-
3
-
-
33646383088
-
Dimension reduction for classification with gene expression microarray data
-
Dai J, Lieu L, Rocke D. Dimension reduction for classification with gene expression microarray data. Stat Appl Genet Mol Biol 2006;5 6.
-
(2006)
Stat Appl Genet Mol Biol
, vol.5
, pp. 6
-
-
Dai, J.1
Lieu, L.2
Rocke, D.3
-
4
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-82.
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
5
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;19: 2507-17.
-
(2007)
Bioinformatics
, vol.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
7
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002;18 39-50.
-
(2002)
Bioinformatics
, vol.18
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
8
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A, Langley P. Selection of relevant features and examples in machine learning. Artif Intell 1997;97:245-71.
-
(1997)
Artif Intell
, vol.97
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
9
-
-
27744565003
-
Classification and selection and biomarkers in genomic data using Lasso
-
Ghosh D, Chinnaiyan AM. Classification and selection and biomarkers in genomic data using Lasso. J Biomed Biotechnol 2005;2:147-54.
-
(2005)
J Biomed Biotechnol
, vol.2
, pp. 147-154
-
-
Ghosh, D.1
Chinnaiyan, A.M.2
-
10
-
-
30344438839
-
Gene selection using support vector machines with non-convex penalty
-
Zhang H, Ahn J, Lin X, et al. Gene selection using support vector machines with non-convex penalty. Bioinformatics 2006;22 88-95.
-
(2006)
Bioinformatics
, vol.22
, pp. 88-95
-
-
Zhang, H.1
Ahn, J.2
Lin, X.3
-
11
-
-
33847007697
-
Sparse logistic regression with Lp penalty for biomarker identification
-
Liu Z, Jiang F, Tian G, et al. Sparse logistic regression with Lp penalty for biomarker identification. Stat Appl Genet Mol Biol 2007;6:6.
-
(2007)
Stat Appl Genet Mol Biol
, vol.6
, pp. 6
-
-
Liu, Z.1
Jiang, F.2
Tian, G.3
-
12
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub TR, Slonim DK, Tamayo, P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999;286:531-7.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
13
-
-
0035949684
-
Predicting the clinical status of human breast cancer by using gene expression profiles
-
West M, Blanchette C, Dressmna H, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 2001;98: 11462-67.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 11462-11467
-
-
West, M.1
Blanchette, C.2
Dressmna, H.3
-
14
-
-
3543081720
-
A simple epigenetic method for the diagnosis and classification of brain tumors
-
Zukiel R, Nowak S, Barciszewska A, et al. A simple epigenetic method for the diagnosis and classification of brain tumors. Mol Cancer Res 2004;2:196-202.
-
(2004)
Mol Cancer Res
, vol.2
, pp. 196-202
-
-
Zukiel, R.1
Nowak, S.2
Barciszewska, A.3
-
15
-
-
0036327616
-
Cellular vitamins, DNA methylation and cancer risk
-
Piyathilake C, Johannig GL. Cellular vitamins, DNA methylation and cancer risk. Am Soc Nutri Sci 2002;132: 2340S-22344S.
-
(2002)
Am Soc Nutri Sci
, vol.132
-
-
Piyathilake, C.1
Johannig, G.L.2
-
16
-
-
10244279272
-
Sample classification from protein mass spectrometry, by 'peak probability contrasts'
-
Tibshirani R, Hastie T, Narasimhan B, Soltys S, et al. Sample classification from protein mass spectrometry, by 'peak probability contrasts'. Bioinformatics 2004;20: 3034-44.
-
(2004)
Bioinformatics
, vol.20
, pp. 3034-3044
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Soltys, S.4
-
17
-
-
15744403951
-
Diagnosis of ovarian cancer based on mass spectra of blood samples
-
Man, and Cybernetics. The Hague, The Netherlands
-
Yang H, Mukomel Y, Fink E. Diagnosis of ovarian cancer based on mass spectra of blood samples. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. The Hague, The Netherlands, 2004;3444-50.
-
(2004)
Proceedings of the IEEE International Conference on Systems
, pp. 3444-3450
-
-
Yang, H.1
Mukomel, Y.2
Fink, E.3
-
18
-
-
12944272015
-
Plasma protein profiling by mass spectrometry for cancer diagnosis: Opportunities and limitations
-
Diamandis EP, van der Merwe DE. Plasma protein profiling by mass spectrometry for cancer diagnosis: Opportunities and limitations. Clin Cancer Res 2005;11:963-5.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 963-965
-
-
Diamandis, E.P.1
van der Merwe, D.E.2
-
19
-
-
1542714925
-
Mismatch string kernels for discriminative protein classification
-
Leslie CS, Eskin E, Cohen A, et al. Mismatch string kernels for discriminative protein classification. Bioinformatics 2004; 20 467-76.
-
(2004)
Bioinformatics
, vol.20
, pp. 467-476
-
-
Leslie, C.S.1
Eskin, E.2
Cohen, A.3
-
20
-
-
35048818988
-
Semi-supervised protein classification using cluster kernels
-
Weston J, Leslie C, Zhou D, et al. Semi-supervised protein classification using cluster kernels. Adv Neural Inf Process Syst 2004;16:595-602.
-
(2004)
Adv Neural Inf Process Syst
, vol.16
, pp. 595-602
-
-
Weston, J.1
Leslie, C.2
Zhou, D.3
-
21
-
-
39049181470
-
A SVM score for more sensitive and reliable peptide identification via tandem mass spectrometry
-
Wang H, Fu Y, Sun R, et al. A SVM score for more sensitive and reliable peptide identification via tandem mass spectrometry. Pac Symp Biocomput 2006;11:303-14.
-
(2006)
Pac Symp Biocomput
, vol.11
, pp. 303-314
-
-
Wang, H.1
Fu, Y.2
Sun, R.3
-
22
-
-
0141515750
-
Prediction of protein subcellular locations by support vector machines using compositions of amino acid and amino acid pairs
-
Park KJ, Kanehisa M. Prediction of protein subcellular locations by support vector machines using compositions of amino acid and amino acid pairs. Bioinformatics 2003;19: 1656-63.
-
(2003)
Bioinformatics
, vol.19
, pp. 1656-1663
-
-
Park, K.J.1
Kanehisa, M.2
-
23
-
-
29144502189
-
Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria
-
Rey S, Gardy JL, Brinkman FSL. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria. BMC Genomics 2005;6:162.
-
(2005)
BMC Genomics
, vol.6
, pp. 162
-
-
Rey, S.1
Gardy, J.L.2
Brinkman, F.S.L.3
-
24
-
-
33746218840
-
Prediction of protein subcellular localization
-
Yu CS, Chen YC, Lu CH, et al. Prediction of protein subcellular localization. Proteins 2006:64:643-51.
-
(2006)
Proteins
, vol.64
, pp. 643-651
-
-
Yu, C.S.1
Chen, Y.C.2
Lu, C.H.3
-
27
-
-
15944363312
-
Classification of gene microarrays by penalized logistic regression
-
Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics 2004;5:427-43.
-
(2004)
Biostatistics
, vol.5
, pp. 427-443
-
-
Zhu, J.1
Hastie, T.2
-
28
-
-
22944456563
-
-
Shen L, Tan EC. Dimension reduction based penalized logistic regression for cancer classification using microarray data. IEEE/ACM Trans Comput Biol Bioinform 2005;2:166-75.
-
Shen L, Tan EC. Dimension reduction based penalized logistic regression for cancer classification using microarray data. IEEE/ACM Trans Comput Biol Bioinform 2005;2:166-75.
-
-
-
-
29
-
-
0345327592
-
A simple and efficient algorithm for gene selecting using sparse logistic regression
-
Shevade SK, Keerthi SS. A simple and efficient algorithm for gene selecting using sparse logistic regression. Bioinformatics 2003; 19:2246-53.
-
(2003)
Bioinformatics
, vol.19
, pp. 2246-2253
-
-
Shevade, S.K.1
Keerthi, S.S.2
-
30
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S, Fridlyand J, Speed TP, et al. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002;97:77-87.
-
(2002)
J Am Stat Assoc
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
32
-
-
28944437658
-
Regularized ROC method for disease classification and biomarker selection with microarray data
-
Ma S, Huang J. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 2005; 21:4356-62.
-
(2005)
Bioinformatics
, vol.21
, pp. 4356-4362
-
-
Ma, S.1
Huang, J.2
-
33
-
-
33746363482
-
Regularized binormal ROC method in disease classification using microarray data
-
Ma S, Song X, Huang J. Regularized binormal ROC method in disease classification using microarray data. BMC Bioinformatics 2006;7 253.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 253
-
-
Ma, S.1
Song, X.2
Huang, J.3
-
34
-
-
0032943941
-
Three-way ROCs
-
Mossman D. Three-way ROCs. Med Decis Making 1999;19: 78-89.
-
(1999)
Med Decis Making
, vol.19
, pp. 78-89
-
-
Mossman, D.1
-
35
-
-
0042346121
-
Tree induction for probability based rankings
-
Provost F, Domingos P. Tree induction for probability based rankings. Mach Learn 2003;52:199-215.
-
(2003)
Mach Learn
, vol.52
, pp. 199-215
-
-
Provost, F.1
Domingos, P.2
-
37
-
-
0036161259
-
Gene selection for cancer classification using support vector machine
-
Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machine. Mach Learn 2004;46 389-422.
-
(2004)
Mach Learn
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
-
38
-
-
0034843744
-
Support vector machine approach for protein subcellular localization prediction
-
Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001;17: 721-8.
-
(2001)
Bioinformatics
, vol.17
, pp. 721-728
-
-
Hua, S.1
Sun, Z.2
-
39
-
-
1542559402
-
Support vector machine applications in computational biology
-
Scholkopf B, Tsuda K, Vert J, eds, MIT Press
-
Noble WS. Support vector machine applications in computational biology. In: Scholkopf B, Tsuda K, Vert J, (eds). Kernel Methods in Computational Biology. MIT Press, 2004, pp. 71-92.
-
(2004)
Kernel Methods in Computational Biology
, pp. 71-92
-
-
Noble, W.S.1
-
41
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. JRSSB 1996;58:267-88.
-
(1996)
JRSSB
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
42
-
-
0034287156
-
Asymptotics for Lasso-type estimators
-
Knight K, Fu W. Asymptotics for Lasso-type estimators. Ann Stat 2000;28:1356-78.
-
(2000)
Ann Stat
, vol.28
, pp. 1356-1378
-
-
Knight, K.1
Fu, W.2
-
43
-
-
49949095467
-
The generalized LASSO: A wrapper approach to gene selection for microarray data. Technical Report IAI-TR-2002-8, University of Bonn, Computer
-
Roth V. The generalized LASSO: A wrapper approach to gene selection for microarray data. Technical Report IAI-TR-2002-8, University of Bonn, Computer Science III, 2002 http://people.inf.ethz.ch/vroth/GenLASSO/ index.html.
-
(2002)
Science
, vol.3
-
-
Roth, V.1
-
44
-
-
49949097378
-
Incorporating gene functions into regression analysis of DNA-protein binding data and gene expression data to construct transcriptional networks
-
Wei P, Pan W. Incorporating gene functions into regression analysis of DNA-protein binding data and gene expression data to construct transcriptional networks. IEEE Trans Comput Biol Bioinform 2006; 99:1.
-
(2006)
IEEE Trans Comput Biol Bioinform
, vol.99
, pp. 1
-
-
Wei, P.1
Pan, W.2
-
46
-
-
33846193774
-
A note on the LASSO and related procedures in model selection
-
Leng C, Lin Y, Wahba G. A note on the LASSO and related procedures in model selection. Star Sin 2006;16: 1273-84.
-
(2006)
Star Sin
, vol.16
, pp. 1273-1284
-
-
Leng, C.1
Lin, Y.2
Wahba, G.3
-
47
-
-
33845263263
-
On model selection consistency of LASSO
-
Zhao P, Yu B. On model selection consistency of LASSO. J Mach Learn Res 2006;7:2541-63.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
48
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
Zou H. The adaptive Lasso and its oracle properties. JASA 2006; 101:1418-29.
-
(2006)
JASA
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
49
-
-
49949097774
-
Adaptive Lasso for sparse high dimensional regression models
-
In press
-
Huang J, Ma S, Zhang C. Adaptive Lasso for sparse high dimensional regression models. Stat Sin 2007. In press.
-
(2007)
Stat Sin
-
-
Huang, J.1
Ma, S.2
Zhang, C.3
-
50
-
-
33750022956
-
Semi-supervised learning via penalized mixture model with application to microarray sample classification
-
Pan W, Shen X, Jiang A, et al. Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 2006;22:2388-95.
-
(2006)
Bioinformatics
, vol.22
, pp. 2388-2395
-
-
Pan, W.1
Shen, X.2
Jiang, A.3
-
51
-
-
84952149204
-
A statistical view of some chemometrics regression tools (with discussion)
-
Frank IE, Friedman JH. A statistical view of some chemometrics regression tools (with discussion). Technometrics 1993;35 109-48.
-
(1993)
Technometrics
, vol.35
, pp. 109-148
-
-
Frank, I.E.1
Friedman, J.H.2
-
52
-
-
0032361278
-
Penalized regressions: The bridge versus the Lasso
-
Fu W. Penalized regressions: The bridge versus the Lasso. J Comput Graph Stat 1998;7:397-416.
-
(1998)
J Comput Graph Stat
, vol.7
, pp. 397-416
-
-
Fu, W.1
-
53
-
-
49949115667
-
Asymptotic properties of bridge estimators in sparse high-dimensional regression models
-
Huang J, Horowitz J, Ma S. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Stat 2008;36 587-613.
-
(2008)
Ann Stat
, vol.36
, pp. 587-613
-
-
Huang, J.1
Horowitz, J.2
Ma, S.3
-
54
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J Roy Stat Soc B 2005;67:301-20.
-
(2005)
J Roy Stat Soc B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
55
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001;96: 1348-60.
-
(2001)
J Am Stat Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
56
-
-
34547840186
-
Group SCAD regression analysis for microarray time course gene expression data
-
Wang L, Chen G, Li H. Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 2007;23:1486-94.
-
(2007)
Bioinformatics
, vol.23
, pp. 1486-1494
-
-
Wang, L.1
Chen, G.2
Li, H.3
-
58
-
-
3242708140
-
Least angle regression (with discussion)
-
Efron B, Hastie T, Johnstone I, et al. Least angle regression (with discussion). Ann Stat 2004;32:407-99.
-
(2004)
Ann Stat
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
-
59
-
-
34547849507
-
1 regularization path algorithm for generalized linear models
-
1 regularization path algorithm for generalized linear models. J Roy Stat Soc B 2007;69:659-77.
-
(2007)
J Roy Stat Soc B
, vol.69
, pp. 659-677
-
-
Park, M.Y.1
Hastie, T.2
-
61
-
-
34347398269
-
Additive risk survival model with microarray data
-
Ma S, Huang J. Additive risk survival model with microarray data. BMC Bioinformatics 2007;8:192.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 192
-
-
Ma, S.1
Huang, J.2
-
62
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
van't Veer, L.J.1
Dai, H.2
van de Vijver, M.J.3
-
63
-
-
33846572884
-
Empirical study of supervised gene screening
-
Ma S. Empirical study of supervised gene screening. BMC Bioinformatics 2006;7:537.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 537
-
-
Ma, S.1
|