메뉴 건너뛰기




Volumn 45, Issue 2-3, 2009, Pages 151-162

Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors

Author keywords

Cancer classification; Ensemble of classifiers; Gene expression; k nearest neighbors; Pattern recognition

Indexed keywords

BIVARIATE; CANCER CLASSIFICATION; CLASSIFICATION ,; CLASSIFICATION ERRORS; CLASSIFICATION PERFORMANCE; DATA SETS; DEPENDENCE RELATIONS; ENSEMBLE CONSTRUCTIONS; ENSEMBLE MEMBERS; ENSEMBLE OF CLASSIFIERS; ENSEMBLES OF CLASSIFIERS; EXTENSIVE SIMULATIONS; K-NEAREST NEIGHBOR CLASSIFIERS; K-NEAREST NEIGHBORS; LOW COMPLEXITY; RESUBSTITUTION; SIX GENES; TEST DATUM;

EID: 61449159874     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.08.004     Document Type: Article
Times cited : (35)

References (38)
  • 1
    • 33645667224 scopus 로고    scopus 로고
    • Dougherty ER, Shmulevich I, Chen J, Wang ZJ, editors, Hindawi Publishing Corporation, New York, Cairo;
    • Dougherty ER, Shmulevich I, Chen J, Wang ZJ, editors. Genomic signal processing and statistics. Hindawi Publishing Corporation, New York, Cairo; 2005.
    • (2005) Genomic signal processing and statistics
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., and Mack D. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96 (1999) 6745-6750
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6
  • 3
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy S.L., Tamayo P., Gaasenbeek M., Sturla L.M., Angelo M., and McLaughlin M.E. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415 (2002) 436-442
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3    Sturla, L.M.4    Angelo, M.5    McLaughlin, M.E.6
  • 5
    • 3342964832 scopus 로고    scopus 로고
    • Classification in microarray experiments
    • Speed T. (Ed), Chapman & Hall/CRC Press, Boca Raton
    • Dudoit S., and Fridlyand J. Classification in microarray experiments. In: Speed T. (Ed). Statistical analysis of gene expression microarray data (2003), Chapman & Hall/CRC Press, Boca Raton 93-158
    • (2003) Statistical analysis of gene expression microarray data , pp. 93-158
    • Dudoit, S.1    Fridlyand, J.2
  • 11
    • 0038724544 scopus 로고    scopus 로고
    • Boosting and microarray data
    • Long P.M., and Vega V.B. Boosting and microarray data. Machine Learning 52 (2003) 31-44
    • (2003) Machine Learning , vol.52 , pp. 31-44
    • Long, P.M.1    Vega, V.B.2
  • 12
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan A.C., and Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics 2 (2003) 75-S83
    • (2003) Applied Bioinformatics , vol.2
    • Tan, A.C.1    Gilbert, D.2
  • 13
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R., and Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7 (2006) 3
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez de Andrés, S.2
  • 14
    • 0141686299 scopus 로고    scopus 로고
    • Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features
    • Cho S.-B., and Ryu J. Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features. Proceedings of the IEEE 90 (2002) 1744-1753
    • (2002) Proceedings of the IEEE , vol.90 , pp. 1744-1753
    • Cho, S.-B.1    Ryu, J.2
  • 16
    • 30344458742 scopus 로고    scopus 로고
    • The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming
    • Hong J.-H., and Cho S.-B. The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming. Artificial Intelligence in Medicine 36 (2006) 43-58
    • (2006) Artificial Intelligence in Medicine , vol.36 , pp. 43-58
    • Hong, J.-H.1    Cho, S.-B.2
  • 19
    • 61449211432 scopus 로고    scopus 로고
    • Combining nearest neighbor classifiers versus cross-validation selection, statistical applications in genetics and molecular biology 3:1
    • (available at http://www.bepress.com/sagmb/vol3/iss1///art12)
    • Paik M., and Yang Y. Combining nearest neighbor classifiers versus cross-validation selection, statistical applications in genetics and molecular biology 3:1. Article 12 (2004). http://www.bepress.com/sagmb/vol3/iss1///art12 (available at http://www.bepress.com/sagmb/vol3/iss1///art12)
    • (2004) Article , vol.12
    • Paik, M.1    Yang, Y.2
  • 20
    • 0036851381 scopus 로고    scopus 로고
    • Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
    • Valentini G. Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles. Artificial Intelligence in Medicine 26 (2002) 281-304
    • (2002) Artificial Intelligence in Medicine , vol.26 , pp. 281-304
    • Valentini, G.1
  • 21
    • 35548987823 scopus 로고    scopus 로고
    • Ensemble methods for classification of patients for personalized medicine with high-dimensional data
    • Moon H., Ahn H., Kodell R.L., Baek S., Lin C.-J., and Chen J.J. Ensemble methods for classification of patients for personalized medicine with high-dimensional data. Artificial Intelligence in Medicine 41 (2007) 197-207
    • (2007) Artificial Intelligence in Medicine , vol.41 , pp. 197-207
    • Moon, H.1    Ahn, H.2    Kodell, R.L.3    Baek, S.4    Lin, C.-J.5    Chen, J.J.6
  • 22
    • 4544250158 scopus 로고    scopus 로고
    • The 'subsequent artificial network' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses
    • Linder R., Dew D., Sudhoff H., Theegarten D., Remberger K., and Pöppl S.J. The 'subsequent artificial network' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses. Bioinformatics 20 (2004) 3544-3552
    • (2004) Bioinformatics , vol.20 , pp. 3544-3552
    • Linder, R.1    Dew, D.2    Sudhoff, H.3    Theegarten, D.4    Remberger, K.5    Pöppl, S.J.6
  • 23
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • [27 September]
    • Liu B., Cui Q., Jiang T., and Ma S. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 5 (2004) 136 [27 September]
    • (2004) BMC Bioinformatics , vol.5 , pp. 136
    • Liu, B.1    Cui, Q.2    Jiang, T.3    Ma, S.4
  • 24
    • 47649088110 scopus 로고    scopus 로고
    • Combining dissimilarity based classifiers for cancer prediction using gene expression profiles
    • [20 November]
    • Blanco A., Martín-Merino M., and De Las Rivas J. Combining dissimilarity based classifiers for cancer prediction using gene expression profiles. BMC Bioinformatics 8 Suppl 8 (2007) S3 [20 November]
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 8
    • Blanco, A.1    Martín-Merino, M.2    De Las Rivas, J.3
  • 25
    • 37249035939 scopus 로고    scopus 로고
    • Guide to the gene expression data
    • Berka P., and Crémilleux B. (Eds), Pisa, Italy
    • Gandrillon O. Guide to the gene expression data. In: Berka P., and Crémilleux B. (Eds). Proceedings of the ECML/PKDD discovery challenge workshop (2004), Pisa, Italy 116-120
    • (2004) Proceedings of the ECML/PKDD discovery challenge workshop , pp. 116-120
    • Gandrillon, O.1
  • 27
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • Bø T.H., and Jonassen I. New feature subset selection procedures for classification of expression profiles. Genome Biology 3 (2002) 0017.1-001711.001711
    • (2002) Genome Biology , vol.3
    • Bø, T.H.1    Jonassen, I.2
  • 28
    • 0000906108 scopus 로고
    • On nonparametric measures of dependence for random variables
    • Schweizer B., and Wolff E.F. On nonparametric measures of dependence for random variables. Annals of Statistics 9 (1981) 879-885
    • (1981) Annals of Statistics , vol.9 , pp. 879-885
    • Schweizer, B.1    Wolff, E.F.2
  • 29
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: is there a unique set?
    • Ein-Dor L., Kela I., Getz G., Givol D., and Domany E. Outcome signature genes in breast cancer: is there a unique set?. Bioinformatics 21 (2005) 171-178
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 30
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: a multiple random validation strategy
    • Michiels S., Koscielny S., and Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365 (2005) 488-492
    • (2005) Lancet , vol.365 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 31
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva L., and Whitaker C.J. Measures of diversity in classifier ensembles. Machine Learning 51 (2003) 181-207
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.J.2
  • 34
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature sets
    • Bay S. Nearest neighbor classification from multiple feature sets. Intelligent Data Analysis 3 (1999) 191-209
    • (1999) Intelligent Data Analysis , vol.3 , pp. 191-209
    • Bay, S.1
  • 38
    • 85130909127 scopus 로고    scopus 로고
    • Feature selection for genomic data analysis
    • Liu H., and Motoda H. (Eds), Chapman & Hall/CRC, Boca Raton
    • Yu L. Feature selection for genomic data analysis. In: Liu H., and Motoda H. (Eds). Computational methods of feature selection (2008), Chapman & Hall/CRC, Boca Raton 337-354
    • (2008) Computational methods of feature selection , pp. 337-354
    • Yu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.