.
    • (2009) Immunity , vol.30 , pp. 556-565
    • Allen, I.C.1
  • 40
    • 84878506112 scopus 로고    scopus 로고
    • Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease
    • McAuley J.L., et al. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog. 2013, 9:e1003392.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003392
    • McAuley, J.L.1
  • 41
    • 77951295418 scopus 로고    scopus 로고
    • Influenza virus activates inflammasomes via its intracellular M2 ion channel
    • Ichinohe T., et al. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 2010, 11:404-410.
    • (2010) Nat. Immunol. , vol.11 , pp. 404-410
    • Ichinohe, T.1
  • 42
    • 84866156921 scopus 로고    scopus 로고
    • Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome
    • Ito M., et al. Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog. 2012, 8:e1002857.
    • (2012) PLoS Pathog. , vol.8 , pp. e1002857
    • Ito, M.1
  • 43
    • 84884300082 scopus 로고    scopus 로고
    • Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells
    • Triantafilou K., et al. Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells. Am. J. Respir. Cell Mol. Biol. 2013, 49:923-934.
    • (2013) Am. J. Respir. Cell Mol. Biol. , vol.49 , pp. 923-934
    • Triantafilou, K.1
  • 44
    • 84871392549 scopus 로고    scopus 로고
    • Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation
    • Triantafilou K., et al. Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax 2013, 68:66-75.
    • (2013) Thorax , vol.68 , pp. 66-75
    • Triantafilou, K.1
  • 45
    • 84855919439 scopus 로고    scopus 로고
    • Hepatitis C virus activates interleukin-1β via caspase-1-inflammasome complex
    • Burdette D., et al. Hepatitis C virus activates interleukin-1β via caspase-1-inflammasome complex. J. Gen. Virol. 2012, 93:235-246.
    • (2012) J. Gen. Virol. , vol.93 , pp. 235-246
    • Burdette, D.1
  • 46
    • 84876871333 scopus 로고    scopus 로고
    • IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease
    • Negash A.A., et al. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog. 2013, 9:e1003330.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003330
    • Negash, A.A.1
  • 47
    • 84896456128 scopus 로고    scopus 로고
    • HCV genomic RNA activates the NLRP3 inflammasome in human myeloid cells
    • Chen W., et al. HCV genomic RNA activates the NLRP3 inflammasome in human myeloid cells. PLoS ONE 2014, 9:e84953.
    • (2014) PLoS ONE , vol.9 , pp. e84953
    • Chen, W.1
  • 48
    • 84876334378 scopus 로고    scopus 로고
    • Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes
    • Johnson K.E., et al. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. 2013, 87:5005-5018.
    • (2013) J. Virol. , vol.87 , pp. 5005-5018
    • Johnson, K.E.1
  • 49
    • 79955370281 scopus 로고    scopus 로고
    • The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection
    • Rajan J.V., et al. The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection. J. Virol. 2011, 85:4167-4172.
    • (2011) J. Virol. , vol.85 , pp. 4167-4172
    • Rajan, J.V.1
  • 50
    • 84870793191 scopus 로고    scopus 로고
    • IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection
    • Ramos H.J., et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 2012, 8:e1003039.
    • (2012) PLoS Pathog. , vol.8 , pp. e1003039
    • Ramos, H.J.1
  • 51
    • 84875532782 scopus 로고    scopus 로고
    • Inflammasome adaptor protein apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in West Nile virus encephalitis
    • Kumar M., et al. Inflammasome adaptor protein apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in West Nile virus encephalitis. J. Virol. 2013, 87:3655-3667.
    • (2013) J. Virol. , vol.87 , pp. 3655-3667
    • Kumar, M.1
  • 52
    • 84877315779 scopus 로고    scopus 로고
    • Rabies virus is recognized by the NLRP3 inflammasome and activates interleukin-1β release in murine dendritic cells
    • Lawrence T.M., et al. Rabies virus is recognized by the NLRP3 inflammasome and activates interleukin-1β release in murine dendritic cells. J. Virol. 2013, 87:5848-5857.
    • (2013) J. Virol. , vol.87 , pp. 5848-5857
    • Lawrence, T.M.1
  • 53
    • 67650915065 scopus 로고    scopus 로고
    • Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome
    • Delaloye J., et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 2009, 5:e1000480.
    • (2009) PLoS Pathog. , vol.5 , pp. e1000480
    • Delaloye, J.1
  • 54
    • 84857684496 scopus 로고    scopus 로고
    • NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis
    • Kaushik D.K., et al. NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS ONE 2012, 7:e32270.
    • (2012) PLoS ONE , vol.7 , pp. e32270
    • Kaushik, D.K.1
  • 55
    • 84896983616 scopus 로고    scopus 로고
    • Rift Valley fever virus infection induces activation of the NLRP3 inflammasome
    • Ermler M.E., et al. Rift Valley fever virus infection induces activation of the NLRP3 inflammasome. Virology 2014, 449:174-180.
    • (2014) Virology , vol.449 , pp. 174-180
    • Ermler, M.E.1
  • 56
    • 84872057098 scopus 로고    scopus 로고
    • CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages
    • Wu M.F., et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood 2013, 121:95-106.
    • (2013) Blood , vol.121 , pp. 95-106
    • Wu, M.F.1
  • 57
    • 84855830938 scopus 로고    scopus 로고
    • Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1β secretion
    • Komune N., et al. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1β secretion. J. Virol. 2011, 85:13019-13026.
    • (2011) J. Virol. , vol.85 , pp. 13019-13026
    • Komune, N.1
  • 58
    • 33847376042 scopus 로고    scopus 로고
    • Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation
    • Faustin B., et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 2007, 25:713-724.
    • (2007) Mol. Cell , vol.25 , pp. 713-724
    • Faustin, B.1
  • 59
    • 73949099407 scopus 로고    scopus 로고
    • Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b
    • Terra J.K., et al. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J. Immunol. 2010, 184:17-20.
    • (2010) J. Immunol. , vol.184 , pp. 17-20
    • Terra, J.K.1
  • 60
    • 84870950668 scopus 로고    scopus 로고
    • NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells
    • Masters S.L., et al. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 2012, 37:1009-1023.
    • (2012) Immunity , vol.37 , pp. 1009-1023
    • Masters, S.L.1
  • 61
    • 84877339331 scopus 로고    scopus 로고
    • Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation
    • Gerlic M., et al. Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7808-7813.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7808-7813
    • Gerlic, M.1
  • 62
    • 63649133278 scopus 로고    scopus 로고
    • AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
    • Hornung V., et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009, 458:514-518.
    • (2009) Nature , vol.458 , pp. 514-518
    • Hornung, V.1
  • 63
    • 60749136484 scopus 로고    scopus 로고
    • An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome
    • Burckstummer T., et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 2009, 10:266-272.
    • (2009) Nat. Immunol. , vol.10 , pp. 266-272
    • Burckstummer, T.1
  • 64
    • 77951269392 scopus 로고    scopus 로고
    • The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses
    • Rathinam V.A., et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 2010, 11:395-402.
    • (2010) Nat. Immunol. , vol.11 , pp. 395-402
    • Rathinam, V.A.1
  • 65
    • 3242813113 scopus 로고    scopus 로고
    • The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
    • Yoneyama M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004, 5:730-737.
    • (2004) Nat. Immunol. , vol.5 , pp. 730-737
    • Yoneyama, M.1
  • 66
    • 84869845792 scopus 로고    scopus 로고
    • A structure-based model of RIG-I activation
    • Kolakofsky D., et al. A structure-based model of RIG-I activation. RNA 2012, 18:2118-2127.
    • (2012) RNA , vol.18 , pp. 2118-2127
    • Kolakofsky, D.1
  • 67
    • 27144440523 scopus 로고    scopus 로고
    • IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
    • Kawai T., et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005, 6:981-988.
    • (2005) Nat. Immunol. , vol.6 , pp. 981-988
    • Kawai, T.1
  • 68
    • 80052275825 scopus 로고    scopus 로고
    • Mitochondria in innate immunity
    • Arnoult D., et al. Mitochondria in innate immunity. EMBO Rep. 2011, 12:901-910.
    • (2011) EMBO Rep. , vol.12 , pp. 901-910
    • Arnoult, D.1
  • 69
    • 33646342149 scopus 로고    scopus 로고
    • Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
    • Kato H., et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441:101-105.
    • (2006) Nature , vol.441 , pp. 101-105
    • Kato, H.1
  • 70
    • 33644752821 scopus 로고    scopus 로고
    • West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling
    • Fredericksen B.L., Gale M. West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J. Virol. 2006, 80:2913-2923.
    • (2006) J. Virol. , vol.80 , pp. 2913-2923
    • Fredericksen, B.L.1    Gale, M.2
  • 71
    • 37849045856 scopus 로고    scopus 로고
    • Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1
    • Fredericksen B.L., et al. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J. Virol. 2008, 82:609-616.
    • (2008) J. Virol. , vol.82 , pp. 609-616
    • Fredericksen, B.L.1
  • 72
    • 31344477977 scopus 로고    scopus 로고
    • Flavivirus induces interferon-β gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation
    • Chang T.H., et al. Flavivirus induces interferon-β gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation. Microbes Infect. 2006, 8:157-171.
    • (2006) Microbes Infect. , vol.8 , pp. 157-171
    • Chang, T.H.1
  • 73
    • 33846554134 scopus 로고    scopus 로고
    • Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells
    • Liu P., et al. Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J. Virol. 2007, 81:1401-1411.
    • (2007) J. Virol. , vol.81 , pp. 1401-1411
    • Liu, P.1
  • 74
    • 47949092573 scopus 로고    scopus 로고
    • Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA
    • Saito T., et al. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 2008, 454:523-527.
    • (2008) Nature , vol.454 , pp. 523-527
    • Saito, T.1
  • 75
    • 40749162423 scopus 로고    scopus 로고
    • Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3
    • Rintahaka J., et al. Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3. J. Immunol. 2008, 180:1749-1757.
    • (2008) J. Immunol. , vol.180 , pp. 1749-1757
    • Rintahaka, J.1
  • 76
    • 84876833883 scopus 로고    scopus 로고
    • Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells
    • Pothlichet J., et al. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog. 2013, 9:e1003256.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003256
    • Pothlichet, J.1
  • 77
    • 74049126045 scopus 로고    scopus 로고
    • Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production
    • Poeck H., et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat. Immunol. 2010, 11:63-69.
    • (2010) Nat. Immunol. , vol.11 , pp. 63-69
    • Poeck, H.1
  • 78
    • 84896332642 scopus 로고    scopus 로고
    • Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
    • Lu A., et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014, 156:1193-1206.
    • (2014) Cell , vol.156 , pp. 1193-1206
    • Lu, A.1
  • 79
    • 84904646033 scopus 로고    scopus 로고
    • The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response
    • Baroja-Mazo A., et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 2014, 15:738-748.
    • (2014) Nat. Immunol. , vol.15 , pp. 738-748
    • Baroja-Mazo, A.1
  • 80
    • 84904692363 scopus 로고    scopus 로고
    • The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation
    • Franklin B.S., et al. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat. Immunol. 2014, 15:727-737.
    • (2014) Nat. Immunol. , vol.15 , pp. 727-737
    • Franklin, B.S.1
  • 81
    • 38749097018 scopus 로고    scopus 로고
    • NLRX1 is a regulator of mitochondrial antiviral immunity
    • Moore C.B., et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 2008, 451:573-577.
    • (2008) Nature , vol.451 , pp. 573-577
    • Moore, C.B.1
  • 82
    • 40249111682 scopus 로고    scopus 로고
    • NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production
    • Tattoli I., et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 2008, 9:293-300.
    • (2008) EMBO Rep. , vol.9 , pp. 293-300
    • Tattoli, I.1
  • 83
    • 84901002026 scopus 로고    scopus 로고
    • NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein
    • Jaworska J., et al. NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E2110-E2119.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E2110-E2119
    • Jaworska, J.1
  • 84
    • 84895498988 scopus 로고    scopus 로고
    • Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells
    • Unger B.L., et al. Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells. J. Virol. 2014, 88:3705-3718.
    • (2014) J. Virol. , vol.88 , pp. 3705-3718
    • Unger, B.L.1
  • 85
    • 11444262203 scopus 로고    scopus 로고
    • Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1β and 18
    • Stasakova J., et al. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1β and 18. J. Gen. Virol. 2005, 86:185-195.
    • (2005) J. Gen. Virol. , vol.86 , pp. 185-195
    • Stasakova, J.1
  • 86
    • 78751680633 scopus 로고    scopus 로고
    • Discovery of a viral NLR homolog that inhibits the inflammasome
    • Gregory S.M., et al. Discovery of a viral NLR homolog that inhibits the inflammasome. Science 2011, 331:330-334.
    • (2011) Science , vol.331 , pp. 330-334
    • Gregory, S.M.1
  • 87
    • 35548929476 scopus 로고    scopus 로고
    • A Shope fibroma virus PYRIN-only protein modulates the host immune response
    • Dorfleutner A., et al. A Shope fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 2007, 35:685-694.
    • (2007) Virus Genes , vol.35 , pp. 685-694
    • Dorfleutner, A.1
  • 88
    • 28844466449 scopus 로고    scopus 로고
    • A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection
    • Johnston J.B., et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 2005, 23:587-598.
    • (2005) Immunity , vol.23 , pp. 587-598
    • Johnston, J.B.1
  • 89
    • 84907319179 scopus 로고    scopus 로고
    • Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity
    • Yoshizumi T., et al. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat. Commun. 2014, 5:4713. 10.1038/ncomms5713.
    • (2014) Nat. Commun. , vol.5 , pp. 4713
    • Yoshizumi, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.