메뉴 건너뛰기




Volumn 25, Issue 1, 2013, Pages 1-14

A fast clustering-based feature subset selection algorithm for high-dimensional data

Author keywords

feature clustering; Feature subset selection; filter method; graph based clustering

Indexed keywords

CLUSTERING METHODS; EMPIRICAL STUDIES; FAST ALGORITHMS; FEATURE CLUSTERING; FEATURE SELECTION ALGORITHM; FEATURE SUBSET SELECTION; FILTER METHOD; GRAPH-BASED CLUSTERING; GRAPH-THEORETIC CLUSTERING; HIGH DIMENSIONAL DATA; HIGH PROBABILITY; HIGH-DIMENSIONAL IMAGES; NAIVE BAYES; RELIEFF; RULE BASED; TARGET CLASS; TEXT DATA; TREE-BASED;

EID: 84870441851     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2011.181     Document Type: Article
Times cited : (528)

References (76)
  • 2
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T.G. Dietterich, "Learning Boolean Concepts in the Presence of Many Irrelevant Features," Artificial Intelligence, vol. 69, nos. 1/2, pp. 279-305, 1994.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 5
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • July
    • R. Battiti, "Using Mutual Information for Selecting Features in Supervised Neural Net Learning," IEEE Trans. Neural Networks, vol. 5, no. 4, pp. 537-550, July 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 6
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • D.A. Bell and H. Wang, "A Formalism for Relevance and Its Application in Feature Subset Selection," Machine Learning, vol. 41, no. 2, pp. 175-195, 2000.
    • (2000) Machine Learning , vol.41 , Issue.2 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 7
    • 61349133540 scopus 로고    scopus 로고
    • Features election for high-dimensional data a pearson redundancy based filter
    • J. Biesiada and W. Duch, "Features Election for High-Dimensional data a Pearson Redundancy Based Filter," Advances in Soft Computing, vol. 45, pp. 242-249, 2008.
    • (2008) Advances in Soft Computing , vol.45 , pp. 242-249
    • Biesiada, J.1    Duch, W.2
  • 9
    • 33845629152 scopus 로고
    • Using decision trees to improve case-based learning
    • C. Cardie, "Using Decision Trees to Improve Case-Based Learning," Proc. 10th Int'l Conf. Machine Learning, pp. 25-32, 1993.
    • (1993) Proc. 10th Int'l Conf. Machine Learning , pp. 25-32
    • Cardie, C.1
  • 11
    • 71049172047 scopus 로고    scopus 로고
    • ReliefMSS: A variation on a feature ranking relieff algorithm
    • S. Chikhi and S. Benhammada, "ReliefMSS: A Variation on a Feature Ranking Relieff Algorithm," Int'l J. Business Intelligence and Data Mining, vol. 4, nos. 3/4, pp. 375-390, 2009.
    • (2009) Int'l J. Business Intelligence and Data Mining , vol.4 , Issue.3-4 , pp. 375-390
    • Chikhi, S.1    Benhammada, S.2
  • 13
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, "Feature Selection for Classification," Intelligent Data Analysis, vol. 1, no. 3, pp. 131-156, 1997.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 15
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid for feature selection
    • S. Das, "Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection," Proc. 18th Int'l Conf. Machine Learning, pp. 74- 81, 2001.
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 74-81
    • Das, S.1
  • 16
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu, "Consistency-Based Search in Feature Selection," Artificial Intelligence, vol. 151, nos. 1/2, pp. 155-176, 2003.
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 17
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, "Statistical Comparison of Classifiers over Multiple Data Sets," J. Machine Learning Res., vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 18
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information theoretic feature clustering algorithm for text classification
    • I.S. Dhillon, S. Mallela, and R. Kumar, "A Divisive Information Theoretic Feature Clustering Algorithm for Text Classification," J. Machine Learning Research, vol. 3, pp. 1265-1287, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 19
    • 0035076190 scopus 로고    scopus 로고
    • Small sample issues for microarray-based classification
    • DOI 10.1002/cfg.62
    • E.R. Dougherty, "Small Sample Issues for Microarray-Based Classification," Comparative and Functional Genomics, vol. 2, no. 1, pp. 28-34, 2001. (Pubitemid 32236919)
    • (2001) Comparative and Functional Genomics , vol.2 , Issue.1 , pp. 28-34
    • Dougherty, E.R.1
  • 20
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U. Fayyad and K. Irani, "Multi-Interval Discretization of Continuous- Valued Attributes for Classification Learning," Proc. 13th Int'l Joint Conf. Artificial Intelligence, pp. 1022-1027, 1993.
    • (1993) Proc. 13th Int'l Joint Conf. Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 22
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret, "Fast Binary Feature Selection with Conditional Mutual Information," J. Machine Learning Research, vol. 5, pp. 1531-1555, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 23
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman, "An Extensive Empirical Study of Feature Selection Metrics for Text Classification," J. Machine Learning Research, vol. 3, pp. 1289-1305, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 24
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m ranking
    • M. Friedman, "A Comparison of Alternative Tests of Significance for the Problem of m Ranking," Annals of Math. Statistics, vol. 11, pp. 86-92, 1940.
    • (1940) Annals of Math. Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 25
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. Garcia and F. Herrera, "An Extension on Statistical Comparisons of Classifiers over Multiple Data Sets for All Pairwise Comparisons," J. Machine Learning Res., vol. 9, pp. 2677-2694, 2008.
    • (2008) J. Machine Learning Res. , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 28
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol 3, pp. 1157- 1182, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 31
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M.A. Hall, "Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning," Proc. 17th Int'l Conf. Machine Learning, pp. 359-366, 2000.
    • (2000) Proc. 17th Int'l Conf. Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 32
    • 0026924875 scopus 로고
    • Relative neighborhood graphs and their relatives
    • Sept.
    • J.W. Jaromczyk and G.T. Toussaint, "Relative Neighborhood Graphs and Their Relatives," Proc. IEEE, vol. 80, no. 9, pp. 1502- 1517, Sept. 1992.
    • (1992) Proc. IEEE , vol.80 , Issue.9 , pp. 1502-1517
    • Jaromczyk, J.W.1    Toussaint, G.T.2
  • 35
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G.H. John, "Wrappers for Feature Subset Selection," Artificial Intelligence, vol. 97, nos. 1/2, pp. 273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 37
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • I. Kononenko, "Estimating Attributes: Analysis and Extensions of RELIEF," Proc. European Conf. Machine Learning, pp. 171-182, 1994.
    • (1994) Proc. European Conf. Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 39
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • P. Langley, "Selection of Relevant Features in Machine Learning," Proc. AAAI Fall Symp. Relevance, pp. 1-5, 1994.
    • (1994) Proc. AAAI Fall Symp. Relevance , pp. 1-5
    • Langley, P.1
  • 41
    • 0035336996 scopus 로고    scopus 로고
    • Information-theoretic algorithm for feature selection
    • DOI 10.1016/S0167-8655(01)00019-8, PII S0167865501000198
    • M. Last, A. Kandel, and O. Maimon, "Information-Theoretic Algorithm for Feature Selection," Pattern Recognition Letters, vol. 22, nos. 6/7, pp. 799-811, 2001. (Pubitemid 32411936)
    • (2001) Pattern Recognition Letters , vol.22 , Issue.6-7 , pp. 799-811
    • Last, M.1    Kandel, A.2    Maimon, O.3
  • 42
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection: A filter solution
    • H. Liu and R. Setiono, "A Probabilistic Approach to Feature Selection: A Filter Solution," Proc. 13th Int'l Conf. Machine Learning, pp. 319-327, 1996.
    • (1996) Proc. 13th Int'l Conf. Machine Learning , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 43
    • 4644347255 scopus 로고    scopus 로고
    • Selective sampling approach to active feature selection
    • H. Liu, H. Motoda, and L. Yu, "Selective Sampling Approach to Active Feature Selection," Artificial Intelligence, vol. 159, nos. 1/2, pp. 49-74, 2004.
    • (2004) Artificial Intelligence , vol.159 , Issue.1-2 , pp. 49-74
    • Liu, H.1    Motoda, H.2    Yu, L.3
  • 44
    • 0000531852 scopus 로고
    • Generalization as search
    • T.M. Mitchell, "Generalization as Search," Artificial Intelligence, vol. 18, no. 2, pp. 203-226, 1982.
    • (1982) Artificial Intelligence , vol.18 , Issue.2 , pp. 203-226
    • Mitchell, T.M.1
  • 48
    • 0002839037 scopus 로고
    • The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation
    • D. Newman, "The Distribution of Range in Samples from a Normal Population, Expressed in Terms of an Independent Estimate of Standard Deviation," Biometrika, vol. 31, pp. 20-30, 1939.
    • (1939) Biometrika , vol.31 , pp. 20-30
    • Newman, D.1
  • 49
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • A.Y. Ng, "On Feature Selection: Learning with Exponentially Many Irrelevant Features as Training Examples," Proc. 15th Int'l Conf. Machine Learning, pp. 404-412, 1998.
    • (1998) Proc. 15th Int'l Conf. Machine Learning , pp. 404-412
    • Ng, A.Y.1
  • 54
    • 84911584312 scopus 로고
    • Shortest connection networks and some generalizations
    • R.C. Prim, "Shortest Connection Networks and Some Generalizations," Bell System Technical J., vol. 36, pp. 1389-1401, 1957.
    • (1957) Bell System Technical J. , vol.36 , pp. 1389-1401
    • Prim, R.C.1
  • 56
    • 0346545485 scopus 로고    scopus 로고
    • Instance-based filter for feature selection
    • B. Raman and T.R. Ioerger, "Instance-Based Filter for Feature Selection," J. Machine Learning Research, vol. 1, pp. 1-23, 2002.
    • (2002) J. Machine Learning Research , vol.1 , pp. 1-23
    • Raman, B.1    Ioerger, T.R.2
  • 57
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relief and relieff
    • M. Robnik-Sikonja and I. Kononenko, "Theoretical and Empirical Analysis of Relief and ReliefF," Machine Learning, vol. 53, pp. 23- 69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 59
    • 0342973522 scopus 로고    scopus 로고
    • Feature selection by means of a feature weighting approach
    • Institut fur Informatik, Technische Universitat Munchen
    • M. Scherf and W. Brauer, "Feature Selection by Means of a Feature Weighting Approach," Technical Report FKI-221-97, Institut fur Informatik, Technische Universitat Munchen, 1997.
    • (1997) Technical Report FKI-221-97
    • Scherf, M.1    Brauer, W.2
  • 60
    • 85152626023 scopus 로고
    • Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
    • J.C. Schlimmer, "Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning," Proc. 10th Int'l Conf. Machine Learning, pp. 284-290, 1993.
    • (1993) Proc. 10th Int'l Conf. Machine Learning , pp. 284-290
    • Schlimmer, J.C.1
  • 64
    • 36348985845 scopus 로고    scopus 로고
    • Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis
    • G. Van Dijck and M.M. Van Hulle, "Speeding Up the Wrapper Feature Subset Selection in Regression by Mutual Information Relevance and Redundancy Analysis," Proc. Int'l Conf. Artificial Neural Networks, 2006.
    • (2006) Proc. Int'l Conf. Artificial Neural Networks
    • Van Dijck, G.1    Van Hulle, M.M.2
  • 65
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • G.I. Webb, "Multiboosting: A Technique for Combining Boosting and Wagging," Machine Learning, vol. 40, no. 2, pp. 159-196, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 67
    • 28444459910 scopus 로고    scopus 로고
    • A hybrid feature selection strategy for image defining features: Towards interpretation of optic nerve images
    • 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005
    • J. Yu, S.S.R. Abidi, and P.H. Artes, "A Hybrid Feature Selection Strategy for Image Defining Features: Towards Interpretation of Optic Nerve Images," Proc. Int'l Conf. Machine Learning and Cybernetics, vol. 8, pp. 5127-5132, 2005. (Pubitemid 41734822)
    • (2005) 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005 , pp. 5127-5132
    • Yu, J.1    Abidi, S.S.R.2    Artes, P.H.3
  • 68
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • L. Yu and H. Liu, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution," Proc. 20th Int'l Conf. Machine Leaning, vol. 20, no. 2, pp. 856-863, 2003.
    • (2003) Proc. 20th Int'l Conf. Machine Leaning , vol.20 , Issue.2 , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 71
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu, "Efficient Feature Selection via Analysis of Relevance and Redundancy," J. Machine Learning Research, vol. 10, no. 5, pp. 1205-1224, 2004.
    • (2004) J. Machine Learning Research , vol.10 , Issue.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 73
    • 65449184542 scopus 로고    scopus 로고
    • Searching for interacting features in subset selection
    • Z. Zhao and H. Liu, "Searching for Interacting Features in Subset Selection," J. Intelligent Data Analysis, vol. 13, no. 2, pp. 207-228, 2009.
    • (2009) J. Intelligent Data Analysis , vol.13 , Issue.2 , pp. 207-228
    • Zhao, Z.1    Liu, H.2
  • 74
    • 0002593344 scopus 로고
    • Irani: Multi-interval discretization of continuousvalued attributes for classification learning
    • M.F. Usama and B. Keki, "Irani: Multi-Interval Discretization of Continuousvalued Attributes for Classification Learning," Proc. 13th Int'l Joint Conf. Artificial Intelligence, pp. 1022-1027, 1993.
    • (1993) Proc. 13th Int'l Joint Conf. Artificial Intelligence , pp. 1022-1027
    • Usama, M.F.1    Keki, B.2
  • 75
    • 0001884644 scopus 로고
    • Individual comparison by ranking methods
    • F. Wilcoxon, "Individual Comparison by Ranking Methods," Biometrics, vol. 1, pp. 80-83, 1945.
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 76
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, "Statistical Comparison of Classifiers over Multiple Data Sets," J. Machine Learning Res., vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.