메뉴 건너뛰기




Volumn 34, Issue 3, 2013, Pages 483-519

A review of feature selection methods on synthetic data

Author keywords

Embedded methods; Feature selection; Filters; Synthetic datasets; Wrappers

Indexed keywords

CLASSIFICATION (OF INFORMATION); FILTERS (FOR FLUIDS);

EID: 84874194408     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-012-0487-8     Document Type: Review
Times cited : (677)

References (78)
  • 1
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: a study on high-dimensional spaces
    • Kalousis A, Prados J, Hilario M (2007) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst 12(1): 95-116.
    • (2007) Knowl Inf Syst , vol.12 , Issue.1 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 3
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5: 1205-1224.
    • (2004) J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 4
    • 2342549891 scopus 로고    scopus 로고
    • Distributed data mining: scaling up and beyond
    • In: Kargupta H, Chan P (eds), Morgan Kaufmann, San Francisco
    • Provost F (2000) Distributed data mining: scaling up and beyond. In: Kargupta H, Chan P (eds) Advances in distributed data mining. Morgan Kaufmann, San Francisco.
    • (2000) Advances in distributed data mining
    • Provost, F.1
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 8
    • 79151484606 scopus 로고    scopus 로고
    • Feature selection and classification in multiple class datasets: an application to KDD Cup 99 dataset
    • Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2011) Feature selection and classification in multiple class datasets: an application to KDD Cup 99 dataset. J Expert Syst Appl 38(5): 5947-5957.
    • (2011) J Expert Syst Appl , vol.38 , Issue.5 , pp. 5947-5957
    • Bolón-Canedo, V.1    Sánchez-Maroño, N.2    Alonso-Betanzos, A.3
  • 9
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection: a data mining approach
    • Lee W, Stolfo SJ, Mok KW (2000) Adaptive intrusion detection: a data mining approach. Artif Intell Rev 14(6): 533-567.
    • (2000) Artif Intell Rev , vol.14 , Issue.6 , pp. 533-567
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 10
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3: 1289-1305.
    • (2003) J Mach Learn Res , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 11
    • 84859106212 scopus 로고    scopus 로고
    • Highly discriminative statistical features for email classification
    • doi: 10. 1007/s10115-011-0403-7
    • Gomez JC, Boiy E, Moens MF (2011) Highly discriminative statistical features for email classification. Knowl Inf Syst. doi: 10. 1007/s10115-011-0403-7.
    • (2011) Knowl Inf Syst
    • Gomez, J.C.1    Boiy, E.2    Moens, M.F.3
  • 14
    • 85008062084 scopus 로고    scopus 로고
    • Generalizability and simplicity as criteria in feature selection: application to mood classification in music
    • Saari P, Eerola T, Lartillot O (2011) Generalizability and simplicity as criteria in feature selection: application to mood classification in music. IEEE Trans Audio Speech Lang 19(6): 1802-1812.
    • (2011) IEEE Trans Audio Speech Lang , vol.19 , Issue.6 , pp. 1802-1812
    • Saari, P.1    Eerola, T.2    Lartillot, O.3
  • 15
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1: 131-156.
    • (1997) Intell Data Anal , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 16
    • 52249109156 scopus 로고    scopus 로고
    • Gene selection algorithm by combining relief and mrmr
    • doi:10.1186/1471-2164-9-S2-S27
    • Zhang Y, Ding C, Li T (2008) Gene selection algorithm by combining relief and mrmr. BMC Genomics 9(Suppl 2): S27. doi: 10. 1186/1471-2164-9-S2-S27.
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 2
    • Zhang, Y.1    Ding, C.2    Li, T.3
  • 18
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • Peng Y, Wu Z, Jiang J (2010) A novel feature selection approach for biomedical data classification. J Biomed Inf 43(1): 15-23.
    • (2010) J Biomed Inf , vol.43 , Issue.1 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 19
    • 79951514865 scopus 로고    scopus 로고
    • A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
    • El Akadi A, Amine A, El Ouardighi A, Aboutajdine D (2011) A two-stage gene selection scheme utilizing MRMR filter and GA wrapper. Knowl Inf Syst 26(3): 487-500.
    • (2011) Knowl Inf Syst , vol.26 , Issue.3 , pp. 487-500
    • El Akadi, A.1    Amine, A.2    El Ouardighi, A.3    Aboutajdine, D.4
  • 20
    • 81155124306 scopus 로고    scopus 로고
    • Obtaining scalable and accurate classification in large-scale spatio-temporal domains
    • doi: 10. 1007/s10115-010-0348-2
    • Vainer I, Kraus S, Kaminka GA, Slovin H (2010) Obtaining scalable and accurate classification in large-scale spatio-temporal domains. Knowl Inf Syst. doi: 10. 1007/s10115-010-0348-2.
    • (2010) Knowl Inf Syst
    • Vainer, I.1    Kraus, S.2    Kaminka, G.A.3    Slovin, H.4
  • 21
    • 68949154557 scopus 로고    scopus 로고
    • Feature selection with ensembles, artificial variables, and redundancy elimination
    • Tuv E, Borisov A, Runger G (2009) Feature selection with ensembles, artificial variables, and redundancy elimination. J Mach Learn Res 10: 1341-1366.
    • (2009) J Mach Learn Res , vol.10 , pp. 1341-1366
    • Tuv, E.1    Borisov, A.2    Runger, G.3
  • 28
    • 33846912074 scopus 로고    scopus 로고
    • A comparison of feature selection methods for the detection of breast cancers in mammograms: Adaptive sequential floating search vs. Genetic algorithm
    • Sun Y, Babbs CF, Delp EJ (2005) A comparison of feature selection methods for the detection of breast cancers in mammograms: adaptive sequential floating search vs. genetic algorithm. In: Proceedings of the IEEE conference on engineering in medicine and biology society, pp 6532-6535.
    • (2005) Proceedings of the IEEE conference on engineering in medicine and biology society , pp. 6532-6535
    • Sun, Y.1    Babbs, C.F.2    Delp, E.J.3
  • 29
    • 79851501401 scopus 로고    scopus 로고
    • A study on feature selection techniques in educational data mining
    • Ramaswami M, Bhaskaran R (2009) A study on feature selection techniques in educational data mining. Int J Adv Comput Sci Appl 2(1): 7-11.
    • (2009) Int J Adv Comput Sci Appl , vol.2 , Issue.1 , pp. 7-11
    • Ramaswami, M.1    Bhaskaran, R.2
  • 31
    • 79952769606 scopus 로고    scopus 로고
    • Implementing ReliefF filters to extract meaningful features from genetic lifetime datasets
    • Beretta L, Santaniello A (2011) Implementing ReliefF filters to extract meaningful features from genetic lifetime datasets. J Biomed Inf 44(2): 361-369.
    • (2011) J Biomed Inf , vol.44 , Issue.2 , pp. 361-369
    • Beretta, L.1    Santaniello, A.2
  • 32
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • Zhang ML, Peña JM, Robles V (2009) Feature selection for multi-label naive Bayes classification. J Inf Sci 179(19): 3218-3229.
    • (2009) J Inf Sci , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.L.1    Peña, J.M.2    Robles, V.3
  • 34
    • 84879475889 scopus 로고    scopus 로고
    • Review on feature selection techniques and the impact of SVM for cancer classification using gene expression profile
    • doi: 10. 5121/ijcses. 2011. 2302
    • Victo Sudha G, Cyril Raj V (2011) Review on feature selection techniques and the impact of SVM for cancer classification using gene expression profile. Int J Comput Sci Eng Survey. doi: 10. 5121/ijcses. 2011. 2302.
    • (2011) Int J Comput Sci Eng Survey
    • Victo Sudha, G.1    Cyril Raj, V.2
  • 35
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. J Bioinf 20(15): 2429-2437.
    • (2004) J Bioinf , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 36
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • Hua J, Tembe W, Dougherty E (2009) Performance of feature-selection methods in the classification of high-dimension data. J Pattern Recognit 42(3): 409-424.
    • (2009) J Pattern Recognit , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.2    Dougherty, E.3
  • 38
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation
    • Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD (2010) Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation. J Mach Learn Res 11: 171-234.
    • (2010) J Mach Learn Res , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 42
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(4): 491-502.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 45
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection evaluation, application, and small sample performance
    • Jain AK, Zongker D (2002) Feature selection evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2): 153-158.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.K.1    Zongker, D.2
  • 53
    • 84874193211 scopus 로고    scopus 로고
    • The Mathworks, Matlab Tutorial, (Last access: Nov 2011)
    • The Mathworks, Matlab Tutorial (1998). http://www. mathworks. com/academia/student_center/tutorials/ (Last access: Nov 2011).
    • (1998)
  • 55
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M, Liu H (2003) Consistency-based search in feature selection. J Artif Intell 151(1-2): 155-176.
    • (2003) J Artif Intell , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 57
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • Hall MA, Smith LA (1998) Practical feature subset selection for machine learning. J Comput Sci 98: 4-6.
    • (1998) J Comput Sci , vol.98 , pp. 4-6
    • Hall, M.A.1    Smith, L.A.2
  • 60
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8): 1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 62
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill SMD, Vapnik V (2002) Gene selection for cancer classification using support vector machines. J Mach Learn 46(1-3): 389-422.
    • (2002) J Mach Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.M.D.3    Vapnik, V.4
  • 63
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3: 1357-1370.
    • (2003) J Mach Learn Res , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 65
    • 32544441216 scopus 로고    scopus 로고
    • Query-learning-based iterative feature-subset selection for learning from high-dimensional data sets
    • Mamitsuka H (2006) Query-learning-based iterative feature-subset selection for learning from high-dimensional data sets. Knowl Inf Syst 9(1): 91-108.
    • (2006) Knowl Inf Syst , vol.9 , Issue.1 , pp. 91-108
    • Mamitsuka, H.1
  • 68
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. J Mach Learn 6(1): 37-66.
    • (1991) J Mach Learn , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 73
    • 77951634085 scopus 로고    scopus 로고
    • An MLP-based feature subset selection for HIV-1 protease cleavage site analysis
    • Kim G, Kim Y, Lim H, Kim H (2010) An MLP-based feature subset selection for HIV-1 protease cleavage site analysis. J Artif Intell Med 48: 83-89.
    • (2010) J Artif Intell Med , vol.48 , pp. 83-89
    • Kim, G.1    Kim, Y.2    Lim, H.3    Kim, H.4
  • 75
    • 77952236398 scopus 로고    scopus 로고
    • Identification of full and partial class relevant genes
    • Zhu Z, Ong YS, Zurada JM (2010) Identification of full and partial class relevant genes. IEEE Trans Comput Biol Bioinf 7(2): 263-277.
    • (2010) IEEE Trans Comput Biol Bioinf , vol.7 , Issue.2 , pp. 263-277
    • Zhu, Z.1    Ong, Y.S.2    Zurada, J.M.3
  • 76
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, de Andrés A (2006) Gene selection and classification of microarray data using random forest. J Bioinf 7(1): 1-13.
    • (2006) J Bioinf , vol.7 , Issue.1 , pp. 1-13
    • Díaz-Uriarte, R.1    de Andrés, A.2
  • 77
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. J Artif Intell 97(1-2): 273-324.
    • (1997) J Artif Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 78
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown MPS, Grundy WN et al (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97(1): 262-267.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.P.S.1    Grundy, W.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.