메뉴 건너뛰기




Volumn 9, Issue 4, 2012, Pages 1106-1119

A survey on filter techniques for feature selection in gene expression microarray analysis

Author keywords

biomarker discovery; Feature selection; gene expression data; gene prioritization; gene ranking; information filters; scoring functions; statistical methods

Indexed keywords

BIO-MARKER DISCOVERY; GENE EXPRESSION DATA; GENE RANKING; INFORMATION FILTER; PRIORITIZATION; SCORING FUNCTIONS;

EID: 84861510685     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2012.33     Document Type: Article
Times cited : (536)

References (70)
  • 1
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y. Saeys, I. Inza, and P. Larranaga, "A Review of Feature Selection Techniques in Bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 2
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub et al., "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol. 286, no. 5439, pp. 531-537, 1999.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1
  • 3
    • 84859149116 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles, revisited
    • C.A. Penfold and D.L. Wild, "How to Infer Gene Networks from Expression Profiles, Revisited," Interface Focus, vol. 1, no. 6, pp. 857-870, 2011.
    • (2011) Interface Focus , vol.1 , Issue.6 , pp. 857-870
    • Penfold, C.A.1    Wild, D.L.2
  • 4
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • DOI 10.1093/bioinformatics/btg182
    • R.L. Somorjai, B. Dolenko, and R. Baumgartner, "Class Prediction and Discovery Using Gene Microarray and Proteomics Mass Spectroscopy Data: Curses, Caveats, Cautions," Bioinformatics, vol. 19, no. 12, pp. 1484-1491, 2003. (Pubitemid 37045318)
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 5
    • 78951491903 scopus 로고    scopus 로고
    • A review of ensemble methods in bioinformatics
    • P. Yang et al., "A Review of Ensemble Methods in Bioinformatics," Current Bioinformatics, vol. 5, no. 4, pp. 296-308, 2010.
    • (2010) Current Bioinformatics , vol.5 , Issue.4 , pp. 296-308
    • Yang, P.1
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1
  • 7
    • 83755163963 scopus 로고    scopus 로고
    • The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
    • A.-C. Haury, P. Gestraud, and J.-P. Vert, "The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures," PLoS ONE, vol. 6, no. 12, p. e28210, 2011.
    • (2011) PLoS ONE , vol.6 , Issue.12
    • Haury, A.-C.1    Gestraud, P.2    Vert, J.-P.3
  • 8
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • M. Bansal et al., "How to Infer Gene Networks from Expression Profiles," Moleculer Systems Biology, vol. 3, p. 78, 2007.
    • (2007) Moleculer Systems Biology , vol.3 , pp. 78
    • Bansal, M.1
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon et al., "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning, vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 10
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • T. Zhang, "On the Consistency of Feature Selection Using Greedy Least Squares Regression," J. Machine Learning Research, vol. 10, pp. 555-568, 2009.
    • (2009) J. Machine Learning Research , vol.10 , pp. 555-568
    • Zhang, T.1
  • 11
    • 70349266356 scopus 로고    scopus 로고
    • Comprehensive survey on distance/similarity measures between probability density functions
    • S.-H. Cha, "Comprehensive Survey on Distance/Similarity Measures Between Probability Density Functions," Int'l J. Math. Models and Methods in Applied Sciences, vol. 1, no. 4, pp. 300-307, 2007.
    • (2007) Int'l J. Math. Models and Methods in Applied Sciences , vol.1 , Issue.4 , pp. 300-307
    • Cha, S.-H.1
  • 13
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • DOI 10.1016/j.febslet.2004.07.055, PII S0014579304009354
    • R. Breitling et al., "Rank Products: A Simple, Yet Powerful, New Method to Detect Differentially Regulated Genes in Replicated Microarray Experiments," FEBS Letters, vol. 573, nos. 1-3, pp. 83-92, 2004. (Pubitemid 39141040)
    • (2004) FEBS Letters , vol.573 , Issue.1-3 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 15
    • 0032693327 scopus 로고    scopus 로고
    • Functional genomics: Expression analysis of Escherichia coli growing on minimal and rich media
    • H. Tao et al., "Functional Genomics: Expression Analysis of Escherichia Coli Growing on Minimal and Rich Media," J. Bacteriology, vol. 181, pp. 6425-6440, 1999. (Pubitemid 29512954)
    • (1999) Journal of Bacteriology , vol.181 , Issue.20 , pp. 6425-6440
    • Tao, H.1    Bausch, C.2    Richmond, C.3    Blattner, F.R.4    Conway, T.5
  • 16
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance for gene expression microarray data
    • M.K. Kerr, M. Martin, and G.A. Churchill, "Analysis of Variance for Gene Expression Microarray Data," J. Computational Biology, vol. 7, no. 6, pp. 819-837, 2000.
    • (2000) J. Computational Biology , vol.7 , Issue.6 , pp. 819-837
    • Kerr, M.K.1    Martin, M.2    Churchill, G.A.3
  • 17
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • DOI 10.1101/gr.165101
    • J.G. Thomas et al., "An Efficient and Robust Statistical Modeling Approach to Discover Differentially Expressed Genes Using Genomic Expression Profiles," Genome Research, vol. 11, no. 7, pp. 1227-1236, 2001. (Pubitemid 32677297)
    • (2001) Genome Research , vol.11 , Issue.7 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, P.4
  • 18
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments
    • S. Dudoit et al., "Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments," Statistica Sinica, vol. 12, pp. 111-139, 2002.
    • (2002) Statistica Sinica , vol.12 , pp. 111-139
    • Dudoit, S.1
  • 22
    • 0035827588 scopus 로고    scopus 로고
    • Improved statistical inference from dna microarray data using analysis of variance and a bayesian statistical framework
    • A.D. Long et al., "Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework," J. Biological Chemistry, vol. 276, no. 23, pp. 19937-19944, 2001.
    • (2001) J. Biological Chemistry , vol.276 , Issue.23 , pp. 19937-19944
    • Long, A.D.1
  • 23
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • P. Baldi and A.D. Long, "A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized t-Test and Statistical Inferences of Gene Changes," Bioinformatics, vol. 17, no. 6, pp. 509-519, 2001. (Pubitemid 32600497)
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 24
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • G.K. Smyth, "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Moleculer Biology, vol. 3, no. 1, pp. 1-25, 2004.
    • (2004) Statistical Applications in Genetics and Moleculer Biology , vol.3 , Issue.1 , pp. 1-25
    • Smyth, G.K.1
  • 25
  • 26
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen, "On Estimation of a Probability Density Function and Mode," The Annals of Math. Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.
    • (1962) The Annals of Math. Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 28
    • 15244346245 scopus 로고    scopus 로고
    • Detecting differentially expressed genes by relative entropy
    • DOI 10.1016/j.jtbi.2004.11.039
    • X. Yan et al., "Detecting Differentially Expressed Genes by Relative Entropy," J. Theoretical Biology, vol. 234, no. 3, pp. 395-402, 2005. (Pubitemid 40387463)
    • (2005) Journal of Theoretical Biology , vol.234 , Issue.3 , pp. 395-402
    • Yan, X.1    Deng, M.2    Fung, W.K.3    Qian, M.4
  • 29
    • 36349010718 scopus 로고    scopus 로고
    • Gene selection for classification of microarray data based on the bayes error
    • article 370
    • J.-G. Zhang and H.-W. Deng, "Gene Selection for Classification of Microarray Data Based on the Bayes Error," BMC Bioinformatics, vol. 8, no. 1, article 370, 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1
    • Zhang, J.-G.1    Deng, H.-W.2
  • 30
    • 64549099411 scopus 로고    scopus 로고
    • A two-stage feature selection method for gene expression data
    • L.-Y. Chuang et al., "A Two-Stage Feature Selection Method for Gene Expression Data," OMICS: J. Integrative Biology, vol. 13, pp. 127-137, 2009.
    • (2009) OMICS: J. Integrative Biology , vol.13 , pp. 127-137
    • Chuang, L.-Y.1
  • 31
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • R. Steuer et al., "The Mutual Information: Detecting and Evaluating Dependencies Between Variables," Bioinformatics, vol. 18, suppl. 2, pp. S23-S240, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 2
    • Steuer, R.1
  • 32
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • article 76
    • X. Liu, A. Krishnan, and A. Mondry, "An Entropy-Based Gene Selection Method for Cancer Classification Using Microarray Data," BMC Bioinformatics, vol. 6, article 76, 2005.
    • (2005) BMC Bioinformatics , vol.6
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 33
    • 0035222126 scopus 로고    scopus 로고
    • A nonparametric scoring algorithm for identifying informative genes from microarray data
    • B.M. Park PJ and M. Pagano, "A Nonparametric Scoring Algorithm for Identifying Informative Genes from Microarray Data," Proc. Pacific Symp. Biocomputing, pp. 52-63, 2001.
    • (2001) Proc. Pacific Symp. Biocomputing , pp. 52-63
    • B.M. Park, P.J.1    Pagano, M.2
  • 34
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • L.J. van 't Veer et al., "Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer," Nature, vol. 415, no. 6871, pp. 530-536, 2002.
    • (2002) Nature , vol.415 , Issue.6871 , pp. 530-536
    • Vant Veer, L.J.1
  • 35
    • 55349084073 scopus 로고    scopus 로고
    • Not proper roc curves as new tool for the analysis of differentially expressed genes in microarray experiments
    • article 410
    • S. Parodi, V. Pistoia, and M. Muselli, "Not Proper Roc Curves as New Tool for the Analysis of Differentially Expressed Genes in Microarray Experiments," BMC Bioinformatics, vol. 9, no. 1, article 410, 2008.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1
    • Parodi, S.1    Pistoia, V.2    Muselli, M.3
  • 36
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T.P. Speed, "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," J. Am. Statistical Assoc., vol. 97, no. 457, pp. 77-87, 2002.
    • (2002) J. Am. Statistical Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 37
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • A. Ben-Dor et al., "Tissue Classification with Gene Expression Profiles," J. Computational Biology, vol. 7, pp. 559-583, 2000.
    • (2000) J. Computational Biology , vol.7 , pp. 559-583
    • Ben-Dor, A.1
  • 38
    • 0039802908 scopus 로고
    • The earth is round (p < .05)
    • J. Cohen, "The Earth is Round (p < .05) Psychologist , 1994, vol 38 pp. 997-1003 (Pubitemid 24976676)
    • (1994) American Psychologist , vol.49 , Issue.12 , pp. 997-1003
    • Cohen, J.1
  • 39
    • 2142854576 scopus 로고    scopus 로고
    • A mixture model approach to detecting differentially expressed genes with microarray data
    • DOI 10.1007/s10142-003-0085-7
    • W. Pan, J. Lin, and C.T. Le, "A Mixture Model Approach to Detecting Differentially Expressed Genes with Microarray Data," Functional and Integrative Genomics, vol. 3, no. 3, pp. 117-124, 2003. (Pubitemid 40796210)
    • (2003) Functional and Integrative Genomics , vol.3 , Issue.3 , pp. 117-124
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 41
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • DOI 10.1214/ss/1056397487
    • S. Dudoit, J.P. Shaffer, and J.C. Boldrick, "Multiple Hypothesis Testing in Microarray Experiments," Statistical Science, vol. 18, no. 1, pp. 71-103, 2003. (Pubitemid 41461823)
    • (2003) Statistical Science , vol.18 , Issue.1 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 42
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini and Y. Hochberg, "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing," J. Royal Statistical Soc. Series B (Methodological), vol. 57, no. 1, pp. 289-300, 1995.
    • (1995) J. Royal Statistical Soc. Series B (Methodological) , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 43
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A bayesian interpretation and the q-value
    • D. Storey, "The Positive False Discovery Rate: A Bayesian Interpretation and the q-Value," Annals of Statistics, vol. 31, pp. 2013-2035, 2003.
    • (2003) Annals of Statistics , vol.31 , pp. 2013-2035
    • Storey, D.1
  • 44
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • J.D. Storey, "A Direct Approach to False Discovery Rates," J. Royal Statistics Soc.: Series B, vol. 64, no. 3, pp. 479-498, 2002.
    • (2002) J. Royal Statistics Soc.: Series B , vol.64 , Issue.3 , pp. 479-498
    • Storey, J.D.1
  • 45
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DOI 10.1126/science.278.5338.680
    • J. DeRisi, V. Iyer, and P. Brown, "Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale," Science, vol. 278, no. 5338, pp. 680-686, 1997. (Pubitemid 27464965)
    • (1997) Science , vol.278 , Issue.5338 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 46
    • 0042093637 scopus 로고    scopus 로고
    • Noise sampling method: An ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays
    • DOI 10.1093/bioinformatics/btg165
    • S. Draghici et al., "Noise Sampling Method: An ANOVA Approach Allowing Robust Selection of Differentially Regulated Genes Measured by DNA Microarrays," Bioinformatics, vol. 19, no. 11, pp. 1348-1359, 2003. (Pubitemid 36939812)
    • (2003) Bioinformatics , vol.19 , Issue.11 , pp. 1348-1359
    • Draghici, S.1    Kulaeva, O.2    Hoff, B.3    Petrov, A.4    Shams, S.5    Tainsky, M.A.6
  • 47
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • DOI 10.1089/106652701300099074
    • M.A. Newton et al., "On Differential Variability of Expression Ratios: Improving Statistical Inference About Gene Expression Changes from Microarray Data," J. Computational Biology, vol. 8, pp. 37-52, 2001. (Pubitemid 32679478)
    • (2001) Journal of Computational Biology , vol.8 , Issue.1 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 48
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • DOI 10.1016/j.febslet.2004.07.055, PII S0014579304009354
    • R. Breitling et al., "Rank Products: A Simple, Yet Powerful, New Method to Detect Differentially Regulated Genes in Replicated Microarray Experiments," FEBS Letters, vol. 573, nos. 1-3, pp. 83-92, 2004. (Pubitemid 39141040)
    • (2004) FEBS Letters , vol.573 , Issue.1-3 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 49
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. Speed, "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," J. Am. Statistical Assoc., vol. 97, no. 457, pp. 77-87, 2002.
    • (2002) J. Am. Statistical Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 50
    • 0041592555 scopus 로고    scopus 로고
    • On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression
    • W. Pan, "On the Use of Permutation in and the Performance of a Class of Nonparametric Methods to Detect Differential Gene Expression," Bioinformatics, vol. 19, no. 11, pp. 1333-13340, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.11 , pp. 1333-13340
    • Pan, W.1
  • 51
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • T. Bø and I. Jonassen, "New Feature Subset Selection Procedures for Classification of Expression Profiles," Genome Biology, vol. 4, no. 4, pp. research0017.1-research0017.11, 2002.
    • (2002) Genome Biology , vol.4 , Issue.4
    • Bø, T.1    Jonassen, I.2
  • 52
    • 18544368641 scopus 로고    scopus 로고
    • Classifying gene expression profiles from pairwise mRNA comparisons
    • D. Geman et al., "Classifying Gene Expression Profiles from Pairwise mRNA Comparisons," Statistical Applications in Genetics and Moleculer Biology, vol. 3, pp. 1-19, 2004.
    • (2004) Statistical Applications in Genetics and Moleculer Biology , vol.3 , pp. 1-19
    • Geman, D.1
  • 53
    • 1542787400 scopus 로고    scopus 로고
    • Multiclass classification of microarray data with repeated measurements: Application to cancer
    • K. Yeung and R. Bumgarner, "Multiclass Classification of Microarray Data with Repeated Measurements: Application to Cancer," Genome Biology, vol. 4, no. 12, p. R83, 2003.
    • (2003) Genome Biology , vol.4 , Issue.12
    • Yeung, K.1    Bumgarner, R.2
  • 54
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • DOI 10.1142/S0219720005001004, PII S0219720005001004
    • C. Ding and H. Peng, "Minimum Redundancy Feature Selection from Microarray Gene Expression Data," J. Bioinformatics and Computational Biology, pp. 185-205, 2005. (Pubitemid 40561382)
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 62
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • DOI 10.1093/bioinformatics/bth469
    • L. Ein-Dor et al., "Outcome Signature Genes in Breast Cancer: Is There a Unique Set?" Bioinformatics, vol. 21, no. 2, pp. 171-178, 2005. (Pubitemid 40202018)
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 63
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • DOI 10.1016/S0140-6736(05)17866-0
    • S. Michiels, S. Koscielny, and C. Hill, "Prediction of Cancer Outcome with Microarrays: A Multiple Random Validation Strategy," Lancet, vol. 365, no. 9458, pp. 488-492, 2005. (Pubitemid 40215731)
    • (2005) Lancet , vol.365 , Issue.9458 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 64
    • 69249085408 scopus 로고    scopus 로고
    • Stability and aggregation of ranked gene lists
    • A.-L. Boulesteix and M. Slawski, "Stability and Aggregation of Ranked Gene Lists," Briefings in Bioinformatics, vol. 10, no. 5, pp. 556-568, 2009.
    • (2009) Briefings in Bioinformatics , vol.10 , Issue.5 , pp. 556-568
    • Boulesteix, A.-L.1    Slawski, M.2
  • 65
    • 65549116863 scopus 로고    scopus 로고
    • Ranking differentially expressed genes from affymetrix gene expression data: Methods with reproducibility, sensitivity, and specificity
    • K. Kadota, Y. Nakai, and K. Shimizu, "Ranking Differentially Expressed Genes from Affymetrix Gene Expression Data: Methods with Reproducibility, Sensitivity, and Specificity," Algorithms for Moleculer Biology, vol. 4, p. 7, 2009.
    • (2009) Algorithms for Moleculer Biology , vol.4 , pp. 7
    • Kadota, K.1    Nakai, Y.2    Shimizu, K.3
  • 66
    • 67649205714 scopus 로고    scopus 로고
    • Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes
    • M. Zhang et al., "Evaluating Reproducibility of Differential Expression Discoveries in Microarray Studies by Considering Correlated Molecular Changes," Bioinformatics, vol. 25, no. 13, pp. 1662-1668, 2009.
    • (2009) Bioinformatics , vol.25 , Issue.13 , pp. 1662-1668
    • Zhang, M.1
  • 67
    • 18244384210 scopus 로고    scopus 로고
    • Multiple-laboratory comparison of microarray platforms
    • R.A. Irizarry et al., "Multiple-Laboratory Comparison of Microarray Platforms," Nature Methods, vol. 2, no. 5, pp. 345-350, 2005.
    • (2005) Nature Methods , vol.2 , Issue.5 , pp. 345-350
    • Irizarry, R.A.1
  • 69
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • article 359
    • I. Jeffery, D. Higgins, and A. Culhane, "Comparison and Evaluation of Methods for Generating Differentially Expressed Gene Lists from Microarray Data," BMC Bioinformatics, vol. 7, no. 1, article 359, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1
    • Jeffery, I.1    Higgins, D.2    Culhane, A.3
  • 70
    • 80755169527 scopus 로고    scopus 로고
    • Insilicodb: An r/bioconductor package for accessing human affymetrix expert-curated data sets from geo
    • J. Taminau et al., "inSilicoDb: An R/Bioconductor Package for Accessing Human Affymetrix Expert-Curated Data sets from GEO," Bioinformatics, vol. 27, pp. 3204-3205, 2011.
    • (2011) Bioinformatics , vol.27 , pp. 3204-3205
    • Taminau, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.