메뉴 건너뛰기




Volumn 8, Issue 4, 2011, Pages 1080-1092

Robust feature selection for microarray data based on multicriterion fusion

Author keywords

classification.; Feature selection; multicriterion fusion; recursive feature elimination; robustness

Indexed keywords

CLASSIFICATION.; FEATURE SELECTION; MULTICRITERION FUSION; RECURSIVE FEATURE ELIMINATION; ROBUSTNESS;

EID: 79957606714     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2010.103     Document Type: Article
Times cited : (131)

References (45)
  • 3
    • 34248330399 scopus 로고    scopus 로고
    • A blocking strategy to improve gene selection for classification of gene expression data
    • DOI 10.1109/TCBB.2007.1014
    • G. Bontempi, "A Blocking Strategy to Improve Gene Selection for Classification of Gene Expression Data," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 2, pp. 293- 300, Apr. 2007. (Pubitemid 46733332)
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.2 , pp. 293-300
    • Bontempi, G.1
  • 4
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • A.P. Bradley, "The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms," Pattern Recognition, vol. 30, no. 7, pp. 1145-1159, 1997. (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 5
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • DOI 10.1093/bioinformatics/btg419
    • U. Braga-Neto and E.R. Dougherty, "Is Cross-Validation Valid for Small-Sample Microarray Classification?" Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004. (Pubitemid 38262769)
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 7
    • 45449112561 scopus 로고    scopus 로고
    • The peaking phenomenon in the presence of feature-selection
    • S.M. Chao and E.R. Dougherty, "The Peaking Phenomenon in the Presence of Feature-Selection," Pattern Recoginition Letters, vol. 29, no. 11, pp. 1667-1674, 2008.
    • (2008) Pattern Recoginition Letters , vol.29 , Issue.11 , pp. 1667-1674
    • Chao, S.M.1    Dougherty, E.R.2
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • Sept.
    • C. Cortes and V. Vapnik, "Support-Vector Networks," Machine Learning, vol. 20, no. 3, pp. 273-297, Sept. 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • T.G. Dietterich, "Machine Learning Research: Four Current Directions," Artificial Intelligence Magazine, vol. 18, no. 4, pp. 97- 136, 1997. (Pubitemid 127684659)
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 13
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Oct.
    • T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler, "Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data," Bioinformatics, vol. 16, no. 10, pp. 906-914, Oct. 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Oct.
    • T. Golub et al., "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol. 286, no. 5439, pp. 531-537, Oct. 1999.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.1
  • 16
    • 79957599763 scopus 로고    scopus 로고
    • I. Guyon, http://www.clopinet.com/isabelle/Projects/ NIPS2001/, 2009.
    • (2009)
    • Guyon, I.1
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning, vol. 46, nos. 1-3, pp. 389-422, Jan. 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol. 3, pp. 1157- 1182, Mar. 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 20
    • 17444420350 scopus 로고    scopus 로고
    • Comparing rank and score combination methods for data fusion in information retrieval
    • DOI 10.1007/s10791-005-6994-4
    • D.F. Hsu and T. Isak, "Comparing Rank and Score Combination Methods for Data Fusion in Information Retrieval," Information Retrieval, vol. 8, no. 3, pp. 449-480, Jan. 2005. (Pubitemid 40550482)
    • (2005) Information Retrieval , vol.8 , Issue.3 , pp. 449-480
    • Hsu, D.F.1    Taksa, I.2
  • 21
    • 17544364191 scopus 로고    scopus 로고
    • Optimal number of features as a function of sample size for various classification rules
    • DOI 10.1093/bioinformatics/bti171
    • J. Hua, Z.X. Xiong, J. Lowey, E. Suh, and E.R. Dougherty, "Optimal Number of Features as a Function of Sample Size for Various Classification Rules," Bioinformatics, vol. 21, no. 8, pp. 1509-1515, 2005. (Pubitemid 40552752)
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1509-1515
    • Hua, J.1    Xiong, Z.2    Lowey, J.3    Suh, E.4    Dougherty, E.R.5
  • 22
    • 34547986205 scopus 로고    scopus 로고
    • Effective gene selection method with small sample sets using gradient-based and point injection techniques
    • DOI 10.1109/TCBB.2007.1021
    • D. Huang and T.W.S. Chow, "Effective Gene Selection Method with Small Sample Sets Using Gradient-Based and Point Injection Techniques," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 467-475, July-Sept. 2007. (Pubitemid 47274722)
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 467-475
    • Huang, D.1    Chow, T.W.S.2
  • 23
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high-dimensional spaces
    • May
    • A. Kalousis, J. Prados, and M. Hilario, "Stability of Feature Selection Algorithms: A Study on High-Dimensional Spaces," Knowledge and Information Systems, vol. 12, no. 1, pp. 95-116, May 2007.
    • (2007) Knowledge and Information Systems , vol.12 , Issue.1 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 24
    • 26444568645 scopus 로고    scopus 로고
    • Dynamic classifier integration method
    • Multiple Classifier Systems: 6th International Workshop, MCS 2005. Proceedings
    • E. Kim and J. Ko, "Dynamic Classifier Integration Method," Proc. Int'l Workshop Multiple Classifier Systems (MCS '05), pp. 97-107, 2005. (Pubitemid 41422608)
    • (2005) Lecture Notes in Computer Science , vol.3541 , pp. 97-107
    • Kim, E.1    Ko, J.2
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Dec.
    • R. Kohavi and G.H. John, "Wrapper for Feature Subset Selection," Artificial Intelligence, vol. 97, nos. 1-2, pp. 273-324, Dec. 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 28
    • 76849096874 scopus 로고    scopus 로고
    • A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification
    • Jan.-Mar.
    • Y. Leung and Y. Hung, "A Multiple-Filter-Multiple-Wrapper Approach to Gene Selection and Microarray Data Classification," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 7, no. 1, pp. 108-117, Jan.-Mar. 2010.
    • (2010) IEEE/ACM Trans. Computational Biology and Bioinformatics , vol.7 , Issue.1 , pp. 108-117
    • Leung, Y.1    Hung, Y.2
  • 31
    • 79957597895 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumor outcome based on gene expression
    • S.L. Pomeroy et al., "Prediction of Central Nervous System Embryonal Tumor Outcome Based on Gene Expression," Nature, vol. 415, pp. 265-271, 2002.
    • (2002) Nature , vol.415 , pp. 265-271
    • Pomeroy, S.L.1
  • 32
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • M. Robnik-Sikonja and I. Kononenko, "Theoretical and Empirical Analysis of ReliefF and RReliefF," Machine Learning, vol. 53, pp. 23-69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 33
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y. Saeys, I. Inza, and P. Larranaga, "A Review of Feature Selection Techniques in Bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 36
    • 0032044157 scopus 로고    scopus 로고
    • Information theoretic subset selection for neural network models
    • PII S0098135497002275
    • D.V. Shridhar, E.B. Bartlett, and R.C. Seagrave, "Information Theoretic Subset Selection for Neural Network Models," Computers and Chemical Eng., vol. 22, nos. 4-5, pp. 613-626, 1998. (Pubitemid 128714161)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 613-626
    • Sridhar, D.V.1    Bartlett, E.B.2    Seagrave, R.C.3
  • 39
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
    • DOI 10.1109/TCBB.2007.1028
    • Y.C. Tang, Y.Q. Zhang, and Z. Huang, "Development of Two- Stage SVM-RFE Gene Selection Strategy for Microarray Expression Data Analysis," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 365-381, July-Sept. 2007. (Pubitemid 47274713)
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Zhang, Y.-Q.2    Huang, Z.3
  • 43
    • 79957617697 scopus 로고    scopus 로고
    • Wikipedia. http://en.wikipedia.org/wiki/Borda-count, 2009.
    • (2009)
  • 45
    • 33749820670 scopus 로고    scopus 로고
    • The ties problem resulting from counting-based error estimators and its impact on gene selection algorithms
    • DOI 10.1093/bioinformatics/btl438
    • X. Zhou and K.Z. Mao, "The Ties Problem Resulting from Counting-Based Error Estimators and Its Impact on Gene Selection Algorithms," Bioinformatics, vol. 22, no. 20, pp. 2507- 2515, 2006. (Pubitemid 44560757)
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2507-2515
    • Zhou, X.1    Mao, K.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.