메뉴 건너뛰기




Volumn 282, Issue , 2014, Pages 111-135

A review of microarray datasets and applied feature selection methods

Author keywords

Dataset shift; Feature selection; Microarray data; Unbalanced data

Indexed keywords

FEATURE EXTRACTION; SOFTWARE ENGINEERING;

EID: 84905179334     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.05.042     Document Type: Article
Times cited : (585)

References (128)
  • 2
    • 84871625355 scopus 로고    scopus 로고
    • Broad institute (accessed January, 2014)
    • Broad institute. Cancer Program Data Sets. < http://www. broadinstitute.org/cgi-bin/cancer/datasets.cgi > (accessed January, 2014).
    • Cancer Program Data Sets
  • 6
    • 84870532154 scopus 로고    scopus 로고
    • (accessed January, 2014)
    • Gene Expression Omnibus. < http://www.ncbi.nlm.nih.gov/geo/ > (accessed January, 2014).
    • Gene Expression Omnibus
  • 7
    • 84905172459 scopus 로고    scopus 로고
    • Princeton University. (accessed January, 2014)
    • Gene Expression Project, Princeton University. < http://genomics-pubs. princeton.edu/oncology/ > (accessed January, 2014).
    • Gene Expression Project
  • 8
    • 84875088506 scopus 로고    scopus 로고
    • (accessed January, 2014)
    • Kent Ridge Bio-Medical Dataset. < http://datam.i2r.a-star.edu.sg/ datasets/krbd > (accessed January, 2014).
    • Kent Ridge Bio-Medical Dataset
  • 9
    • 84905188628 scopus 로고    scopus 로고
    • Plymouth University (accessed January, 2014)
    • Microarray Cancers, Plymouth University. < http://www.tech.plym.ac.uk/ spmc/links/bioinformatics/microarray/microarray-cancers.html > (accessed January, 2014).
    • Microarray Cancers
  • 10
    • 84872264037 scopus 로고    scopus 로고
    • (accessed January, 2014)
    • Stanford Microarray Database. < http://smd.stanford.edu/ > (accessed January, 2014).
    • Stanford Microarray Database
  • 11
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys Robust biomarker identification for cancer diagnosis with ensemble feature selection methods Bioinformatics 26 3 2000 392 398
    • (2000) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van De Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 24
    • 80052772754 scopus 로고    scopus 로고
    • An ensemble of filters and classifiers for microarray data classification
    • V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos An ensemble of filters and classifiers for microarray data classification Pattern Recognit. 45 1 2012 531 539
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 531-539
    • Bolón-Canedo, V.1    Sánchez-Maroño, N.2    Alonso-Betanzos, A.3
  • 27
    • 84887088653 scopus 로고    scopus 로고
    • Statistical dependence measure for feature selection in microarray datasets
    • V. Bolón-Canedo, S. Seth, A. Sánchez-Maroño, N. Alonso-Betanzos, J. Principe, Statistical dependence measure for feature selection in microarray datasets, in: 19th European Symposium on Artificial Neural Networks-ESANN, 2011, pp. 23-28.
    • (2011) 19th European Symposium on Artificial Neural Networks-ESANN , pp. 23-28
    • Bolón-Canedo, V.1
  • 28
    • 85032751958 scopus 로고    scopus 로고
    • Fads and fallacies in the name of small-sample microarray classification - A highlight of misunderstanding and erroneous usage in the applications of genomic signal processing
    • DOI 10.1109/MSP.2007.273062
    • U. Braga-Neto Fads and fallacies in the name of small-sample microarray classification-a highlight of misunderstanding and erroneous usage in the applications of genomic signal processing IEEE Signal Process. Mag. 24 1 2007 91 99 (Pubitemid 46437575)
    • (2007) IEEE Signal Processing Magazine , vol.24 , Issue.1 , pp. 91-99
    • Braga-Neto, U.M.1
  • 29
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • DOI 10.1093/bioinformatics/btg419
    • U. Braga-Neto, and E. Dougherty Is cross-validation valid for small-sample microarray classification? Bioinformatics 20 3 2004 374 380 (Pubitemid 38262769)
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 33
    • 79953098279 scopus 로고    scopus 로고
    • A hybrid feature selection method for dna microarray data
    • L. Chuang, C. Yang, K. Wu, and C. Yang A hybrid feature selection method for dna microarray data Comput. Biol. Med. 41 4 2011 228 237
    • (2011) Comput. Biol. Med. , vol.41 , Issue.4 , pp. 228-237
    • Chuang, L.1    Yang, C.2    Wu, K.3    Yang, C.4
  • 34
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • DOI 10.1142/S0219720005001004, PII S0219720005001004
    • C. Ding, and H. Peng Minimum redundancy feature selection from microarray gene expression data J. Bioinformatics Comput. Biol. 3 02 2005 185 205 (Pubitemid 40561382)
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 35
    • 0035076190 scopus 로고    scopus 로고
    • Small sample issues for microarray-based classification
    • DOI 10.1002/cfg.62
    • E. Dougherty Small sample issues for microarray-based classification Comp. Funct. Genom. 2 1 2001 28 34 (Pubitemid 32236919)
    • (2001) Comparative and Functional Genomics , vol.2 , Issue.1 , pp. 28-34
    • Dougherty, E.R.1
  • 36
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. Speed Comparison of discrimination methods for the classification of tumors using gene expression data J. Am. Stat. Assoc. 97 457 2002 77 87
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 37
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron Bootstrap methods: another look at the jackknife Ann. Stat. 1979 1 26
    • (1979) Ann. Stat. , pp. 1-26
    • Efron, B.1
  • 39
    • 84861590173 scopus 로고    scopus 로고
    • An unsupervised approach to feature discretization and selection
    • A. Ferreira, and M. Figueiredo An unsupervised approach to feature discretization and selection Pattern Recognit. 45 9 2012 3048 3060
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3048-3060
    • Ferreira, A.1    Figueiredo, M.2
  • 42
    • 84881072864 scopus 로고    scopus 로고
    • Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernández, E. Barrenechea, and F. Herrera Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recognit. 46 12 2013 3460 3471
    • (2013) Pattern Recognit. , vol.46 , Issue.12 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 44
    • 84874613998 scopus 로고    scopus 로고
    • A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
    • S. GarcIa, J. Luengo, J.A. Sáez, V. López, and F. Herrera A survey of discretization techniques: taxonomy and empirical analysis in supervised learning IEEE Trans. Knowl. Data Eng. 25 4 2013
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.4
    • Garcia, S.1    Luengo, J.2    Sáez, J.A.3    López, V.4    Herrera, F.5
  • 45
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks
    • O. Gevaert, F. Smet, D. Timmerman, Y. Moreau, and B. Moor Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks Bioinformatics 22 14 2006 184 190
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 184-190
    • Gevaert, O.1    Smet, F.2    Timmerman, D.3    Moreau, Y.4    Moor, B.5
  • 48
    • 59349118930 scopus 로고    scopus 로고
    • Gene subset selection in microarray data using entropic filtering for cancer classification
    • F. González Navarro, and L. Belanche Muñoz Gene subset selection in microarray data using entropic filtering for cancer classification Expert Syst. 26 1 2009 113 124
    • (2009) Expert Syst. , vol.26 , Issue.1 , pp. 113-124
    • González Navarro, F.1    Belanche Muñoz, L.2
  • 51
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 1-3 2002 389 422 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 54
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • M. Hall, and L. Smith Practical feature subset selection for machine learning Comput. Sci. 98 1998 181 191
    • (1998) Comput. Sci. , vol.98 , pp. 181-191
    • Hall, M.1    Smith, L.2
  • 55
    • 5444276626 scopus 로고    scopus 로고
    • Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status
    • DOI 10.1200/JCO.2004.12.133
    • C. Haslinger, N. Schweifer, S. Stilgenbauer, H. Döhner, P. Lichter, N. Kraut, C. Stratowa, and R. Abseher Microarray gene expression profiling of b-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and vh mutation status J. Clin. Oncol. 22 19 2004 3937 3949 (Pubitemid 41079876)
    • (2004) Journal of Clinical Oncology , vol.22 , Issue.19 , pp. 3937-3949
    • Haslinger, C.1    Schweifer, N.2    Stilgenbauer, S.3    Dohner, H.4    Lichter, P.5    Kraut, N.6    Stratowa, C.7    Abseher, R.8
  • 56
  • 60
    • 3042532685 scopus 로고    scopus 로고
    • Filter versus wrapper gene selection approaches in DNA microarray domains
    • DOI 10.1016/j.artmed.2004.01.007, PII S0933365704000193
    • I. Inza, P. Larrañaga, R. Blanco, and A. Cerrolaza Filter versus wrapper gene selection approaches in dna microarray domains Artif. Intell. Med. 31 2 2004 91 103 (Pubitemid 38823034)
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.2 , pp. 91-103
    • Inza, I.1    Larranaga, P.2    Blanco, R.3    Cerrolaza, A.J.4
  • 61
    • 0036450130 scopus 로고    scopus 로고
    • Gene selection by sequential search wrapper approaches in microarray cancer class prediction
    • I. Inza, B. Sierra, R. Blanco, and P. Larrañaga Gene selection by sequential search wrapper approaches in microarray cancer class prediction J. Intell. Fuzzy Syst. 12 1 2002 25 33
    • (2002) J. Intell. Fuzzy Syst. , vol.12 , Issue.1 , pp. 25-33
    • Inza, I.1    Sierra, B.2    Blanco, R.3    Larrañaga, P.4
  • 62
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain, and D. Zongker Feature selection: evaluation, application, and small sample performance IEEE Trans. Pattern Anal. Mach. Intell. 19 2 1997 153 158 (Pubitemid 127828334)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1
  • 63
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • T. Jirapech-Umpai, and S. Aitken Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes BMC Bioinformatics 6 1 2005 148
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 148
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 65
    • 33748703576 scopus 로고    scopus 로고
    • Detecting outlying samples in microarray data: A critical assessment of the effect of outliers on sample classification
    • K. Kadota, D. Tominaga, Y. Akiyama, and K. Takahashi Detecting outlying samples in microarray data: a critical assessment of the effect of outliers on sample classification Chem-Bio Infor. 3 1 2003 30 45
    • (2003) Chem-Bio Infor. , vol.3 , Issue.1 , pp. 30-45
    • Kadota, K.1    Tominaga, D.2    Akiyama, Y.3    Takahashi, K.4
  • 68
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • Springer
    • I. Kononenko Estimating attributes: analysis and extensions of relief Machine Learning: ECML-94 1994 Springer 171 182
    • (1994) Machine Learning: ECML-94 , pp. 171-182
    • Kononenko, I.1
  • 69
    • 79953212965 scopus 로고    scopus 로고
    • Improving accuracy of microarray classification by a simple multi-task feature selection filter
    • L. Lan, and S. Vucetic Improving accuracy of microarray classification by a simple multi-task feature selection filter Int. J. Data Mining Bioinformatics 5 2 2011 189 208
    • (2011) Int. J. Data Mining Bioinformatics , vol.5 , Issue.2 , pp. 189-208
    • Lan, L.1    Vucetic, S.2
  • 71
    • 77957901392 scopus 로고    scopus 로고
    • A novel hybrid feature selection method for microarray data analysis
    • C. Lee, and Y. Leu A novel hybrid feature selection method for microarray data analysis Appl. Soft Comput. 11 1 2011 208 213
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 208-213
    • Lee, C.1    Leu, Y.2
  • 72
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • J. Lee, J. Lee, M. Park, and S. Song An extensive comparison of recent classification tools applied to microarray data Comput. Statist. Data Anal. 48 4 2005 869 885
    • (2005) Comput. Statist. Data Anal. , vol.48 , Issue.4 , pp. 869-885
    • Lee, J.1    Lee, J.2    Park, M.3    Song, S.4
  • 73
    • 76849096874 scopus 로고    scopus 로고
    • A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification
    • Y. Leung, and Y. Hung A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification IEEE/ACM Trans. Comput. Biol. Bioinformatics (TCBB) 7 1 2010 108 117
    • (2010) IEEE/ACM Trans. Comput. Biol. Bioinformatics (TCBB) , vol.7 , Issue.1 , pp. 108-117
    • Leung, Y.1    Hung, Y.2
  • 74
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classfication methods for tissue classification based on gene expression
    • DOI 10.1093/bioinformatics/bth267
    • T. Li, C. Zhang, and M. Ogihara A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression Bioinformatics 20 15 2004 2429 2437 (Pubitemid 39429915)
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 75
    • 84876717770 scopus 로고    scopus 로고
    • An iterative svm approach to feature selection and classification in high-dimensional datasets
    • D. Liu, H. Qian, G. Dai, and Z. Zhang An iterative svm approach to feature selection and classification in high-dimensional datasets Pattern Recognit. 2013
    • (2013) Pattern Recognit.
    • Liu, D.1    Qian, H.2    Dai, G.3    Zhang, Z.4
  • 76
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernández, S. García, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 0 2013 113 141
    • (2013) Inf. Sci. , vol.250 , Issue.0 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 77
    • 82455212925 scopus 로고    scopus 로고
    • Analysis of complexity indices for classification problems: Cancer gene expression data
    • A.C. Lorena, I.G. Costa, N. Spolaôr, and M.C. de Souto Analysis of complexity indices for classification problems: cancer gene expression data Neurocomputing 75 1 2012 33 42
    • (2012) Neurocomputing , vol.75 , Issue.1 , pp. 33-42
    • Lorena, A.C.1    Costa, I.G.2    Spolaôr, N.3    De Souto, M.C.4
  • 79
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • S. Ma, and J. Huang Penalized feature selection and classification in bioinformatics Briefings Bioinformatics 9 5 2008 392 403
    • (2008) Briefings Bioinformatics , vol.9 , Issue.5 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 80
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • S. Maldonado, R. Weber, and J. Basak Simultaneous feature selection and classification using kernel-penalized support vector machines Inf. Sci. 181 1 2011 115 128
    • (2011) Inf. Sci. , vol.181 , Issue.1 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 81
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in microarray data using variable complementarity
    • P. Meyer, C. Schretter, and G. Bontempi Information-theoretic feature selection in microarray data using variable complementarity IEEE J. Sel. Topics Signal Process. 2 3 2008 261 274
    • (2008) IEEE J. Sel. Topics Signal Process. , vol.2 , Issue.3 , pp. 261-274
    • Meyer, P.1    Schretter, C.2    Bontempi, G.3
  • 82
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • DOI 10.1016/S0140-6736(05)17866-0
    • S. Michiels, S. Koscielny, and C. Hill Prediction of cancer outcome with microarrays: a multiple random validation strategy Lancet 365 9458 2005 488 492 (Pubitemid 40215731)
    • (2005) Lancet , vol.365 , Issue.9458 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 84
    • 84876917722 scopus 로고    scopus 로고
    • Study on the impact of partition-induced dataset shift on k-fold cross-validation
    • J.G. Moreno-Torres, J.A. Sáez, and F. Herrera Study on the impact of partition-induced dataset shift on k-fold cross-validation IEEE Trans. Neural Networks Learn. Syst. 23 8 2012 1304 1312
    • (2012) IEEE Trans. Neural Networks Learn. Syst. , vol.23 , Issue.8 , pp. 1304-1312
    • Moreno-Torres, J.G.1    Sáez, J.A.2    Herrera, F.3
  • 85
    • 77950538864 scopus 로고    scopus 로고
    • SVM-RFE with mRMR filter for gene selection
    • P. Mundra, and J. Rajapakse SVM-RFE with mRMR filter for gene selection IEEE Trans. NanoBiosci. 9 1 2010 31 37
    • (2010) IEEE Trans. NanoBiosci. , vol.9 , Issue.1 , pp. 31-37
    • Mundra, P.1    Rajapakse, J.2
  • 86
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2, 1-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. Ding Efficient and robust feature selection via joint l2, 1-norms minimization Adv. Neural Inf. Process. Syst. 23 2010 1813 1821
    • (2010) Adv. Neural Inf. Process. Syst. , vol.23 , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 87
    • 52649097493 scopus 로고    scopus 로고
    • Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis
    • C. Noble, A. Abbas, J. Cornelius, C. Lees, G. Ho, K. Toy, Z. Modrusan, N. Pal, F. Zhong, and S. Chalasani et al. Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis Gut 57 10 2008 1398 1405
    • (2008) Gut , vol.57 , Issue.10 , pp. 1398-1405
    • Noble, C.1    Abbas, A.2    Cornelius, J.3    Lees, C.4    Ho, G.5    Toy, K.6    Modrusan, Z.7    Pal, N.8    Zhong, F.9    Chalasani, S.10
  • 89
    • 61449159874 scopus 로고    scopus 로고
    • Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors
    • O. Okun, and H. Priisalu Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors Artif. Intell. Med. 45 2 2009 151 162
    • (2009) Artif. Intell. Med. , vol.45 , Issue.2 , pp. 151-162
    • Okun, O.1    Priisalu, H.2
  • 90
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced data sets
    • A. Orriols-Puig, and E. Bernadó-Mansilla Evolutionary rule-based systems for imbalanced data sets Soft Comput. 13 3 2009 213 225
    • (2009) Soft Comput. , vol.13 , Issue.3 , pp. 213-225
    • Orriols-Puig, A.1    Bernadó-Mansilla, E.2
  • 91
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238 (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 92
    • 79957605568 scopus 로고    scopus 로고
    • Two-step cross-entropy feature selection for microarrayspower through complementarity
    • T. Peters, D. Bulger, T. Loi, J. Yang, and D. Ma Two-step cross-entropy feature selection for microarrayspower through complementarity IEEE/ACM Trans. Comput. Biol. Bioinformatics 8 4 2011 1148 1151
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.8 , Issue.4 , pp. 1148-1151
    • Peters, T.1    Bulger, D.2    Loi, T.3    Yang, J.4    Ma, D.5
  • 97
    • 33748416594 scopus 로고    scopus 로고
    • Incremental wrapper-based gene selection from microarray data for cancer classification
    • DOI 10.1016/j.patcog.2005.11.001, PII S0031320305004140, Bioinformatics
    • R. Ruiz, J. Riquelme, and J. Aguilar-Ruiz Incremental wrapper-based gene selection from microarray data for cancer classification Pattern Recognit. 39 12 2006 2383 2392 (Pubitemid 44344733)
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2383-2392
    • Ruiz, R.1    Riquelme, J.C.2    Aguilar-Ruiz, J.S.3
  • 98
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y. Saeys, I. Inza, and P. Larrañaga A review of feature selection techniques in bioinformatics Bioinformatics 23 19 2007 2507 2517 (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 99
    • 84866043469 scopus 로고    scopus 로고
    • Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification
    • J.A. Saez, J. Luengo, and F. Herrera Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification Pattern Recognit. 46 2013 355 364
    • (2013) Pattern Recognit. , vol.46 , pp. 355-364
    • Saez, J.A.1    Luengo, J.2    Herrera, F.3
  • 101
    • 81855226651 scopus 로고    scopus 로고
    • Feature selection with conjunctions of decision stumps and learning from microarray data
    • M. Shah, M. Marchand, and J. Corbeil Feature selection with conjunctions of decision stumps and learning from microarray data IEEE Trans. Pattern Anal. Mach. Intell. 34 1 2012 174 186
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.1 , pp. 174-186
    • Shah, M.1    Marchand, M.2    Corbeil, J.3
  • 105
    • 84872010628 scopus 로고    scopus 로고
    • Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection
    • S. Shreem, S. Abdullah, M. Nazri, and M. Alzaqebah Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection J. Theor. Appl. Inf. Technol. 46 2 2012 1034 1039
    • (2012) J. Theor. Appl. Inf. Technol. , vol.46 , Issue.2 , pp. 1034-1039
    • Shreem, S.1    Abdullah, S.2    Nazri, M.3    Alzaqebah, M.4
  • 108
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Q. Song, J. Ni, and G. Wang A fast clustering-based feature subset selection algorithm for high-dimensional data IEEE Trans. Knowl. Data Eng. 25 1 2013 1 14
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 112
    • 75449101395 scopus 로고    scopus 로고
    • Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity
    • R. Stienstra, F. Saudale, C. Duval, S. Keshtkar, J. Groener, N. van Rooijen, B. Staels, S. Kersten, and M. Mnller Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity Hepatology 51 2 2010 511 522
    • (2010) Hepatology , vol.51 , Issue.2 , pp. 511-522
    • Stienstra, R.1    Saudale, F.2    Duval, C.3    Keshtkar, S.4    Groener, J.5    Van Rooijen, N.6    Staels, B.7    Kersten, S.8    Mnller, M.9
  • 113
    • 84866776633 scopus 로고    scopus 로고
    • Stable feature selection and classification algorithms for multiclass microarray data
    • S. Student, and K. Fujarewicz Stable feature selection and classification algorithms for multiclass microarray data Biol. Direct 7 1 2012 33
    • (2012) Biol. Direct , vol.7 , Issue.1 , pp. 33
    • Student, S.1    Fujarewicz, K.2
  • 117
    • 0346363760 scopus 로고    scopus 로고
    • The Role of the Wnt-Signaling Antagonist DKK1 in the Development of Osteolytic Lesions in Multiple Myeloma
    • DOI 10.1056/NEJMoa030847
    • E. Tian, F. Zhan, R. Walker, E. Rasmussen, Y. Ma, B. Barlogie, and J. Shaughnessy Jr. The role of the wnt-signaling antagonist dkk1 in the development of osteolytic lesions in multiple myeloma New England J. Med. 349 26 2003 2483 2494 (Pubitemid 38010074)
    • (2003) New England Journal of Medicine , vol.349 , Issue.26 , pp. 2483-2494
    • Tian, E.1    Zhan, F.2    Walker, R.3    Rasmussen, E.4    Ma, Y.5    Barlogie, B.6    Shaughnessy Jr., J.D.7
  • 119
    • 84866031290 scopus 로고    scopus 로고
    • Selecting feature subset for high dimensional data via the propositional foil rules
    • G. Wang, Q. Song, B. Xu, and Y. Zhou Selecting feature subset for high dimensional data via the propositional foil rules Pattern Recognition 46 1 2013 199 214
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 199-214
    • Wang, G.1    Song, Q.2    Xu, B.3    Zhou, Y.4
  • 120
  • 121
    • 12444320350 scopus 로고    scopus 로고
    • Gene selection from microarray data for cancer classification - A machine learning approach
    • DOI 10.1016/j.compbiolchem.2004.11.001, PII S1476927104001082
    • I. Wang, Y. Tetko, M. Hall, E. Frank, A. Facius, K. Mayer, and H. Mewes Gene selection from microarray data for cancer classification: a machine learning approach Comput. Biol. Chem. 29 1 2005 37 46 (Pubitemid 40146365)
    • (2005) Computational Biology and Chemistry , vol.29 , Issue.1 , pp. 37-46
    • Wang, Y.1    Tetko, I.V.2    Hall, M.A.3    Frank, E.4    Facius, A.5    Mayer, K.F.X.6    Mewes, H.W.7
  • 122
    • 84873170469 scopus 로고    scopus 로고
    • Maximum weight and minimum redundancy: A novel framework for feature subset selection
    • J. Wang, L. Wu, J. Kong, Y. Li, and B. Zhang Maximum weight and minimum redundancy: a novel framework for feature subset selection Pattern Recognit. 46 6 2013 1616 1627
    • (2013) Pattern Recognit. , vol.46 , Issue.6 , pp. 1616-1627
    • Wang, J.1    Wu, L.2    Kong, J.3    Li, Y.4    Zhang, B.5
  • 124
    • 79957606714 scopus 로고    scopus 로고
    • Robust feature selection for microarray data based on multicriterion fusion
    • F. Yang, and K. Mao Robust feature selection for microarray data based on multicriterion fusion IEEE/ACM Trans. Comput. Biol. Bioinformatics 8 4 2011 1080 1092
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.8 , Issue.4 , pp. 1080-1092
    • Yang, F.1    Mao, K.2
  • 125
    • 84870244637 scopus 로고    scopus 로고
    • Stratified sampling for feature subspace selection in random forests for high dimensional data
    • Y. Ye, Q. Wu, J. Zhexue Huang, M. Ng, and X. Li Stratified sampling for feature subspace selection in random forests for high dimensional data Pattern Recognit. 46 3 2013 769 787
    • (2013) Pattern Recognit. , vol.46 , Issue.3 , pp. 769-787
    • Ye, Y.1    Wu, Q.2    Zhexue Huang, J.3    Ng, M.4    Li, X.5
  • 126
    • 1542787400 scopus 로고    scopus 로고
    • Multiclass classification of microarray data with repeated measurements: Application to cancer
    • K. Yeung, and R. Bumgarner et al. Multiclass classification of microarray data with repeated measurements: application to cancer Genome Biol. 4 12 2003 83-83
    • (2003) Genome Biol. , vol.4 , Issue.12 , pp. 83-83
    • Yeung, K.1    Bumgarner, R.2
  • 127
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation-based filter solution, in: Machine Learning-International Workshop then Conference-, vol. 20, 2003, pp. 856.
    • (2003) Machine Learning-International Workshop Then Conference , vol.20 , pp. 856
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.