메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 13-20

Data classification using an ensemble of filters

Author keywords

Classification; Ensemble learning; Feature selection; Microarray data

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER APPLICATIONS; FEATURE EXTRACTION; NEURAL NETWORKS;

EID: 84897916633     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.03.067     Document Type: Article
Times cited : (81)

References (30)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Mach. Learn. 1990, 5(2):197-227.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 5
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A., Pechenizkiy M., Cunningham P. Diversity in search strategies for ensemble feature selection. Inf. Fusion 2005, 6(1):83-98.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 6
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20(8):832-844.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 7
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles
    • Proceedings of the National Conference on Artificial Intelligence, John Wiley & Sons LTD
    • D.W. Opitz, Feature selection for ensembles, in: Proceedings of the National Conference on Artificial Intelligence, John Wiley & Sons LTD, 1999, pp. 379-384.
    • (1999) , pp. 379-384
    • Opitz, D.W.1
  • 8
    • 80052751840 scopus 로고    scopus 로고
    • Stochastic attribute selection committees
    • Advanced Topics in Artificial Intelligence
    • Z. Zheng, G. Webb, Stochastic attribute selection committees, in: Advanced Topics in Artificial Intelligence, 1998, pp. 321-332.
    • (1998) , pp. 321-332
    • Zheng, Z.1    Webb, G.2
  • 10
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel T., Helleputte T., Van de Peer Y., Dupont P., Saeys Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 2010, 26(3):392-398.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van de Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 11
    • 68949154557 scopus 로고    scopus 로고
    • Feature selection with ensembles, artificial variables, and redundancy elimination
    • Tuv E., Borisov A., Runger G., Torkkola K. Feature selection with ensembles, artificial variables, and redundancy elimination. J. Mach. Learn. Res. 2009, 10:1341-1366.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1341-1366
    • Tuv, E.1    Borisov, A.2    Runger, G.3    Torkkola, K.4
  • 12
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17(4):491-502.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 13
    • 80052772754 scopus 로고    scopus 로고
    • An ensemble of filters and classifiers for microarray data classification
    • Bolón-Canedo V., Sánchez-Maroño N., Alonso-Betanzos A. An ensemble of filters and classifiers for microarray data classification. Pattern Recognit. 2012, 45(1):531-539.
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 531-539
    • Bolón-Canedo, V.1    Sánchez-Maroño, N.2    Alonso-Betanzos, A.3
  • 14
    • 84897913868 scopus 로고    scopus 로고
    • Correlation-based feature selection for machine learning (Ph.D. thesis), Citeseer
    • M.A. Hall, Correlation-based feature selection for machine learning (Ph.D. thesis), Citeseer, 1999.
    • (1999)
    • Hall, M.A.1
  • 15
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., Liu H. Consistency-based search in feature selection. Artif. Intell. 2003, 151(1-2):155-176.
    • (2003) Artif. Intell. , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 16
    • 84880853409 scopus 로고    scopus 로고
    • Searching for interacting features
    • Proceedings of the 20th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc.
    • Z. Zhao, H. Liu, Searching for interacting features, in: Proceedings of the 20th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., 2007, pp. 1156-1161.
    • (2007) , pp. 1156-1161
    • Zhao, Z.1    Liu, H.2
  • 17
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • Hall M.A., Smith L.A. Practical feature subset selection for machine learning. Comput. Sci. 1998, 98:181-191.
    • (1998) Comput. Sci. , vol.98 , pp. 181-191
    • Hall, M.A.1    Smith, L.A.2
  • 18
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of relief
    • Machine Learning: ECML-94, Springer
    • I. Kononenko, Estimating attributes: analysis and extensions of relief, in: Machine Learning: ECML-94, Springer, 1994, pp. 171-182.
    • (1994) , pp. 171-182
    • Kononenko, I.1
  • 19
    • 84857620564 scopus 로고    scopus 로고
    • Toward an ensemble of filters for classification
    • 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE
    • V. Bolon-Canedo, N. Sanchez-Maroño, A. Alonso-Betanzos, Toward an ensemble of filters for classification, in: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE, 2011, pp. 331-336.
    • (2011) , pp. 331-336
    • Bolon-Canedo, V.1    Sanchez-Maroño, N.2    Alonso-Betanzos, A.3
  • 21
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D.W., Kibler D., Albert M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6(1):37-66.
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 23
    • 3843106208 scopus 로고    scopus 로고
    • An empirical study of the naive Bayes classifier
    • IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence
    • I. Rish, An empirical study of the naive Bayes classifier, in: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 2001, pp. 41-46.
    • (2001) , pp. 41-46
    • Rish, I.1
  • 26
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power
    • García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power. Inf. Sci. 2010, 180(10):2044-2064.
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 29
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.