메뉴 건너뛰기




Volumn 15, Issue 6, 2014, Pages 369-383

Mechanisms and principles of homology search during recombination

Author keywords

[No Author keywords available]

Indexed keywords

BINDING PROTEIN; COHESIN; DOUBLE STRANDED DNA; NUCLEOPROTEIN; PROTEIN; RAD54 PROTEIN;

EID: 84901493127     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3805     Document Type: Review
Times cited : (135)

References (176)
  • 1
    • 78149425175 scopus 로고    scopus 로고
    • Regulation of homologous recombination in eukaryotes
    • Heyer, W. D., Ehmsen, K. T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113-139 (2010).
    • (2010) Annu. Rev. Genet. , vol.44 , pp. 113-139
    • Heyer, W.D.1    Ehmsen, K.T.2    Liu, J.3
  • 2
    • 84888594733 scopus 로고    scopus 로고
    • Initiation of meiotic recombination: How and where? Conservation and specificities among eukaryotes
    • de Massy, B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu. Rev. Genet. 47, 563-599 (2013).
    • (2013) Annu. Rev. Genet. , vol.47 , pp. 563-599
    • De Massy, B.1
  • 3
    • 84860548726 scopus 로고    scopus 로고
    • Mating-type genes and MAT switching in Saccharomyces cerevisiae
    • Haber, J. E. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33-64 (2012).
    • (2012) Genetics , vol.191 , pp. 33-64
    • Haber, J.E.1
  • 4
    • 84959678845 scopus 로고
    • A mechanism for gene conversion in fungi
    • Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. 5, 282-304 (1964).
    • (1964) Genet. Res. , vol.5 , pp. 282-304
    • Holliday, R.1
  • 5
    • 70349280357 scopus 로고    scopus 로고
    • Recombinational DNA repair in a cellular context: A search for the homology search
    • Weiner, A., Zauberman, N. & Minsky, A. Recombinational DNA repair in a cellular context: a search for the homology search. Nature Rev. Microbiol. 7, 748-755 (2009).
    • (2009) Nature Rev. Microbiol. , vol.7 , pp. 748-755
    • Weiner, A.1    Zauberman, N.2    Minsky, A.3
  • 6
    • 37249046360 scopus 로고    scopus 로고
    • Finding a match: How do homologous sequences get together for recombination?
    • DOI 10.1038/nrg2224, PII NRG2224
    • Barzel, A. & Kupiec, M. Finding a match: how do homologous sequences get together for recombination? Nature Rev. Genet. 9, 27-37 (2008). (Pubitemid 350277300)
    • (2008) Nature Reviews Genetics , vol.9 , Issue.1 , pp. 27-37
    • Barzel, A.1    Kupiec, M.2
  • 7
    • 3242892765 scopus 로고    scopus 로고
    • DSB repair: The yeast paradigm
    • DOI 10.1016/j.dnarep.2004.04.013, PII S1568786404001442
    • Aylon, Y. & Kupiec, M. DSB repair: the yeast paradigm. DNA Repair 3, 797-815 (2004). (Pubitemid 38997923)
    • (2004) DNA Repair , vol.3 , Issue.8-9 , pp. 797-815
    • Aylon, Y.1    Kupiec, M.2
  • 9
    • 84875207723 scopus 로고    scopus 로고
    • Chromatin movement in the maintenance of genome stability
    • Dion, V. & Gasser, S. M. Chromatin movement in the maintenance of genome stability. Cell 152, 1355-1364 (2013).
    • (2013) Cell , vol.152 , pp. 1355-1364
    • Dion, V.1    Gasser, S.M.2
  • 10
    • 84886751857 scopus 로고    scopus 로고
    • DNA in motion during double-strand break repair
    • Miné-Hattab, J. & Rothstein, R. DNA in motion during double-strand break repair. Trends Cell Biol. 23, 529-536 (2013).
    • (2013) Trends Cell Biol. , vol.23 , pp. 529-536
    • Miné-Hattab, J.1    Rothstein, R.2
  • 11
    • 0029174547 scopus 로고
    • Homologous recombination proteins in prokaryotes and eukaryotes
    • Camerini-Otero, R. D. & Hsieh, P. Homologous recombination proteins in prokaryotes and eukaryotes. Annu. Rev. Genet. 29, 509-552 (1995). (Pubitemid 26005352)
    • (1995) Annual Review of Genetics , vol.29 , pp. 509-552
    • Daniel Camerini-Otero, R.1    Hsieh, P.2
  • 12
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247-271 (2011).
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 13
    • 84865810905 scopus 로고    scopus 로고
    • Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis
    • Cloud, V., Chan, Y.-L., Grubb, J., Budke, B. & Bishop, D. K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-1225 (2012).
    • (2012) Science , vol.337 , pp. 1222-1225
    • Cloud, V.1    Chan, Y.-L.2    Grubb, J.3    Budke, B.4    Bishop, D.K.5
  • 15
    • 0032481374 scopus 로고    scopus 로고
    • The function of the secondary DNA-binding site of RecA protein during DNA strand exchange
    • DOI 10.1093/emboj/17.4.1161
    • Mazin, A. V. & Kowalczykowski, S. C. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. EMBO J. 17, 1161-1168 (1998). (Pubitemid 28077669)
    • (1998) EMBO Journal , vol.17 , Issue.4 , pp. 1161-1168
    • Mazin, A.V.1    Kowalczykowski, S.C.2
  • 16
    • 84861978524 scopus 로고    scopus 로고
    • Mechanism of homology recognition in DNA recombination from dual-molecule experiments
    • De Vlaminck, I. et al. Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol. Cell 46, 616-624 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 616-624
    • De Vlaminck, I.1
  • 17
    • 4644220324 scopus 로고    scopus 로고
    • Synaptic complex revisited: A homologous recombinase flips and switches bases
    • DOI 10.1016/j.molcel.2004.09.010, PII S1097276504005465
    • Voloshin, O. N. & Camerini-Otero, R. D. Synaptic complex revisited; a homologous recombinase flips and switches bases. Mol. Cell 15, 846-847 (2004). (Pubitemid 39277981)
    • (2004) Molecular Cell , vol.15 , Issue.6 , pp. 846-847
    • Voloshin, O.N.1    Camerini-Otero, R.D.2
  • 18
    • 4644225318 scopus 로고    scopus 로고
    • Exchange of DNA base pairs that coincides with recognition of homology promoted by E. Coli RecA protein
    • DOI 10.1016/j.molcel.2004.08.017, PII S1097276504004873
    • Folta-Stogniew, E., O'Malley, S., Gupta, R., Anderson, K. S. & Radding, C. M. Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol. Cell 15, 965-975 (2004). (Pubitemid 39277992)
    • (2004) Molecular Cell , vol.15 , Issue.6 , pp. 965-975
    • Folta-Stogniew, E.1    O'Malley, S.2    Gupta, R.3    Anderson, K.S.4    Radding, C.M.5
  • 19
    • 0033231554 scopus 로고    scopus 로고
    • Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein
    • Gupta, R. C., Folta-Stogniew, E., O'Malley, S., Takahashi, M. & Radding, C. M. Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. Mol. Cell 4, 705-714 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 705-714
    • Gupta, R.C.1    Folta-Stogniew, E.2    O'Malley, S.3    Takahashi, M.4    Radding, C.M.5
  • 20
    • 44349162159 scopus 로고    scopus 로고
    • Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
    • Chen, Z., Yang, H. & Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-484 (2008).
    • (2008) Nature , vol.453 , pp. 489-484
    • Chen, Z.1    Yang, H.2    Pavletich, N.P.3
  • 21
    • 69449083857 scopus 로고    scopus 로고
    • Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy
    • Reymer, A., Frykholm, K., Morimatsu, K., Takahashi, M. & Nordén, B. Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy. Proc. Natl Acad. Sci. USA 106, 13248-13253 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 13248-13253
    • Reymer, A.1    Frykholm, K.2    Morimatsu, K.3    Takahashi, M.4    Nordén, B.5
  • 22
    • 77956062712 scopus 로고    scopus 로고
    • RecA-mediated homology search as a nearly optimal signal detection system
    • Savir, Y. & Tlusty, T. RecA-mediated homology search as a nearly optimal signal detection system. Mol. Cell 40, 388-396 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 388-396
    • Savir, Y.1    Tlusty, T.2
  • 23
    • 84891766191 scopus 로고    scopus 로고
    • The differential extension in dsDNA bound to Rad51 filaments may play important roles in homology recognition and strand exchange
    • Danilowicz, C. et al. The differential extension in dsDNA bound to Rad51 filaments may play important roles in homology recognition and strand exchange. Nucleic Acids Res. 42, 526-533 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 526-533
    • Danilowicz, C.1
  • 24
    • 84857883369 scopus 로고    scopus 로고
    • RecA homology search is promoted by mechanical stress along the scanned duplex DNA
    • Danilowicz, C. et al. RecA homology search is promoted by mechanical stress along the scanned duplex DNA. Nucleic Acids Res. 40, 1717-1727 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 1717-1727
    • Danilowicz, C.1
  • 25
    • 0026740399 scopus 로고
    • The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA
    • Hsieh, P., Camerini-Otero, C. S. & Camerini-Otero, R. D. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc. Natl Acad. Sci. USA 89, 6492-6496 (1992).
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 6492-6496
    • Hsieh, P.1    Camerini-Otero, C.S.2    Camerini-Otero, R.D.3
  • 27
    • 32644466860 scopus 로고    scopus 로고
    • Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function
    • DOI 10.1016/j.dnarep.2005.11.005, PII S1568786405003174
    • Chi, P., van Komen, S., Sehorn, M. G., Sigurdsson, S. & Sung, P. Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair 5, 381-391 (2006). (Pubitemid 43247603)
    • (2006) DNA Repair , vol.5 , Issue.3 , pp. 381-391
    • Chi, P.1    Van Komen, S.2    Sehorn, M.G.3    Sigurdsson, S.4    Sung, P.5
  • 28
    • 0025166577 scopus 로고
    • Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis
    • Menetski, J. P., Bear, D. G. & Kowalczykowski, S. C. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc. Natl Acad. Sci. USA 87, 21-25 (1990).
    • (1990) Proc. Natl Acad. Sci. USA , vol.87 , pp. 21-25
    • Menetski, J.P.1    Bear, D.G.2    Kowalczykowski, S.C.3
  • 29
    • 0029953512 scopus 로고    scopus 로고
    • Yeast RAD51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis
    • DOI 10.1074/jbc.271.45.27983
    • Sung, P. & Stratton, S. A. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271, 27983-27986 (1996). (Pubitemid 26374597)
    • (1996) Journal of Biological Chemistry , vol.271 , Issue.45 , pp. 27983-27986
    • Sung, P.1    Stratton, S.A.2
  • 30
    • 84869053072 scopus 로고    scopus 로고
    • Complementary strand relocation may play vital roles in RecA-based homology recognition
    • Peacock-Villada, A. et al. Complementary strand relocation may play vital roles in RecA-based homology recognition. Nucleic Acids Res. 40, 10441-10451 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10441-10451
    • Peacock-Villada, A.1
  • 31
    • 80051527439 scopus 로고    scopus 로고
    • Real-time observation of strand exchange reaction with high spatiotemporal resolution
    • Ragunathan, K., Joo, C. & Ha, T. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19, 1064-1073 (2011).
    • (2011) Structure , vol.19 , pp. 1064-1073
    • Ragunathan, K.1    Joo, C.2    Ha, T.3
  • 32
    • 78649446615 scopus 로고    scopus 로고
    • Regulation of DNA strand exchange in homologous recombination
    • Holthausen, J. T., Wyman, C. & Kanaar, R. Regulation of DNA strand exchange in homologous recombination. DNA Repair 9, 1264-1272 (2010).
    • (2010) DNA Repair , vol.9 , pp. 1264-1272
    • Holthausen, J.T.1    Wyman, C.2    Kanaar, R.3
  • 33
    • 0025891414 scopus 로고
    • Biochemistry of genetic recombination: Energetics and mechanism of DNA strand exchange
    • Kowalczykowski, S. C. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 20, 539-575 (1991).
    • (1991) Annu. Rev. Biophys. Biophys. Chem. , vol.20 , pp. 539-575
    • Kowalczykowski, S.C.1
  • 34
    • 0022646708 scopus 로고
    • On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli
    • Julin, D. A., Riddles, P. W. & Lehman, I. R. On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA binding proteins of Escherichia coli. J. Biol. Chem. 261, 1025-1030 (1986). (Pubitemid 16144759)
    • (1986) Journal of Biological Chemistry , vol.261 , Issue.3 , pp. 1025-1030
    • Julin, D.A.1    Riddles, P.W.2    Lehman, I.R.3
  • 35
    • 0020823126 scopus 로고
    • By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology
    • Gonda, D. K. & Radding, C. M. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34, 647-654 (1983).
    • (1983) Cell , vol.34 , pp. 647-654
    • Gonda, D.K.1    Radding, C.M.2
  • 36
    • 0019887628 scopus 로고
    • Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory
    • Berg, O. G. & Winter, R. B. & von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929-6948 (1981).
    • (1981) Biochemistry , vol.20 , pp. 6929-6948
    • Berg, O.G.1    Winter, R.B.2    Von Hippel, P.H.3
  • 37
    • 65549171477 scopus 로고    scopus 로고
    • An end to 40 years of mistakes in DNA-protein association kinetics?
    • Halford, S. E. An end to 40 years of mistakes in DNA-protein association kinetics? Biochem. Soc. Trans. 37, 343-348 (2009).
    • (2009) Biochem. Soc. Trans. , vol.37 , pp. 343-348
    • Halford, S.E.1
  • 38
    • 0032553529 scopus 로고    scopus 로고
    • No sliding during homology search by RecA protein
    • DOI 10.1074/jbc.273.47.31565
    • Adzuma, K. No sliding during homology search by RecA protein. J. Biol. Chem. 273, 31565-31573 (1998). (Pubitemid 28533180)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.47 , pp. 31565-31573
    • Adzuma, K.1
  • 39
    • 84881494657 scopus 로고    scopus 로고
    • RecA filament sliding on DNA facilitates homology search
    • Ragunathan, K., Liu, C. & Ha, T. RecA filament sliding on DNA facilitates homology search. eLife 1, e00067 (2012).
    • (2012) ELife , vol.1
    • Ragunathan, K.1    Liu, C.2    Ha, T.3
  • 40
    • 43449094034 scopus 로고    scopus 로고
    • Homologous recombination in real time: DNA strand exchange by RecA
    • van der Heijden, T. et al. Homologous recombination in real time: DNA strand exchange by RecA. Mol. Cell 30, 530-538 (2008).
    • (2008) Mol. Cell , vol.30 , pp. 530-538
    • Van Der-Heijden, T.1
  • 41
    • 84857118715 scopus 로고    scopus 로고
    • Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search
    • Forget, A. L. & Kowalczykowski, S. C. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482, 423-427 (2012).
    • (2012) Nature , vol.482 , pp. 423-427
    • Forget, A.L.1    Kowalczykowski, S.C.2
  • 42
    • 46949098616 scopus 로고    scopus 로고
    • Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
    • DOI 10.1038/emboj.2008.111, PII EMBOJ2008111
    • Zierhut, C. & Diffley, J. F. X. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875-1885 (2008). (Pubitemid 351960208)
    • (2008) EMBO Journal , vol.27 , Issue.13 , pp. 1875-1885
    • Zierhut, C.1    Diffley, J.F.X.2
  • 43
    • 0025020278 scopus 로고
    • Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
    • White, C. I. & Haber, J. E. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9, 663-673 (1990).
    • (1990) EMBO J. , vol.9 , pp. 663-673
    • White, C.I.1    Haber, J.E.2
  • 44
    • 84876826267 scopus 로고    scopus 로고
    • Monitoring homology search during DNA double-strand break repair in vivo
    • Renkawitz, J., Lademann, C. A., Kalocsay, M. & Jentsch, S. Monitoring homology search during DNA double-strand break repair in vivo. Mol. Cell 50, 261-272 (2013).
    • (2013) Mol. Cell , vol.50 , pp. 261-272
    • Renkawitz, J.1    Lademann, C.A.2    Kalocsay, M.3    Jentsch, S.4
  • 45
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229-257 (2008).
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 229-257
    • San Filippo, J.1    Sung, P.2    Klein, H.3
  • 46
    • 77649165394 scopus 로고    scopus 로고
    • Maintaining genome stability at the replication fork
    • Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Naure. Rev. Mol. Cell Biol. 11, 208-219 (2010).
    • (2010) Naure. Rev. Mol. Cell Biol. , vol.11 , pp. 208-219
    • Branzei, D.1    Foiani, M.2
  • 47
    • 84873804860 scopus 로고    scopus 로고
    • The hidden talents of SPO11
    • Loidl, J. The hidden talents of SPO11. Dev. Cell 24, 123-124 (2013).
    • (2013) Dev. Cell , vol.24 , pp. 123-124
    • Loidl, J.1
  • 48
    • 73349127026 scopus 로고    scopus 로고
    • Cohesin: Its roles and mechanisms
    • Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525-558 (2009).
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 525-558
    • Nasmyth, K.1    Haering, C.H.2
  • 49
    • 19344366459 scopus 로고    scopus 로고
    • Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae
    • Glynn, E. F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, E259 (2004).
    • (2004) PLoS Biol , vol.2
    • Glynn, E.F.1
  • 50
    • 0034722387 scopus 로고    scopus 로고
    • Chromosomal addresses of the cohesin component Mcd1p
    • Laloraya, S., Guacci, V. & Koshland, D. Chromosomal addresses of the cohesin component Mcd1p. J. Cell Biol. 151, 1047-1056 (2000).
    • (2000) J. Cell Biol. , vol.151 , pp. 1047-1056
    • Laloraya, S.1    Guacci, V.2    Koshland, D.3
  • 51
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491 (2013).
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1
  • 52
    • 78650689283 scopus 로고    scopus 로고
    • Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination
    • Hoang, M. L. et al. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet. 6, e1001228 (2010).
    • (2010) PLoS Genet. , vol.6
    • Hoang, M.L.1
  • 53
    • 50149084043 scopus 로고    scopus 로고
    • Double-strand breaks associated with repetitive DNA can reshape the genome
    • Argueso, J. L. et al. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc. Natl Acad. Sci. USA 105, 11845-11850 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 11845-11850
    • Argueso, J.L.1
  • 54
    • 33747882660 scopus 로고    scopus 로고
    • Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae
    • DOI 10.1016/j.dnarep.2006.05.027, PII S1568786406001674, Mechanisms of Chromosomal Translocations
    • Mieczkowski, P. A., Lemoine, F. J. & Petes, T. D. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5, 1010-1020 (2006). (Pubitemid 44291618)
    • (2006) DNA Repair , vol.5 , Issue.9-10 , pp. 1010-1020
    • Mieczkowski, P.A.1    Lemoine, F.J.2    Petes, T.D.3
  • 55
    • 33747877763 scopus 로고    scopus 로고
    • Transpositions and translocations induced by site-specific double-strand breaks in budding yeast
    • DOI 10.1016/j.dnarep.2006.05.025, PII S1568786406001649, Mechanisms of Chromosomal Translocations
    • Haber, J. E. Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair 5, 998-1009 (2006). (Pubitemid 44291615)
    • (2006) DNA Repair , vol.5 , Issue.9-10 , pp. 998-1009
    • Haber, J.E.1
  • 56
    • 84878556268 scopus 로고    scopus 로고
    • Effect of nuclear architecture on the efficiency of double-strand break repair
    • Agmon, N., Liefshitz, B., Zimmer, C., Fabre, E. & Kupiec, M. Effect of nuclear architecture on the efficiency of double-strand break repair. Nature Cell Biol. 15, 694-699 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 694-699
    • Agmon, N.1    Liefshitz, B.2    Zimmer, C.3    Fabre, E.4    Kupiec, M.5
  • 57
    • 33746387508 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization
    • DOI 10.1534/genetics.106.055392
    • Coïc, E., Richard, G.F. & Haber, J. E. Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization. Genetics 173, 1197-1206 (2006). (Pubitemid 44127629)
    • (2006) Genetics , vol.173 , Issue.3 , pp. 1197-1206
    • Coic, E.1    Richard, G.-F.2    Haber, J.E.3
  • 58
    • 0037317683 scopus 로고    scopus 로고
    • Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae
    • DOI 10.1128/MCB.23.4.1403-1417.2003
    • Aylon, Y., Liefshitz, B., Bitan-Banin, G. & Kupiec, M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403-1417 (2003). (Pubitemid 36177048)
    • (2003) Molecular and Cellular Biology , vol.23 , Issue.4 , pp. 1403-1417
    • Aylon, Y.1    Liefshitz, B.2    Bitan-Banin, G.3    Kupiec, M.4
  • 59
    • 0033565525 scopus 로고    scopus 로고
    • Collisions between yeast chromosomal loci in vivo are governed by three layers of organization
    • Burgess, S. M. & Kleckner, N. Collisions between yeast chromosomal loci In vivo are governed by three layers of organization. Genes Dev. 13, 1871-1883 (1999). (Pubitemid 29353053)
    • (1999) Genes and Development , vol.13 , Issue.14 , pp. 1871-1883
    • Burgess, S.M.1    Kleckner, N.2
  • 60
    • 0033008194 scopus 로고    scopus 로고
    • Homology search and choice of homologous partner during mitotic recombination
    • Inbar, O. & Kupiec, M. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol. 19, 4134-4142 (1999). (Pubitemid 29241987)
    • (1999) Molecular and Cellular Biology , vol.19 , Issue.6 , pp. 4134-4142
    • Inbar, O.1    Kupiec, M.2
  • 62
    • 0024419449 scopus 로고
    • Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae
    • Lichten, M. & Haber, J. E. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123, 261-268 (1989). (Pubitemid 19248673)
    • (1989) Genetics , vol.123 , Issue.2 , pp. 261-268
    • Lichten, M.1    Haber, J.E.2
  • 63
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • DOI 10.1016/S1097-2765(03)00269-7
    • Sugawara, N., Wang, X. & Haber, J. E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209-219 (2003). (Pubitemid 36945046)
    • (2003) Molecular Cell , vol.12 , Issue.1 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 64
    • 62849083222 scopus 로고    scopus 로고
    • The emerging role of nuclear architecture in DNA repair and genome maintenance
    • Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature Rev. Mol. Cell Biol. 10, 243-254 (2009).
    • (2009) Nature Rev. Mol. Cell Biol. , vol.10 , pp. 243-254
    • Misteli, T.1    Soutoglou, E.2
  • 65
    • 84879242423 scopus 로고    scopus 로고
    • The cellular etiology of chromosome translocations
    • Roukos, V., Burman, B. & Misteli, T. The cellular etiology of chromosome translocations. Curr. Opin. Cell Biol. 25, 357-364 (2013).
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 357-364
    • Roukos, V.1    Burman, B.2    Misteli, T.3
  • 66
    • 84879235246 scopus 로고    scopus 로고
    • The origin of recurrent translocations in recombining lymphocytes: A balance between break frequency and nuclear proximity
    • Rocha, P. P. & Skok, J. A. The origin of recurrent translocations in recombining lymphocytes: a balance between break frequency and nuclear proximity. Curr. Opin. Cell Biol. 25, 365-371 (2013).
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 365-371
    • Rocha, P.P.1    Skok, J.A.2
  • 67
    • 84881255212 scopus 로고    scopus 로고
    • Spatial dynamics of chromosome translocations in living cells
    • Roukos, V. et al. Spatial dynamics of chromosome translocations in living cells. Science 341, 660-664 (2013).
    • (2013) Science , vol.341 , pp. 660-664
    • Roukos, V.1
  • 68
    • 84862778059 scopus 로고    scopus 로고
    • Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
    • Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908-921 (2012).
    • (2012) Cell , vol.148 , pp. 908-921
    • Zhang, Y.1
  • 69
    • 84859474968 scopus 로고    scopus 로고
    • DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes
    • Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69-74 (2012).
    • (2012) Nature , vol.484 , pp. 69-74
    • Hakim, O.1
  • 70
    • 84866870443 scopus 로고    scopus 로고
    • Close proximity to Igh is a contributing factor to AID-mediated translocations
    • Rocha, P. P. et al. Close proximity to Igh is a contributing factor to AID-mediated translocations. Mol. Cell 47, 873-885 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 873-885
    • Rocha, P.P.1
  • 71
    • 80053558376 scopus 로고    scopus 로고
    • Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
    • Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107-119 (2011).
    • (2011) Cell , vol.147 , pp. 107-119
    • Chiarle, R.1
  • 72
    • 80053502216 scopus 로고    scopus 로고
    • Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
    • Klein, I. A. et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95-106 (2011).
    • (2011) Cell , vol.147 , pp. 95-106
    • Klein, I.A.1
  • 73
    • 0038054340 scopus 로고    scopus 로고
    • Spatial proximity of translocation-prone gene loci in human lymphomas
    • DOI 10.1038/ng1177
    • Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287-291 (2003). (Pubitemid 36792860)
    • (2003) Nature Genetics , vol.34 , Issue.3 , pp. 287-291
    • Roix, J.J.1    McQueen, P.G.2    Munson, P.J.3    Parada, L.A.4    Misteli, T.5
  • 74
    • 69849097676 scopus 로고    scopus 로고
    • Analysis of repair mechanism choice during homologous recombination
    • Agmon, N., Pur, S., Liefshitz, B. & Kupiec, M. Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res. 37, 5081-5092 (2009).
    • (2009) Nucleic Acids Res. , vol.37 , pp. 5081-5092
    • Agmon, N.1    Pur, S.2    Liefshitz, B.3    Kupiec, M.4
  • 75
    • 77952744854 scopus 로고    scopus 로고
    • A three-dimensional model of the yeast genome
    • Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363-367 (2010).
    • (2010) Nature , vol.465 , pp. 363-367
    • Duan, Z.1
  • 76
    • 0032412476 scopus 로고    scopus 로고
    • Mating-type gene switching in Saccharomyces cerevisiae
    • DOI 10.1146/annurev.genet.32.1.561
    • Haber, J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561-599 (1998). (Pubitemid 29045325)
    • (1998) Annual Review of Genetics , vol.32 , pp. 561-599
    • Haber, J.E.1
  • 77
    • 84868578003 scopus 로고    scopus 로고
    • Monitoring DNA recombination initiated by HO endonuclease
    • Sugawara, N. & Haber, J. E. Monitoring DNA recombination initiated by HO endonuclease. Methods Mol. Biol. 920, 349-370 (2012).
    • (2012) Methods Mol. Biol. , vol.920 , pp. 349-370
    • Sugawara, N.1    Haber, J.E.2
  • 78
    • 84860568718 scopus 로고    scopus 로고
    • Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1
    • Li, J. et al. Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet. 8, e1002630 (2012).
    • (2012) PLoS Genet. , vol.8
    • Li, J.1
  • 79
    • 0030592510 scopus 로고    scopus 로고
    • A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III
    • DOI 10.1016/S0092-8674(00)81345-8
    • Wu, X. & Haber, J. E. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87, 277-285 (1996). (Pubitemid 26359005)
    • (1996) Cell , vol.87 , Issue.2 , pp. 277-285
    • Wu, X.1    Haber, J.E.2
  • 80
    • 0029146302 scopus 로고
    • MATa donor preference in yeast mating-type switching: Activation of a large chromosomal region for recombination
    • Wu, X. & Haber, J. E. MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev. 9, 1922-1932 (1995).
    • (1995) Genes Dev. , vol.9 , pp. 1922-1932
    • Wu, X.1    Haber, J.E.2
  • 81
    • 79952403632 scopus 로고    scopus 로고
    • Principles of chromosomal organization: Lessons from yeast
    • Zimmer, C. & Fabre, E. Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192, 723-733 (2011).
    • (2011) J. Cell Biol. , vol.192 , pp. 723-733
    • Zimmer, C.1    Fabre, E.2
  • 82
    • 0034041633 scopus 로고    scopus 로고
    • Centromere clustering is a major determinant of yeast interphase nuclear organization
    • Jin, Q. W., Fuchs, J. & Loidl, J. Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell. Sci. 113, 1903-1912 (2000). (Pubitemid 30386494)
    • (2000) Journal of Cell Science , vol.113 , Issue.11 , pp. 1903-1912
    • Jin, Q.-W.1    Fuchs, J.2    Loidl, J.3
  • 83
    • 85052279093 scopus 로고    scopus 로고
    • How to build a yeast nucleus
    • Wong, H., Arbona, J.-M. & Zimmer, C. How to build a yeast nucleus. Nucleus 4, 361-366 (2013).
    • (2013) Nucleus , vol.4 , pp. 361-366
    • Wong, H.1    Arbona, J.-M.2    Zimmer, C.3
  • 84
    • 84855321168 scopus 로고    scopus 로고
    • How broken DNA finds its template for repair: A computational approach
    • Gehlen, L. R., Gasser, S. M. & Dion, V. How broken DNA finds its template for repair: a computational approach. Prog. Theor. Phys. Suppl. 191, 20-29 (2011).
    • (2011) Prog. Theor. Phys. Suppl. , vol.191 , pp. 20-29
    • Gehlen, L.R.1    Gasser, S.M.2    Dion, V.3
  • 85
    • 84860500314 scopus 로고    scopus 로고
    • Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
    • Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biol. 14, 502-509 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 502-509
    • Dion, V.1    Kalck, V.2    Horigome, C.3    Towbin, B.D.4    Gasser, S.M.5
  • 86
    • 84860517399 scopus 로고    scopus 로고
    • Increased chromosome mobility facilitates homology search during recombination
    • Miné-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nature Cell Biol. 14, 510-517 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 510-517
    • Miné-Hattab, J.1    Rothstein, R.2
  • 87
    • 84884557189 scopus 로고    scopus 로고
    • Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage
    • Seeber, A., Dion, V. & Gasser, S. M. Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev. 27, 1999-2008 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 1999-2008
    • Seeber, A.1    Dion, V.2    Gasser, S.M.3
  • 88
    • 84887064569 scopus 로고    scopus 로고
    • Cohesin and the nucleolus constrain the mobility of spontaneous repair foci
    • Dion, V., Kalck, V., Seeber, A., Schleker, T. & Gasser, S. M. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep. 14, 984-991 (2013).
    • (2013) EMBO Rep. , vol.14 , pp. 984-991
    • Dion, V.1    Kalck, V.2    Seeber, A.3    Schleker, T.4    Gasser, S.M.5
  • 89
    • 84857166722 scopus 로고    scopus 로고
    • Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination
    • Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26, 369-383 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 369-383
    • Neumann, F.R.1
  • 91
    • 84893945960 scopus 로고    scopus 로고
    • RecA bundles mediate homology pairing between distant sisters during DNA break repair
    • Lesterlin, C., Ball, G., Schermelleh, L. & Sherratt, D. J. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506, 249-253 (2014).
    • (2014) Nature , vol.506 , pp. 249-253
    • Lesterlin, C.1    Ball, G.2    Schermelleh, L.3    Sherratt, D.J.4
  • 92
    • 80052675332 scopus 로고    scopus 로고
    • Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination
    • Ceballos, S. J. & Heyer, W.-D. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim. Biophys. Acta 1809, 509-523 (2011).
    • (2011) Biochim. Biophys. Acta , vol.1809 , pp. 509-523
    • Ceballos, S.J.1    Heyer, W.-D.2
  • 93
  • 94
    • 0032492853 scopus 로고    scopus 로고
    • Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins
    • DOI 10.1038/30037
    • Petukhova, G., Stratton, S. & Sung, P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91-94 (1998). (Pubitemid 28240262)
    • (1998) Nature , vol.393 , Issue.6680 , pp. 91-94
    • Petukhova, G.1    Stratton, S.2    Sung, P.3
  • 95
    • 33745498749 scopus 로고    scopus 로고
    • Visualization of Rad54, a Chromatin Remodeling Protein, Translocating on Single DNA Molecules
    • DOI 10.1016/j.molcel.2006.05.009, PII S1097276506003017
    • Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell 23, 143-148 (2006). (Pubitemid 43963440)
    • (2006) Molecular Cell , vol.23 , Issue.1 , pp. 143-148
    • Amitani, I.1    Baskin, R.J.2    Kowalczykowski, S.C.3
  • 96
    • 0037334946 scopus 로고    scopus 로고
    • Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament
    • DOI 10.1038/nsb901
    • Alexeev, A., Mazin, A. & Kowalczykowski, S. C. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nature Struct. Biol. 10, 182-186 (2003). (Pubitemid 36297987)
    • (2003) Nature Structural Biology , vol.10 , Issue.3 , pp. 182-186
    • Alexeev, A.1    Mazin, A.2    Kowalczykowski, S.C.3
  • 98
    • 0038100136 scopus 로고    scopus 로고
    • Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin
    • DOI 10.1074/jbc.M211545200
    • Jaskelioff, M., van Komen, S., Krebs, J. E., Sung, P. & Peterson, C. L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212-9218 (2003). (Pubitemid 36800403)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.11 , pp. 9212-9218
    • Jaskelioff, M.1    Van Komen, S.2    Krebs, J.E.3    Sung, P.4    Peterson, C.L.5
  • 99
    • 0033864250 scopus 로고    scopus 로고
    • Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1
    • Petukhova, G., Sung, P. & Klein, H. Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev. 14, 2206-2215 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2206-2215
    • Petukhova, G.1    Sung, P.2    Klein, H.3
  • 100
    • 34248512303 scopus 로고    scopus 로고
    • A DNA-translocating Snf2 Molecular Motor: Saccharomyces cerevisiae Rdh54 Displays Processive Translocation and Extrudes DNA Loops
    • DOI 10.1016/j.jmb.2007.04.005, PII S0022283607004597
    • Prasad, T. K. et al. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J. Mol. Biol. 369, 940-953 (2007). (Pubitemid 46759523)
    • (2007) Journal of Molecular Biology , vol.369 , Issue.4 , pp. 940-953
    • Prasad, T.K.1    Robertson, R.B.2    Visnapuu, M.-L.3    Chi, P.4    Sung, P.5    Greene, E.C.6
  • 101
    • 35648966525 scopus 로고    scopus 로고
    • Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules
    • DOI 10.1074/jbc.M704767200
    • Nimonkar, A. V., Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules. J. Biol. Chem. 282, 30776-30784 (2007). (Pubitemid 350035166)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.42 , pp. 30776-30784
    • Nimonkar, A.V.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 102
    • 44849138547 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54
    • Kwon, Y. et al. ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54. J. Biol. Chem. 283, 10445-10452 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 10445-10452
    • Kwon, Y.1
  • 103
    • 0033635247 scopus 로고    scopus 로고
    • Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54
    • Van Komen, S., Petukhova, G., Sigurdsson, S., Stratton, S. & Sung, P. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell 6, 563-572 (2000).
    • (2000) Mol. Cell , vol.6 , pp. 563-572
    • Van Komen, S.1    Petukhova, G.2    Sigurdsson, S.3    Stratton, S.4    Sung, P.5
  • 104
    • 33748945703 scopus 로고    scopus 로고
    • Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation
    • DOI 10.1038/sj.emboj.7601260, PII 7601260
    • Fulconis, R., Mine, J., Bancaud, A., Dutreix, M. & Viovy, J-L. Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation. EMBO J. 25, 4293-4304 (2006). (Pubitemid 44435227)
    • (2006) EMBO Journal , vol.25 , Issue.18 , pp. 4293-4304
    • Fulconis, R.1    Mine, J.2    Bancaud, A.3    Dutreix, M.4    Viovy, J.-L.5
  • 105
    • 44949091416 scopus 로고    scopus 로고
    • A Rad51 Presynaptic Filament Is Sufficient to Capture Nucleosomal Homology during Recombinational Repair of a DNA Double-Strand Break
    • DOI 10.1016/j.molcel.2008.04.015, PII S1097276508002992
    • Sinha, M. & Peterson, C. L. A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol. Cell 30, 803-810 (2008). (Pubitemid 351815124)
    • (2008) Molecular Cell , vol.30 , Issue.6 , pp. 803-810
    • Sinha, M.1    Peterson, C.L.2
  • 106
    • 15444364449 scopus 로고    scopus 로고
    • ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break
    • DOI 10.1074/jbc.M414388200
    • Wolner, B. & Peterson, C. L. ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J. Biol. Chem. 280, 10855-10860 (2005). (Pubitemid 40395950)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.11 , pp. 10855-10860
    • Wolner, B.1    Peterson, C.L.2
  • 107
    • 79952768906 scopus 로고    scopus 로고
    • Real-time analysis of double-strand DNA break repair by homologous recombination
    • Hicks, W. M., Yamaguchi, M. & Haber, J. E. Real-time analysis of double-strand DNA break repair by homologous recombination. Proc. Natl Acad. Sci. USA 108, 3108-3115 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 3108-3115
    • Hicks, W.M.1    Yamaguchi, M.2    Haber, J.E.3
  • 108
    • 84893749175 scopus 로고    scopus 로고
    • Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation
    • Wright, W. D. & Heyer, W.-D. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol. Cell 53, 420-432 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 420-432
    • Wright, W.D.1    Heyer, W.-D.2
  • 109
    • 70149105916 scopus 로고    scopus 로고
    • Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling
    • Sinha, M., Watanabe, S., Johnson, A., Moazed, D. & Peterson, C. L. Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138, 1109-1121 (2009).
    • (2009) Cell , vol.138 , pp. 1109-1121
    • Sinha, M.1    Watanabe, S.2    Johnson, A.3    Moazed, D.4    Peterson, C.L.5
  • 110
    • 84877816931 scopus 로고    scopus 로고
    • Chromatin modifications and chromatin remodeling during DNA repair in budding yeast
    • Tsabar, M. & Haber, J. E. Chromatin modifications and chromatin remodeling during DNA repair in budding yeast. Curr. Opin. Genet. Dev. 23, 166-173 (2013).
    • (2013) Curr. Opin. Genet. Dev. , vol.23 , pp. 166-173
    • Tsabar, M.1    Haber, J.E.2
  • 111
    • 59149092573 scopus 로고    scopus 로고
    • INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination
    • Tsukuda, T. et al. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair 8, 360-369 (2009).
    • (2009) DNA Repair , vol.8 , pp. 360-369
    • Tsukuda, T.1
  • 112
    • 23044479628 scopus 로고    scopus 로고
    • Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair
    • DOI 10.1101/gad.1273105
    • Chai, B., Huang, J., Cairns, B. R. & Laurent, B. C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656-1661 (2005). (Pubitemid 41058359)
    • (2005) Genes and Development , vol.19 , Issue.14 , pp. 1656-1661
    • Chai, B.1    Huang, J.2    Cairns, B.R.3    Laurent, B.C.4
  • 113
    • 77951498531 scopus 로고    scopus 로고
    • High-resolution profiling of γh2AX around DNA double strand breaks in the mammalian genome
    • Iacovoni, J. S. et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446-1457 (2010).
    • (2010) EMBO J. , vol.29 , pp. 1446-1457
    • Iacovoni, J.S.1
  • 114
    • 10944232673 scopus 로고    scopus 로고
    • Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
    • DOI 10.1016/j.molcel.2004.11.026, PII S1097276504007178
    • Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003-1015 (2004). (Pubitemid 40018409)
    • (2004) Molecular Cell , vol.16 , Issue.6 , pp. 1003-1015
    • Strom, L.1    Lindroos, H.B.2    Shirahige, K.3    Sjogren, C.4
  • 115
    • 84883258272 scopus 로고    scopus 로고
    • γH2AX spreading linked to homology search
    • Renkawitz, J., Lademann, C. A. & Jentsch, S. γH2AX spreading linked to homology search. Cell Cycle 12, 2526-2527 (2013).
    • (2013) Cell Cycle , vol.12 , pp. 2526-2527
    • Renkawitz, J.1    Lademann, C.A.2    Jentsch, S.3
  • 116
    • 84893810363 scopus 로고    scopus 로고
    • Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break
    • Lee, C.-S., Lee, K., Legube, G. & Haber, J. E. Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nature Struct. Mol. Biol. 21, 103-109 (2014).
    • (2014) Nature Struct. Mol. Biol. , vol.21 , pp. 103-109
    • Lee, C.-S.1    Lee, K.2    Legube, G.3    Haber, J.E.4
  • 117
    • 84885373715 scopus 로고    scopus 로고
    • DNA repair choice defines a common pathway for recruitment of chromatin regulators
    • Bennett, G., Papamichos-Chronakis, M. & Peterson, C. L. DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nature Commun. 4, 2084 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 2084
    • Bennett, G.1    Papamichos-Chronakis, M.2    Peterson, C.L.3
  • 118
    • 33646177549 scopus 로고    scopus 로고
    • At the heart of the chromosome: SMC proteins in action
    • Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311-322 (2006).
    • (2006) Nature Rev. Mol. Cell Biol. , vol.7 , pp. 311-322
    • Hirano, T.1
  • 119
    • 84875127327 scopus 로고    scopus 로고
    • CTCF and cohesin: Linking gene regulatory elements with their targets
    • Merkenschlager, M. & Odom, D. T. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152, 1285-1297 (2013).
    • (2013) Cell , vol.152 , pp. 1285-1297
    • Merkenschlager, M.1    Odom, D.T.2
  • 120
    • 0035954251 scopus 로고    scopus 로고
    • Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
    • DOI 10.1016/S0960-9822(01)00271-8
    • Sjogren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991-995 (2001). (Pubitemid 32589193)
    • (2001) Current Biology , vol.11 , Issue.12 , pp. 991-995
    • Sjogren, C.1    Nasmyth, K.2
  • 121
    • 34447536708 scopus 로고    scopus 로고
    • DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
    • DOI 10.1126/science.1140637
    • Unal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245-248 (2007). (Pubitemid 47076200)
    • (2007) Science , vol.317 , Issue.5835 , pp. 245-248
    • Unal, E.1    Heidinger-Pauli, J.M.2    Koshland, D.3
  • 122
    • 34447549077 scopus 로고    scopus 로고
    • Postreplicative formation of cohesion is required for repair and induced by a single DNA break
    • DOI 10.1126/science.1140649
    • Strom, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242-245 (2007). (Pubitemid 47076199)
    • (2007) Science , vol.317 , Issue.5835 , pp. 242-245
    • Strom, L.1    Karlsson, C.2    Lindroos, H.B.3    Wedahl, S.4    Katou, Y.5    Shirahige, K.6    Sjogren, C.7
  • 124
    • 10944262393 scopus 로고    scopus 로고
    • DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
    • DOI 10.1016/j.molcel.2004.11.027, PII S1097276504007191
    • Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991-1002 (2004). (Pubitemid 40018408)
    • (2004) Molecular Cell , vol.16 , Issue.6 , pp. 991-1002
    • Unal, E.1    Arbel-Eden, A.2    Sattler, U.3    Shroff, R.4    Lichten, M.5    Haber, J.E.6    Koshland, D.7
  • 126
    • 33746515537 scopus 로고    scopus 로고
    • Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks
    • DOI 10.1038/sj.emboj.7601218, PII 7601218
    • Potts, P. R., Porteus, M. H. & Yu, H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377-3388 (2006). (Pubitemid 44141795)
    • (2006) EMBO Journal , vol.25 , Issue.14 , pp. 3377-3388
    • Potts, P.R.1    Porteus, M.H.2    Yu, H.3
  • 127
    • 77957363057 scopus 로고    scopus 로고
    • Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes
    • Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet. 6, e1001006 (2010).
    • (2010) PLoS Genet. , vol.6
    • Covo, S.1    Westmoreland, J.W.2    Gordenin, D.A.3    Resnick, M.A.4
  • 128
    • 83455197497 scopus 로고    scopus 로고
    • Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition
    • Coïc, E. et al. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics 189, 1225-1233 (2011).
    • (2011) Genetics , vol.189 , pp. 1225-1233
    • Coïc, E.1
  • 129
    • 84876838711 scopus 로고    scopus 로고
    • The hierarchy of the 3D genome
    • Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol. Cell 49, 773-782 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 773-782
    • Gibcus, J.H.1    Dekker, J.2
  • 130
    • 84892500958 scopus 로고    scopus 로고
    • Double-strand break repair by interchromosomal recombination: An in vivo repair mechanism utilized by multiple somatic tissues in mammals
    • White, R. R. et al. Double-strand break repair by interchromosomal recombination: an In vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS ONE 8, e84379 (2013).
    • (2013) PLoS ONE , vol.8
    • White, R.R.1
  • 131
    • 0029745577 scopus 로고    scopus 로고
    • The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location
    • Goldman, A. S. & Lichten, M. The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144, 43-55 (1996). (Pubitemid 26291916)
    • (1996) Genetics , vol.144 , Issue.1 , pp. 43-55
    • Goldman, A.S.H.1
  • 132
    • 79952314830 scopus 로고    scopus 로고
    • Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
    • Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732-744 (2011).
    • (2011) Cell , vol.144 , pp. 732-744
    • Chiolo, I.1
  • 133
    • 79961207835 scopus 로고    scopus 로고
    • DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin
    • Jakob, B. et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 6489-6499 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 6489-6499
    • Jakob, B.1
  • 134
    • 34447532525 scopus 로고    scopus 로고
    • Heterochromatin is refractory to γ-H2AX modification in yeast and mammals
    • DOI 10.1083/jcb.200612031
    • Kim, J.A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J. E. Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209-218 (2007). (Pubitemid 47076458)
    • (2007) Journal of Cell Biology , vol.178 , Issue.2 , pp. 209-218
    • Kim, J.-A.1    Kruhlak, M.2    Dotiwala, F.3    Nussenzweig, A.4    Haber, J.E.5
  • 136
    • 0022689021 scopus 로고
    • Homologous recombination in Escherichia coli: Dependence on substrate length and homology
    • Shen, P. & Huang, H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112, 441-457 (1986).
    • (1986) Genetics , vol.112 , pp. 441-457
    • Shen, P.1    Huang, H.V.2
  • 137
    • 0036723660 scopus 로고    scopus 로고
    • Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences
    • Ira, G. & Haber, J. E. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22, 6384-6392 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 6384-6392
    • Ira, G.1    Haber, J.E.2
  • 138
    • 0025073480 scopus 로고
    • Homologous recombination in hybridoma cells: Dependence on time and fragment length
    • Shulman, M. J., Nissen, L. & Collins, C. Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol. Cell. Biol. 10, 4466-4472 (1990).
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 4466-4472
    • Shulman, M.J.1    Nissen, L.2    Collins, C.3
  • 139
    • 0025943412 scopus 로고
    • The length of homology required for gene targeting in embryonic stem cells
    • Hasty, P., Rivera-Pérez, J. & Bradley, A. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586-5591 (1991). (Pubitemid 21895325)
    • (1991) Molecular and Cellular Biology , vol.11 , Issue.11 , pp. 5586-5591
    • Hasty, P.1    Rivera-Perez, J.2    Bradley, A.3
  • 140
    • 84901355743 scopus 로고    scopus 로고
    • Nascent DNA synthesis during homologous recombination is synergistically promoted by the Rad51 recombinase and DNA homology
    • Mundia, M. M., Desai, V., Magwood, A. C. & Baker, M. D. Nascent DNA synthesis during homologous recombination is synergistically promoted by the Rad51 recombinase and DNA homology. Genetics http://dx.doi.org/10.1534/genetics. 114.161455 (2014).
    • (2014) Genetics
    • Mundia, M.M.1    Desai, V.2    Magwood, A.C.3    Baker, M.D.4
  • 141
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast
    • DOI 10.1016/S0092-8674(03)00886-9
    • Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401-411 (2003). (Pubitemid 37456803)
    • (2003) Cell , vol.115 , Issue.4 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 142
    • 54949093203 scopus 로고    scopus 로고
    • Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase
    • Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597-602 (2008).
    • (2008) Science , vol.322 , pp. 597-602
    • Nagai, S.1
  • 143
    • 59649124496 scopus 로고    scopus 로고
    • Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break
    • Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335-343 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 335-343
    • Kalocsay, M.1    Hiller, N.J.2    Jentsch, S.3
  • 144
    • 65249150132 scopus 로고    scopus 로고
    • Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery
    • Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912-927 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 912-927
    • Oza, P.1    Jaspersen, S.L.2    Miele, A.3    Dekker, J.4    Peterson, C.L.5
  • 145
    • 84873320525 scopus 로고    scopus 로고
    • Mechanisms of programmed DNA lesions and genomic instability in the immune system
    • Alt, F. W., Zhang, Y., Meng, F.-L., Guo, C. & Schwer, B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417-429 (2013).
    • (2013) Cell , vol.152 , pp. 417-429
    • Alt, F.W.1    Zhang, Y.2    Meng, F.-L.3    Guo, C.4    Schwer, B.5
  • 146
    • 79953164038 scopus 로고    scopus 로고
    • Recombination centres and the orchestration of V(D)J recombination
    • Schatz, D. G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nature Rev. Immunol. 11, 251-263 (2011).
    • (2011) Nature Rev. Immunol. , vol.11 , pp. 251-263
    • Schatz, D.G.1    Ji, Y.2
  • 148
    • 80051936225 scopus 로고    scopus 로고
    • Focusing homologous recombination: Pilin antigenic variation in the pathogenic Neisseria
    • Cahoon, L. A. & Seifert, H. S. Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol. Microbiol. 81, 1136-1143 (2011).
    • (2011) Mol. Microbiol. , vol.81 , pp. 1136-1143
    • Cahoon, L.A.1    Seifert, H.S.2
  • 149
    • 84887614639 scopus 로고    scopus 로고
    • Antigenic variation in African trypanosomes: The importance of chromosomal and nuclear context in VSG expression control
    • Glover, L. et al. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell. Microbiol. 15, 1984-1993 (2013).
    • (2013) Cell. Microbiol. , vol.15 , pp. 1984-1993
    • Glover, L.1
  • 150
    • 84876342100 scopus 로고    scopus 로고
    • Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum
    • Guizetti, J. & Scherf, A. Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell. Microbiol. 15, 718-726 (2013).
    • (2013) Cell. Microbiol. , vol.15 , pp. 718-726
    • Guizetti, J.1    Scherf, A.2
  • 153
    • 80053339755 scopus 로고    scopus 로고
    • In vitro assays for DNA pairing and recombination-associated DNA synthesis
    • Liu, J., Sneeden, J. & Heyer, W.-D. In vitro assays for DNA pairing and recombination-associated DNA synthesis. Methods Mol. Biol. 745, 363-383 (2011).
    • (2011) Methods Mol. Biol. , vol.745 , pp. 363-383
    • Liu, J.1    Sneeden, J.2    Heyer, W.-D.3
  • 154
    • 0030915446 scopus 로고    scopus 로고
    • Kinetic analysis of pairing and strand exchange catalyzed by RecA: Detection by fluorescence energy transfer
    • DOI 10.1074/jbc.272.23.14672
    • Bazemore, L. R., Takahashi, M. & Radding, C. M. Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J. Biol. Chem. 272, 14672-14682 (1997). (Pubitemid 27251731)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.23 , pp. 14672-14682
    • Bazemore, L.R.1    Takahashi, M.2    Radding, C.M.3
  • 155
    • 77951229260 scopus 로고    scopus 로고
    • Caught in the act: The lifetime of synaptic intermediates during the search for homology on DNA
    • Mani, A., Braslavsky, I., Arbel-Goren, R. & Stavans, J. Caught in the act: the lifetime of synaptic intermediates during the search for homology on DNA. Nucleic Acids Res. 38, 2036-2043 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2036-2043
    • Mani, A.1    Braslavsky, I.2    Arbel-Goren, R.3    Stavans, J.4
  • 156
    • 77952545470 scopus 로고    scopus 로고
    • Single-molecule imaging brings Rad51 nucleoprotein filaments into focus
    • Forget, A. L. & Kowalczykowski, S. C. Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol. 20, 269-276 (2010).
    • (2010) Trends Cell Biol. , vol.20 , pp. 269-276
    • Forget, A.L.1    Kowalczykowski, S.C.2
  • 157
    • 0028061666 scopus 로고
    • Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
    • Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096-8106 (1994). (Pubitemid 24373558)
    • (1994) Molecular and Cellular Biology , vol.14 , Issue.12 , pp. 8096-8106
    • Rouet, P.1    Smih, F.2    Jasin, M.3
  • 158
    • 0028013486 scopus 로고
    • Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
    • Kramer, K. M., Brock, J. A., Bloom, K., Moore, J. K. & Haber, J. E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293-1301 (1994). (Pubitemid 24036579)
    • (1994) Molecular and Cellular Biology , vol.14 , Issue.2 , pp. 1293-1301
    • Kramer, K.M.1    Brock, J.A.2    Bloom, K.3    Moore, J.K.4    Haber, J.E.5
  • 159
    • 84875190221 scopus 로고    scopus 로고
    • Genome architecture: Domain organization of interphase chromosomes
    • Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270-1284 (2013).
    • (2013) Cell , vol.152 , pp. 1270-1284
    • Bickmore, W.A.1    Van Steensel, B.2
  • 160
    • 84879230617 scopus 로고    scopus 로고
    • Nuclear organization in the nematode C. Elegans
    • Sharma, R. & Meister, P. Nuclear organization in the nematode C. elegans. Curr. Opin. Cell Biol. 25, 395-402 (2013).
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 395-402
    • Sharma, R.1    Meister, P.2
  • 161
    • 84874192725 scopus 로고    scopus 로고
    • Organization and segregation of bacterial chromosomes
    • Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nature Rev. Genet. 14, 191-203 (2013).
    • (2013) Nature Rev. Genet. , vol.14 , pp. 191-203
    • Wang, X.1    Montero Llopis, P.2    Rudner, D.Z.3
  • 162
    • 77954817153 scopus 로고    scopus 로고
    • Yeast chromosomal interactions and nuclear architecture
    • O'Sullivan, J. M. Yeast chromosomal interactions and nuclear architecture. Curr. Opin. Cell Biol. 22, 298-304 (2010).
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 298-304
    • O'Sullivan, J.M.1
  • 163
    • 78951488313 scopus 로고    scopus 로고
    • Advancing our understanding of functional genome organisation through studies in the fission yeast
    • Olsson, I. & Bjerling, P. Advancing our understanding of functional genome organisation through studies in the fission yeast. Curr. Genet. 57, 1-12 (2011).
    • (2011) Curr. Genet. , vol.57 , pp. 1-12
    • Olsson, I.1    Bjerling, P.2
  • 165
    • 0035316574 scopus 로고    scopus 로고
    • Chromosome territories, nuclear architecture and gene regulation in mammalian cells
    • DOI 10.1038/35066075
    • Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292-301 (2001). (Pubitemid 33674777)
    • (2001) Nature Reviews Genetics , vol.2 , Issue.4 , pp. 292-301
    • Cremer, T.1    Cremer, C.2
  • 166
    • 77954995399 scopus 로고    scopus 로고
    • A guide to super-resolution fluorescence microscopy
    • Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165-175 (2010).
    • (2010) J. Cell Biol. , vol.190 , pp. 165-175
    • Schermelleh, L.1    Heintzmann, R.2    Leonhardt, H.3
  • 167
    • 84878011578 scopus 로고    scopus 로고
    • Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data
    • Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Rev. Genet. 14, 390-403 (2013).
    • (2013) Nature Rev. Genet. , vol.14 , pp. 390-403
    • Dekker, J.1    Marti-Renom, M.A.2    Mirny, L.A.3
  • 168
    • 77957932111 scopus 로고    scopus 로고
    • Genomics tools for unraveling chromosome architecture
    • van Steensel, B. & Dekker, J. Genomics tools for unraveling chromosome architecture. Nature Biotech. 28, 1089-1095 (2010).
    • (2010) Nature Biotech. , vol.28 , pp. 1089-1095
    • Van Steensel, B.1    Dekker, J.2
  • 169
    • 84875200698 scopus 로고    scopus 로고
    • Functional implications of genome topology
    • Cavalli, G. & Misteli, T. Functional implications of genome topology. Nature Struct. Mol. Biol. 20, 290-299 (2013).
    • (2013) Nature Struct. Mol. Biol. , vol.20 , pp. 290-299
    • Cavalli, G.1    Misteli, T.2
  • 170
    • 79957803199 scopus 로고    scopus 로고
    • Nuclear organization: Taking a position on gene expression
    • Geyer, P. K., Vitalini, M. W. & Wallrath, L. L. Nuclear organization: taking a position on gene expression. Curr. Opin. Cell Biol. 23, 354-359 (2011).
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 354-359
    • Geyer, P.K.1    Vitalini, M.W.2    Wallrath, L.L.3
  • 172
    • 34249307315 scopus 로고    scopus 로고
    • Nuclear organization of the genome and the potential for gene regulation
    • DOI 10.1038/nature05916, PII NATURE05916
    • Fraser, P. & Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413-417 (2007). (Pubitemid 46816747)
    • (2007) Nature , vol.447 , Issue.7143 , pp. 413-417
    • Fraser, P.1    Bickmore, W.2
  • 173
    • 57049179496 scopus 로고    scopus 로고
    • High-resolution statistical mapping reveals gene territories in live yeast
    • Berger, A. B. et al. High-resolution statistical mapping reveals gene territories in live yeast. Nature Methods 5, 1031-1037 (2008).
    • (2008) Nature Methods , vol.5 , pp. 1031-1037
    • Berger, A.B.1
  • 174
    • 13444257509 scopus 로고    scopus 로고
    • Chromosome looping in yeast: Telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization
    • DOI 10.1083/jcb.200409091
    • Bystricky, K., Laroche, T., van Houwe, G., Blaszczyk, M. & Gasser, S. M. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168, 375-387 (2005). (Pubitemid 40205061)
    • (2005) Journal of Cell Biology , vol.168 , Issue.3 , pp. 375-387
    • Bystricky, K.1    Laroche, T.2    Van Houwe, G.3    Blaszczyk, M.4    Gasser, S.M.5
  • 175
    • 84867842663 scopus 로고    scopus 로고
    • A predictive computational model of the dynamic 3D interphase yeast nucleus
    • Wong, H. et al. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr. Biol. 22, 1881-1890 (2012).
    • (2012) Curr. Biol. , vol.22 , pp. 1881-1890
    • Wong, H.1
  • 176
    • 84863540362 scopus 로고    scopus 로고
    • Physical tethering and volume exclusion determine higher-order genome organization in budding yeast
    • Tjong, H., Gong, K., Chen, L. & Alber, F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res. 22, 1295-1305 (2012).
    • (2012) Genome Res. , vol.22 , pp. 1295-1305
    • Tjong, H.1    Gong, K.2    Chen, L.3    Alber, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.