메뉴 건너뛰기




Volumn , Issue , 2011, Pages 73-78

Feature selection of imbalanced gene expression microarray data

Author keywords

cost sensitive learning; feature selection; imbalanced data; random forest

Indexed keywords

COMPLEX DATASETS; COST-SENSITIVE LEARNING; DATA SETS; GENE EXPRESSION DATA; GENE EXPRESSION MICROARRAY; IMBALANCED DATA; OVERFITTING; RANDOM FOREST ALGORITHM; RANDOM FORESTS;

EID: 81255129326     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SNPD.2011.12     Document Type: Conference Paper
Times cited : (18)

References (12)
  • 1
    • 33747883187 scopus 로고    scopus 로고
    • Novel unsupervised feature filtering of biological data
    • DOI 10.1093/bioinformatics/btl214
    • Varshavsky R, et al. Novel unsupervised feature filtering of biological data. Bioinformatics 2006; 22:e507-e513. (Pubitemid 44288322)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Varshavsky, R.1    Gottlieb, A.2    Linial, M.3    Horn, D.4
  • 2
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Mach Learn Res. 2003; 3:1157-1182.
    • (2003) J. Mach Learn Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 4
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • Ben-Dor A, et al. Tissue classification with gene expression profiles. J. Comput. Biol. 2000; 7:559-584.
    • (2000) J. Comput. Biol. , vol.7 , pp. 559-584
    • Ben-Dor, A.1
  • 5
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • Jafari P, Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med. Inform. Decis. Mak. 2006; 6:27.
    • (2006) BMC Med. Inform. Decis. Mak. , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 6
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • Li L, et al. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001; 17:1131-1142 (Pubitemid 33735339)
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L., 2001. Random Forests. Machine Learn. 45, 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30, 195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.