메뉴 건너뛰기




Volumn 5, Issue 2, 2011, Pages 189-208

Improving accuracy of microarray classification by a simple multi-task feature selection filter

Author keywords

Bioinformatics; Feature filter; Microarray classification; Multi task learning; Transfer learning

Indexed keywords


EID: 79953212965     PISSN: 17485673     EISSN: 17485681     Source Type: Journal    
DOI: 10.1504/IJDMB.2011.039177     Document Type: Article
Times cited : (27)

References (29)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R. and Zhang, T. (2005) 'A framework for learning predictive structures from multiple tasks and unlabeled data', Journal of Machine Learning Research, Vol. 6, pp.1817-1853.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou, A., Evgeniou, T. and Pontil, M. (2008) 'Convex multi-task feature learning', Machine Learning, Vol. 73, No. 3, pp.243-272.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 5
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • Caruana, R. (1997) 'Multitask learning', Machine Learning, Vol. 28, pp.41-75. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 6
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
    • DOI 10.1093/bioinformatics/btl386
    • Cawley, G.C. and Talbot, N.L.C. (2006) 'Gene selection in cancer classification using sparse logistic regression with Bayesian regularization', Bioinformatics, Vol. 22, No. 19, pp.2348-2355. (Pubitemid 44566963)
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2348-2355
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 8
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002) 'Gene selection for cancer classification using support vector machines', Machine Learning, Vol. 46, pp.389-422. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • DOI 10.1093/bioinformatics/btn081
    • Li, C. and Li, H. (2008) 'Network-constrained regularization and variable selection for analysis of genomic data', Bioinformatics, Vol. 24, pp.1175-1182. (Pubitemid 351594167)
    • (2008) Bioinformatics , vol.24 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 18
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • Obozinski, G., Taskar, B. and Jordan. M. (2010) 'Joint covariate selection and joint subspace selection for multiple classification problems', Statistics and Computing, Vol. 20, No. 2, pp.231-252.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan., M.3
  • 23
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • DOI 10.1093/bioinformatics/bti033
    • Statnikov, A., Aliferis, C., Tsamardinos, I., Hardin, D. and Levy, S. (2005) 'A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis', Bioinformatics, Vol. 21, pp.631-643. (Pubitemid 40424789)
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 24
    • 34547887978 scopus 로고    scopus 로고
    • Incorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms
    • DOI 10.1093/bioinformatics/btm234
    • Tai, F. and Pan, W. (2007) 'Incorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms', Bioinformatics, Vol. 23, pp.1775-1782. (Pubitemid 47250310)
    • (2007) Bioinformatics , vol.23 , Issue.14 , pp. 1775-1782
    • Tai, F.1    Pan, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.