메뉴 건너뛰기




Volumn 46, Issue 2, 2012, Pages 1034-1039

Hybridizing relieff, mRMR filters and GA wrapper approaches for gene selection

Author keywords

Gene selection; Genetic algorithm; Microarray datasets; mRMR; Relief

Indexed keywords

DATA REDUCTION; GENE EXPRESSION; REDUNDANCY;

EID: 84872010628     PISSN: 19928645     EISSN: 18173195     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (53)

References (19)
  • 1
    • 84855641536 scopus 로고    scopus 로고
    • Hybrid Filter-Wrapper with a Specialized Random Multi-Parent Crossover Operator for Gene Selection and Classification Problems
    • E. Bonilla-Huerta, et al., Hybrid Filter-Wrapper with a Specialized Random Multi-Parent Crossover Operator for Gene Selection and Classification Problems, Bio-Inspired Computing and Applications, pp. 453-461, 2012.
    • (2012) Bio-Inspired Computing and Applications , pp. 453-461
    • Bonilla-Huerta, E.1
  • 2
    • 34250896121 scopus 로고    scopus 로고
    • Markov blanket-embedded genetic algorithm for gene selection
    • Z. Zhu, Y. S. Ong, and M. Dash, Markov blanket-embedded genetic algorithm for gene selection, Pattern Recognition, vol. 40, pp. 3236-3248, 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 3236-3248
    • Zhu, Z.1    Ong, Y.S.2    Dash, M.3
  • 3
    • 78751648113 scopus 로고    scopus 로고
    • A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets
    • P. Bermejo, J. A. Gámez, and J. M. Puerta, A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets, Pattern Recognition Letters, vol. 32, pp. 701-711, 2011.
    • (2011) Pattern Recognition Letters , vol.32 , pp. 701-711
    • Bermejo, P.1    Gámez, J.A.2    Puerta, J.M.3
  • 4
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub, et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, science, vol. 286, pp. 531-537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 5
    • 79951514865 scopus 로고    scopus 로고
    • A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
    • A. El Akadi, et al., A two-stage gene selection scheme utilizing MRMR filter and GA wrapper, Knowledge and Information Systems, vol. 26, pp. 487-500, 2011.
    • (2011) Knowledge and Information Systems , vol.26 , pp. 487-500
    • El Akadi, A.1
  • 6
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga, A review of feature selection techniques in bioinformatics, Bioinformatics, vol. 23, pp. 2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 7
    • 70350705845 scopus 로고    scopus 로고
    • ACO-based hybrid classification system with feature subset selection and model parameters optimization
    • C. L. Huang, ACO-based hybrid classification system with feature subset selection and model parameters optimization, Neurocomputing, vol. 73, pp. 438-448, 2009.
    • (2009) Neurocomputing , vol.73 , pp. 438-448
    • Huang, C.L.1
  • 8
    • 33845497491 scopus 로고    scopus 로고
    • Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier
    • M. A. Tahir, A. Bouridane, and F. Kurugollu, Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier, Pattern Recognition Letters, vol. 28, pp. 438-446, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 438-446
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3
  • 9
    • 36148950145 scopus 로고    scopus 로고
    • A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks
    • S. W. Lin, et al., A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks, Expert Systems with Applications, vol. 34, pp. 1491-1499, 2008.
    • (2008) Expert Systems With Applications , vol.34 , pp. 1491-1499
    • Lin, S.W.1
  • 10
  • 11
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Šikonja and I. Kononenko, Theoretical and empirical analysis of ReliefF and RReliefF, Machine learning, vol. 53, pp. 23-69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 15
    • 0034974417 scopus 로고    scopus 로고
    • A New Heuristic Optimization Algorithm: Harmony Search
    • Z. W. Geem, J. H. Kim, and G. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search, SIMULATION, vol. 76, pp. 60-68, 2001.
    • (2001) SIMULATION , vol.76 , pp. 60-68
    • Geem, Z.W.1    Kim, J.H.2    Loganathan, G.3
  • 17
    • 38049153795 scopus 로고    scopus 로고
    • An effective gene selection method based on relevance analysis and discernibility matrix
    • L. J. Zhang, Z. J. Li, and H. W. Chen, An effective gene selection method based on relevance analysis and discernibility matrix, Advances in Knowledge Discovery and Data Mining, pp. 1088-1095, 2007.
    • (2007) Advances In Knowledge Discovery and Data Mining , pp. 1088-1095
    • Zhang, L.J.1    Li, Z.J.2    Chen, H.W.3
  • 18
    • 34648835330 scopus 로고    scopus 로고
    • Classification consistency analysis for bootstrapping gene selection
    • S. Pang, et al., Classification consistency analysis for bootstrapping gene selection, Neural Computing & Applications, vol. 16, pp. 527-539, 2007.
    • (2007) Neural Computing & Applications , vol.16 , pp. 527-539
    • Pang, S.1
  • 19
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • B. Liu, et al., A combinational feature selection and ensemble neural network method for classification of gene expression data, BMC bioinformatics, vol. 5, p. 136, 2004.
    • (2004) BMC Bioinformatics , vol.5 , pp. 136
    • Liu, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.