-
1
-
-
29244448340
-
Microarray data analysis: From disarray to consolidation and consensus
-
D. Allison, X. Cui, G. Page and M. Sabripour, Microarray data analysis: From disarray to consolidation and consensus, Nat. Rev. Genet. 7 (2006) 55-66.
-
(2006)
Nat. Rev. Genet.
, vol.7
, pp. 55-66
-
-
Allison, D.1
Cui, X.2
Page, G.3
Sabripour, M.4
-
2
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack and A. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Nat. Acad. Sci. 96(12) (1999) 6745-6759.
-
(1999)
Proc. Nat. Acad. Sci.
, vol.96
, Issue.12
, pp. 6745-6759
-
-
Alon, U.1
Barkai, N.2
Notterman, D.3
Gish, K.4
Ybarra, S.5
MacK, D.6
Levine, A.7
-
3
-
-
78751539324
-
Filtering for improved gene selection on microarray data in 2010
-
Istanbul, Turkey (10-13 October
-
J. Canul-Reich, L. Hall, D. Goldgof and S. Eschrich, Filtering for improved gene selection on microarray data, in 2010 IEEE International Conference on Systems, Man, and Cybernetics, Istanbul, Turkey (10-13 October 2010), pp. 3250-3257.
-
(2010)
IEEE International Conference on Systems, Man, and Cybernetics
, pp. 3250-3257
-
-
Canul-Reich, J.1
Hall, L.2
Goldgof, D.3
Eschrich, S.4
-
4
-
-
69949144350
-
Feature selection for microarray data by AUC analysis
-
12-15 October 2008, Singapore
-
J. Canul-Reich, L. Hall, D. Goldgof and S. Eschrich, Feature selection for microarray data by AUC analysis, in 2008 IEEE Int. Conf. Systems, Man, and Cybernetics, 12-15 October 2008, Singapore, pp. 768-773.
-
(2008)
IEEE Int. Conf. Systems, Man, and Cybernetics
, pp. 768-773
-
-
Canul-Reich, J.1
Hall, L.2
Goldgof, D.3
Eschrich, S.4
-
6
-
-
84870548232
-
Noise-based feature perturbation as a selection method for microarray data
-
Ga, USA 7-10 May, Proc. (Springer-Verlag, New York Inc. 2007
-
L. Chen, D. Goldgof, L. Hall and S. Eschrich, Noise-based feature perturbation as a selection method for microarray data, in Bioinformatics Research and Applications: Third Int. Symp. Atlanta, Ga, USA, 7-10 May, 2007, Proc. (Springer-Verlag, New York Inc., 2007).
-
(2007)
Bioinformatics Research and Applications: Third Int. Symp. Atlanta
-
-
Chen, L.1
Goldgof, D.2
Hall, L.3
Eschrich, S.4
-
8
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1-30. (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
9
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
R. Díaz-Uriarte and A. de Andr-es, Gene selection and classification of microarray data using random forest, BMC Bioinformatics 7 (2006) 3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
De Andr-Es, A.2
-
10
-
-
20644443287
-
Molecular staging for survival prediction of colorectal cancer patients
-
S. Eschrich, I. Yang, G. Bloom, K. Kwong, D. Boulware, A. Cantor, D. Coppola, M. Kruhoer, L. Aaltonen, T. Orntoft et al., Molecular staging for survival prediction of colorectal cancer patients, J. Clin. Oncol. 23(15) (2005) 5326.
-
(2005)
J. Clin. Oncol.
, vol.23
, Issue.15
, pp. 5326
-
-
Eschrich, S.1
Yang, I.2
Bloom, G.3
Kwong, K.4
Boulware, D.5
Cantor, A.6
Coppola, D.7
Kruhoer, M.8
Aaltonen, L.9
Orntoft, T.10
-
11
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Am. Stat. Assoc. 32(200) (1937) 675-701.
-
(1937)
J. Am. Stat. Assoc.
, vol.32
, Issue.200
, pp. 675-701
-
-
Friedman, M.1
-
12
-
-
84863393080
-
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
-
M. Gerlinger, A. J. Rowan, S. Horswell, J. Larkin, D. Endesfelder et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, New Engl. J. Med. 366 (2012) 883-892.
-
(2012)
New Engl. J. Med.
, vol.366
, pp. 883-892
-
-
Gerlinger, M.1
Rowan, A.J.2
Horswell, S.3
Larkin, J.4
Endesfelder, D.5
-
13
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri et al., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science 286(5439) (1999) 531.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531
-
-
Golub, T.1
Slonim, D.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.6
Coller, H.7
Loh, M.8
Downing, J.9
Caligiuri, M.10
-
14
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn. 46 (2002) 389-422. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
15
-
-
33745891586
-
-
Springer-Verlag, New York, Inc., Secaucus, NJ, USA
-
I. Guyon, S. Gunn, M. Nikravesh and L. Zadeh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) (Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2006).
-
(2006)
Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.4
-
16
-
-
0003074296
-
Support vector machines
-
M. Hearst, S. Dumais, E. Osman, J. Platt and B. Scholkopf, Support vector machines, IEEE Intell. Syst. 13(4) (1998) 18-28.
-
(1998)
IEEE Intell. Syst.
, vol.13
, Issue.4
, pp. 18-28
-
-
Hearst, M.1
Dumais, S.2
Osman, E.3
Platt, J.4
Scholkopf, B.5
-
17
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
doi:10.038/415530a
-
L. van't Veer, H. Dai, M. van de Vijver, Y. He, A. Hart, M. Mao, H. Peterse, K. van der Kooy, M. Marton, A. Witteveen, G. Schreiber, R. Kerkhoven, C. Roberts et al., Gene expression profiling predicts clinical outcome of breast cancer, Nature 415 (2002) 530-536; doi:10.038/415530a.
-
(2002)
Nature
, vol.415
, pp. 536
-
-
Van'T Veer, L.1
Dai, H.2
Van De Vijver M.Van3
He, Y.4
Hart, A.5
Mao, M.6
Peterse, H.7
Kooy Der K.Van8
Marton, M.9
Witteveen, A.10
Schreiber, G.11
Kerkhoven, R.12
Roberts, C.13
-
18
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6(2) (1979) 65-70.
-
(1979)
Scand. J. Stat.
, vol.6
, Issue.2
, pp. 65-70
-
-
Holm, S.1
-
19
-
-
3042532685
-
Filter versus wrapper gene selection approaches in DNA microarray domains
-
DOI 10.1016/j.artmed.2004.01.007, PII S0933365704000193
-
I. Inza, P. Larrañaga, R. Blanco and A. Cerrolaza, Filter versus wrapper gene selection approaches in DNA microarray domains, Artif. Intell. Med. 31(2) (2004) 91-103. (Pubitemid 38823034)
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, Issue.2
, pp. 91-103
-
-
Inza, I.1
Larranaga, P.2
Blanco, R.3
Cerrolaza, A.J.4
-
20
-
-
0037976550
-
Improved gene selection for classification of microarrays
-
J. Jäger, R. Sengupta and W. Ruzzo, Improved gene selection for classification of microarrays, Biocomputing 2003 (2003) 53.
-
(2003)
Biocomputing 2003
, vol.53
-
-
Jäger, J.1
Sengupta, R.2
Ruzzo, W.3
-
21
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G. John, Wrappers for feature subset selection, Artif. Intell. 97(1-2) (1997) 273-324. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
23
-
-
33746257613
-
Feature selection and ranking of key genes for tumor classification: Using microarray gene expression data
-
S. Mukkamala, Q. Liu, R. Veeraghattam and A. Sung, Feature selection and ranking of key genes for tumor classification: Using microarray gene expression data, Lect. Notes Comput. Sci. 4029 (2006) 951.
-
(2006)
Lect. Notes Comput. Sci.
, vol.4029
, pp. 951
-
-
Mukkamala, S.1
Liu, Q.2
Veeraghattam, R.3
Sung, A.4
-
25
-
-
33744957443
-
Microarray analysis and tumor classification
-
J. Quackenbush, Microarray analysis and tumor classification, New Engl. J. Med. 354(23) (2006) 2463.
-
(2006)
New Engl. J. Med.
, vol.354
, Issue.23
, pp. 2463
-
-
Quackenbush, J.1
-
26
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza and P. Larranaga, A review of feature selection techniques in bioinformatics, Bioinformatics 23(19) (2007) 2507.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
28
-
-
49149129916
-
Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study
-
K. Shedden, J. Taylor, S. Enkemann, M. Tsao, T. Yeatman, W. Gerald, S. Eschrich, I. Jurisica, T. Giordano, D. Misek et al., Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study, Nat. Med. 14(8) (2008) 822-827.
-
(2008)
Nat. Med.
, vol.14
, Issue.8
, pp. 822-827
-
-
Shedden, K.1
Taylor, J.2
Enkemann, S.3
Tsao, M.4
Yeatman, T.5
Gerald, W.6
Eschrich, S.7
Jurisica, I.8
Giordano, T.9
Misek, D.10
-
29
-
-
18244409933
-
Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
-
DOI 10.1038/nm0102-68
-
M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. Pinkus et al., Diuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning, Nat. Med. 8 (2002) 68-74. (Pubitemid 34101731)
-
(2002)
Nature Medicine
, vol.8
, Issue.1
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
Weng, A.P.4
Kutok, J.L.5
Aguiar, R.C.T.6
Gaasenbeek, M.7
Angelo, M.8
Reich, M.9
Pinkus, G.S.10
Ray, T.S.11
Koval, M.A.12
Last, K.W.13
Norton, A.14
Lister, T.A.15
Mesirov, J.16
Neuberg, D.S.17
Lander, E.S.18
Aster, J.C.19
Golub, T.R.20
more..
-
30
-
-
22244447065
-
Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy
-
DOI 10.1002/cncr.21157
-
A. Stephenson, A. Smith, M. Kattan, J. Satagopan, V. Reuter, P. Scardino and W. Gerald, Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy, Cancer 104(2) (2005) 290-298. (Pubitemid 40993255)
-
(2005)
Cancer
, vol.104
, Issue.2
, pp. 290-298
-
-
Stephenson, A.J.1
Smith, A.2
Kattan, M.W.3
Satagopan, J.4
Reuter, V.E.5
Scardino, P.T.6
Gerald, W.L.7
-
31
-
-
77955397866
-
Local learning based feature selection for high dimensional data analysis
-
doi:10.109/TPAMI.2009.190
-
Y. Sun, S. Todorovic and S. Goodison, Local learning based feature selection for high dimensional data analysis, IEEE Trans. Pattern Anal. Mach. Intell. 32(9) (2010) 1610-1626; doi:10.109/TPAMI.2009.190.
-
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.9
, pp. 1610-2010
-
-
Sun, Y.1
Todorovic, S.2
Goodison, S.3
-
33
-
-
12444320350
-
Gene selection from microarray data for cancer classification - A machine learning approach
-
DOI 10.1016/j.compbiolchem.2004.11.001, PII S1476927104001082
-
Y. Wang, I. Tetko, M. Hall, E. Frank, A. Facius, K. Mayer and H. Mewes, Gene selection from microarray data for cancer classification - a machine learning approach, Comput. Biol. Chem. 29 (2005) 37-46. (Pubitemid 40146365)
-
(2005)
Computational Biology and Chemistry
, vol.29
, Issue.1
, pp. 37-46
-
-
Wang, Y.1
Tetko, I.V.2
Hall, M.A.3
Frank, E.4
Facius, A.5
Mayer, K.F.X.6
Mewes, H.W.7
-
34
-
-
38849091390
-
Hybrid huberized support vector machines for microarray classification and gene selection
-
L. Wang, J. Zhu and H. Zou, Hybrid huberized support vector machines for microarray classification and gene selection, Bioinformatics 24(3) (2008) 412.
-
(2008)
Bioinformatics
, vol.24
, Issue.3
, pp. 412
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
35
-
-
34547983091
-
Hybrid huberized support vector machines for microarray classification
-
ACM New York, NY, USA
-
L. Wang, J. Zhu and H. Zou, Hybrid huberized support vector machines for microarray classification, in Proc. 24th Int. Conf. Machine Learning (ACM New York, NY, USA, 2007), pp. 983-990.
-
(2007)
Proc. 24th Int. Conf. Machine Learning
, pp. 983-990
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
36
-
-
33847646332
-
Wrapper-filter feature selection algorithm using a memetic framework
-
Z. Zhu, Y. Ong and M. Dash, Wrapper-filter feature selection algorithm using a memetic framework, IEEE Trans. Syst. Man Cybern. B Cybern. 37 (2007) 70.
-
(2007)
IEEE Trans. Syst. Man Cybern. B Cybern.
, vol.37
, pp. 70
-
-
Zhu, Z.1
Ong, Y.2
Dash, M.3
|