메뉴 건너뛰기




Volumn 23, Issue 8, 2012, Pages 1304-1312

Study on the impact of partition-induced dataset shift on k-fold cross-validation

Author keywords

Covariate shift; cross validation; dataset shift; partitioning

Indexed keywords

CLASSIFIER PERFORMANCE; COVARIATE SHIFTS; CROSS VALIDATION; DATASET SHIFTS; K FOLD CROSS VALIDATIONS; PARTITIONING; PERFORMANCE ESTIMATION; STABLE PERFORMANCE;

EID: 84876917722     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2199516     Document Type: Article
Times cited : (288)

References (27)
  • 1
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Proc. Int. Joint Conf. Artif. Intell., 1995, pp. 1137-1145.
    • (1995) Proc. Int. Joint Conf. Artif. Intell , pp. 1137-1145
    • Kohavi, R.1
  • 2
    • 0017336301 scopus 로고
    • Asymptotics for and against cross-validation
    • M. Stone, "Asymptotics for and against cross-validation," Biometrika, vol. 64, no. 1, pp. 29-35, 1977.
    • (1977) Biometrika , vol.64 , Issue.1 , pp. 29-35
    • Stone, M.1
  • 3
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife, and cross-validation
    • B. Efron and G. Gong, "A leisurely look at the bootstrap, the jackknife, and cross-validation," Amer. Stat., vol. 37, no. 1, pp. 36-48, 1983.
    • (1983) Amer. Stat , vol.37 , Issue.1 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 4
    • 79952190421 scopus 로고    scopus 로고
    • Principal curve algorithms for partitioning high-dimensional data spaces
    • Mar.
    • J. Zhang, X. Wang, U. Krüger, and F.-Y. Wang, "Principal curve algorithms for partitioning high-dimensional data spaces," IEEE Trans. Neural Netw., vol. 22, no. 3, pp. 367-380, Mar. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.3 , pp. 367-380
    • Zhang, J.1    Wang, X.2    Krüger, U.3    Wang, F.-Y.4
  • 5
    • 83655163786 scopus 로고    scopus 로고
    • Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method
    • Dec.
    • H. Zhang, L. Cui, X. Zhang, and Y. Luo, "Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2226-2236, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.12 , pp. 2226-2236
    • Zhang, H.1    Cui, L.2    Zhang, X.3    Luo, Y.4
  • 6
    • 83855162220 scopus 로고    scopus 로고
    • Incremental learning from stream data
    • Dec.
    • H. He, S. Chen, K. Li, and X. Xu, "Incremental learning from stream data," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901-1914, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.12 , pp. 1901-1914
    • He, H.1    Chen, S.2    Li, K.3    Xu, X.4
  • 9
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • Jan
    • J. R. Cano, F. Herrera, and M. Lozano, "Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability," Data Knowl. Eng., vol. 60, pp. 90-108, Jan. 2007.
    • (2007) Data Knowl. Eng , vol.60 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 10
    • 0034418371 scopus 로고    scopus 로고
    • Distribution-balanced stratified crossvalidation for accuracy estimation
    • X. Zeng and T. R. Martinez, "Distribution-balanced stratified crossvalidation for accuracy estimation," J. Experim. Theor. Artif. Intell., vol. 12, no. 1, pp. 1-12, 2000.
    • (2000) J. Experim. Theor. Artif. Intell , vol.12 , Issue.1 , pp. 1-12
    • Zeng, X.1    Martinez, T.R.2
  • 11
    • 34249047899 scopus 로고    scopus 로고
    • Covariate shift adaptation by importance weighted cross validation
    • Dec
    • M. Sugiyama, M. Krauledat, and K.-R. Müller, "Covariate shift adaptation by importance weighted cross validation," J. Mach. Learn. Res., vol. 8, pp. 985-1005, Dec. 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 985-1005
    • Sugiyama, M.1    Krauledat, M.2    Müller, K.-R.3
  • 12
    • 80052700798 scopus 로고    scopus 로고
    • When training and test sets are different: Characterizing learning transfer
    • J. Quiñonero Candela M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Eds. Cambridge, MA: MIT Press
    • A. Storkey, "When training and test sets are different: Characterizing learning transfer," in Dataset Shift in Machine Learning, J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Eds. Cambridge, MA: MIT Press, 2009, pp. 3-28.
    • (2009) Dataset Shift in Machine Learning , pp. 3-28
    • Storkey, A.1
  • 14
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira, "Improving predictive inference under covariate shift by weighting the log-likelihood function," J. Stat. Plann. Inference, vol. 90, no. 2, pp. 227-244, 2000.
    • (2000) J. Stat. Plann. Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 15
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • Mar
    • J. Huang and C. X. Ling, "Using AUC and accuracy in evaluating learning algorithms," IEEE Trans. Knowl. Data Eng., vol. 17, no. 3, pp. 299-310, Mar. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 17
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Jan
    • T. Cover and P. Hart, "Nearest neighbor pattern classification, " IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 19
    • 70349591070 scopus 로고    scopus 로고
    • FURIA: An algorithm for unordered fuzzy rule induction
    • J. Hühn and E. Hüllermeier, "FURIA: An algorithm for unordered fuzzy rule induction," Data Mining Knowl. Discovery, vol. 19, no. 3, pp. 293-319, 2009.
    • (2009) Data Mining Knowl. Discovery , vol.19 , Issue.3 , pp. 293-319
    • Hühn, J.1    Hüllermeier, E.2
  • 20
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugen., vol. 7, no. 2, pp. 179-188, 1936.
    • (1936) Ann. Eugen , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.1
  • 21
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimization
    • E. Frank and I. Witten, "Generating accurate rule sets without global optimization," in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 144-151.
    • (1998) Proc. 15th Int. Conf. Mach. Learn , pp. 144-151
    • Frank, E.1    Witten, I.2
  • 22
    • 0346076782 scopus 로고    scopus 로고
    • Support vector learning for fuzzy rule-based classification systems
    • Dec
    • Y. Chen and J. Wang, "Support vector learning for fuzzy rule-based classification systems," IEEE Trans. Fuzzy Syst., vol. 11, no. 6, pp. 716-728, Dec. 2003.
    • (2003) IEEE Trans. Fuzzy Syst , vol.11 , Issue.6 , pp. 716-728
    • Chen, Y.1    Wang, J.2
  • 26
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera, "Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power," Inf. Sci., vol. 180, no. 10, pp. 2044-2064, 2010.
    • (2010) Inf. Sci , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 27
    • 79951756007 scopus 로고    scopus 로고
    • Consequences of variability in classifier performance estimates
    • Dec
    • T. Raeder, T. R. Hoens, and N. V. Chawla, "Consequences of variability in classifier performance estimates," in Proc. IEEE Int. Conf. Data Mining, Dec. 2010, pp. 421-430.
    • (2010) Proc IEEE Int. Conf. Data Mining , pp. 421-430
    • Raeder, T.1    Hoens, T.R.2    Chawla, N.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.