메뉴 건너뛰기




Volumn 26, Issue 5, 2012, Pages

Iterative feature perturbation as a gene selector for microarray data

Author keywords

feature perturbation; Feature selection; gene selection; microarray analysis; t test

Indexed keywords

BASE CLASSIFIERS; CLASSIFICATION ACCURACY; CLASSIFICATION TASKS; COLON CANCER; DATA SETS; DIMENSIONALITY REDUCTION; FEATURE PERTURBATION; FEATURE SETS; GENE SELECTION; GENE SETS; LINEAR SUPPORT VECTOR MACHINES; LUNG CANCER; MICROARRAY ANALYSIS; MICROARRAY DATA; MICROARRAY DATA SETS; NUMBER OF SAMPLES; P-VALUES; PERFORMANCE IMPROVEMENTS; PERTURBATION METHOD; PRE-SELECTION; SUPPORT VECTOR; SVM-RFE; T-TEST;

EID: 84870512015     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001412600038     Document Type: Article
Times cited : (26)

References (36)
  • 1
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • D. Allison, X. Cui, G. Page and M. Sabripour, Microarray data analysis: From disarray to consolidation and consensus, Nat. Rev. Genet. 7 (2006) 55-66.
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 55-66
    • Allison, D.1    Cui, X.2    Page, G.3    Sabripour, M.4
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack and A. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Nat. Acad. Sci. 96(12) (1999) 6745-6759.
    • (1999) Proc. Nat. Acad. Sci. , vol.96 , Issue.12 , pp. 6745-6759
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    MacK, D.6    Levine, A.7
  • 6
    • 84870548232 scopus 로고    scopus 로고
    • Noise-based feature perturbation as a selection method for microarray data
    • Ga, USA 7-10 May, Proc. (Springer-Verlag, New York Inc. 2007
    • L. Chen, D. Goldgof, L. Hall and S. Eschrich, Noise-based feature perturbation as a selection method for microarray data, in Bioinformatics Research and Applications: Third Int. Symp. Atlanta, Ga, USA, 7-10 May, 2007, Proc. (Springer-Verlag, New York Inc., 2007).
    • (2007) Bioinformatics Research and Applications: Third Int. Symp. Atlanta
    • Chen, L.1    Goldgof, D.2    Hall, L.3    Eschrich, S.4
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1-30. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 9
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Díaz-Uriarte and A. de Andr-es, Gene selection and classification of microarray data using random forest, BMC Bioinformatics 7 (2006) 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    De Andr-Es, A.2
  • 11
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Am. Stat. Assoc. 32(200) (1937) 675-701.
    • (1937) J. Am. Stat. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 12
    • 84863393080 scopus 로고    scopus 로고
    • Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
    • M. Gerlinger, A. J. Rowan, S. Horswell, J. Larkin, D. Endesfelder et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, New Engl. J. Med. 366 (2012) 883-892.
    • (2012) New Engl. J. Med. , vol.366 , pp. 883-892
    • Gerlinger, M.1    Rowan, A.J.2    Horswell, S.3    Larkin, J.4    Endesfelder, D.5
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn. 46 (2002) 389-422. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6(2) (1979) 65-70.
    • (1979) Scand. J. Stat. , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 19
    • 3042532685 scopus 로고    scopus 로고
    • Filter versus wrapper gene selection approaches in DNA microarray domains
    • DOI 10.1016/j.artmed.2004.01.007, PII S0933365704000193
    • I. Inza, P. Larrañaga, R. Blanco and A. Cerrolaza, Filter versus wrapper gene selection approaches in DNA microarray domains, Artif. Intell. Med. 31(2) (2004) 91-103. (Pubitemid 38823034)
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.2 , pp. 91-103
    • Inza, I.1    Larranaga, P.2    Blanco, R.3    Cerrolaza, A.J.4
  • 20
    • 0037976550 scopus 로고    scopus 로고
    • Improved gene selection for classification of microarrays
    • J. Jäger, R. Sengupta and W. Ruzzo, Improved gene selection for classification of microarrays, Biocomputing 2003 (2003) 53.
    • (2003) Biocomputing 2003 , vol.53
    • Jäger, J.1    Sengupta, R.2    Ruzzo, W.3
  • 21
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. John, Wrappers for feature subset selection, Artif. Intell. 97(1-2) (1997) 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 23
    • 33746257613 scopus 로고    scopus 로고
    • Feature selection and ranking of key genes for tumor classification: Using microarray gene expression data
    • S. Mukkamala, Q. Liu, R. Veeraghattam and A. Sung, Feature selection and ranking of key genes for tumor classification: Using microarray gene expression data, Lect. Notes Comput. Sci. 4029 (2006) 951.
    • (2006) Lect. Notes Comput. Sci. , vol.4029 , pp. 951
    • Mukkamala, S.1    Liu, Q.2    Veeraghattam, R.3    Sung, A.4
  • 25
    • 33744957443 scopus 로고    scopus 로고
    • Microarray analysis and tumor classification
    • J. Quackenbush, Microarray analysis and tumor classification, New Engl. J. Med. 354(23) (2006) 2463.
    • (2006) New Engl. J. Med. , vol.354 , Issue.23 , pp. 2463
    • Quackenbush, J.1
  • 26
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza and P. Larranaga, A review of feature selection techniques in bioinformatics, Bioinformatics 23(19) (2007) 2507.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 30
    • 22244447065 scopus 로고    scopus 로고
    • Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy
    • DOI 10.1002/cncr.21157
    • A. Stephenson, A. Smith, M. Kattan, J. Satagopan, V. Reuter, P. Scardino and W. Gerald, Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy, Cancer 104(2) (2005) 290-298. (Pubitemid 40993255)
    • (2005) Cancer , vol.104 , Issue.2 , pp. 290-298
    • Stephenson, A.J.1    Smith, A.2    Kattan, M.W.3    Satagopan, J.4    Reuter, V.E.5    Scardino, P.T.6    Gerald, W.L.7
  • 31
    • 77955397866 scopus 로고    scopus 로고
    • Local learning based feature selection for high dimensional data analysis
    • doi:10.109/TPAMI.2009.190
    • Y. Sun, S. Todorovic and S. Goodison, Local learning based feature selection for high dimensional data analysis, IEEE Trans. Pattern Anal. Mach. Intell. 32(9) (2010) 1610-1626; doi:10.109/TPAMI.2009.190.
    • IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.9 , pp. 1610-2010
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 33
    • 12444320350 scopus 로고    scopus 로고
    • Gene selection from microarray data for cancer classification - A machine learning approach
    • DOI 10.1016/j.compbiolchem.2004.11.001, PII S1476927104001082
    • Y. Wang, I. Tetko, M. Hall, E. Frank, A. Facius, K. Mayer and H. Mewes, Gene selection from microarray data for cancer classification - a machine learning approach, Comput. Biol. Chem. 29 (2005) 37-46. (Pubitemid 40146365)
    • (2005) Computational Biology and Chemistry , vol.29 , Issue.1 , pp. 37-46
    • Wang, Y.1    Tetko, I.V.2    Hall, M.A.3    Frank, E.4    Facius, A.5    Mayer, K.F.X.6    Mewes, H.W.7
  • 34
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification and gene selection
    • L. Wang, J. Zhu and H. Zou, Hybrid huberized support vector machines for microarray classification and gene selection, Bioinformatics 24(3) (2008) 412.
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 412
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 35
    • 34547983091 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification
    • ACM New York, NY, USA
    • L. Wang, J. Zhu and H. Zou, Hybrid huberized support vector machines for microarray classification, in Proc. 24th Int. Conf. Machine Learning (ACM New York, NY, USA, 2007), pp. 983-990.
    • (2007) Proc. 24th Int. Conf. Machine Learning , pp. 983-990
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 36
    • 33847646332 scopus 로고    scopus 로고
    • Wrapper-filter feature selection algorithm using a memetic framework
    • Z. Zhu, Y. Ong and M. Dash, Wrapper-filter feature selection algorithm using a memetic framework, IEEE Trans. Syst. Man Cybern. B Cybern. 37 (2007) 70.
    • (2007) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.37 , pp. 70
    • Zhu, Z.1    Ong, Y.2    Dash, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.