메뉴 건너뛰기




Volumn 12, Issue 1 SPEC., 2002, Pages 25-33

Gene selection by sequential search wrapper approaches in microarray cancer class prediction

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA REDUCTION; DNA; GENES; REAL TIME SYSTEMS; SEARCH ENGINES; TUMORS;

EID: 0036450130     PISSN: 10641246     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (75)

References (35)
  • 3
    • 84954431348 scopus 로고    scopus 로고
    • Selection of informative genes in gene expression based diagnosis: A nonparametric approach
    • Lecture Notes in Computer Sciences. R. Brause and E. Hanisch, eds, ISMDA2000, Springer-Verlag
    • M. Beibel, Selection of Informative Genes in Gene Expression Based Diagnosis: A Nonparametric Approach, in: Lecture Notes in Computer Sciences. Proceedings of the First International Symposium in Medical Data Analysis, (Vol. 1933), R. Brause and E. Hanisch, eds, ISMDA2000, Springer-Verlag, 2000, pp. 300-307.
    • (2000) Proceedings of the First International Symposium in Medical Data Analysis , vol.1933 , pp. 300-307
    • Beibel, M.1
  • 5
    • 0011989565 scopus 로고    scopus 로고
    • Selection of highly accurate genes for cancer classification by estimation of distribution algorithms
    • Workshop of Bayesian Models in Medicine
    • R. Blanco, P. Larrañaga, I. Inza and B. Sierra, Selection of highly accurate genes for cancer classification by Estimation of Distribution Algorithms, in: Workshop of Bayesian Models in Medicine, AIME 2001, 2001, pp. 29-34.
    • (2001) AIME 2001 , pp. 29-34
    • Blanco, R.1    Larrañaga, P.2    Inza, I.3    Sierra, B.4
  • 8
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Nibblet, The CN2 induction algorithm, Machine Learning 3(4) (1989), 261-283.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Nibblet, T.2
  • 9
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised learning algorithms
    • T.G. Dietterich, Approximate statistical tests for comparing supervised learning algorithms, Neural Computation 10(7) (1998), 1895-1924.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 11
    • 0003552733 scopus 로고
    • An evaluation of feature selection methods and their application to computer security
    • University of California at Davis
    • J. Doak, An evaluation of feature selection methods and their application to computer security, Technical Report CSE-92-18, University of California at Davis, 1992.
    • (1992) Technical Report CSE-92-18
    • Doak, J.1
  • 16
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by bayesian network-based optimization
    • I. Inza, P. Larra naga, R. Etxeberria, and B. Sierra, Feature Subset Selection by Bayesian network-based optimization, Artificial Intelligence 123(1-2) (2000), 157-184.
    • (2000) Artificial Intelligence , vol.123 , Issue.1-2 , pp. 157-184
    • Inza, I.1    Larra Naga, P.2    Etxeberria, R.3    Sierra, B.4
  • 17
    • 0034806755 scopus 로고    scopus 로고
    • Feature subset selection by genetic algorithms and estimation of distribution algorithms
    • A case study in the survival of cirrhotic patients treated with TIPS
    • I. Inza, M. Merino, P. Larra naga, J. Quiroga, B. Sierra and M. Girala, Feature Subset Selection by Genetic Algorithms and Estimation of Distribution Algorithms. A case study in the survival of cirrhotic patients treated with TIPS, Artificial Intelligence in Medicine 23(2) (2001), 187-205.
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.2 , pp. 187-205
    • Inza, I.1    Merino, M.2    Larra Naga, P.3    Quiroga, J.4    Sierra, B.5    Girala, M.6
  • 18
    • 0002774069 scopus 로고
    • Feature set search algorithms
    • C.H. Chen, ed., Sithoff and Noordhoff
    • J. Kittler, Feature set search algorithms, in: Pattern Recognition and Signal Processing, C.H. Chen, ed., Sithoff and Noordhoff, 1978, pp. 41-60.
    • (1978) Pattern Recognition and Signal Processing , pp. 41-60
    • Kittler, J.1
  • 19
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • N. Lavrac and S. Wrobel, eds
    • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proceedings of the International Joint Conference on Artificial Intelligence, N. Lavrac and S. Wrobel, eds, 1995.
    • (1995) Proceedings of the International Joint Conference on Artificial Intelligence
    • Kohavi, R.1
  • 21
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John, Wrappers for feature subset selection, Artificial Intelligence 97(1-2) (1997), 273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.