-
1
-
-
78149425175
-
Regulation of homologous recombination in eukaryotes
-
Heyer, W. D., Ehmsen, K. T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113-139 (2010).
-
(2010)
Annu. Rev. Genet.
, vol.44
, pp. 113-139
-
-
Heyer, W.D.1
Ehmsen, K.T.2
Liu, J.3
-
2
-
-
84888594733
-
Initiation of meiotic recombination: How and where? Conservation and specificities among eukaryotes
-
de Massy, B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu. Rev. Genet. 47, 563-599 (2013).
-
(2013)
Annu. Rev. Genet.
, vol.47
, pp. 563-599
-
-
De Massy, B.1
-
3
-
-
84860548726
-
Mating-type genes and MAT switching in Saccharomyces cerevisiae
-
Haber, J. E. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33-64 (2012).
-
(2012)
Genetics
, vol.191
, pp. 33-64
-
-
Haber, J.E.1
-
4
-
-
84959678845
-
A mechanism for gene conversion in fungi
-
Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. 5, 282-304 (1964).
-
(1964)
Genet. Res.
, vol.5
, pp. 282-304
-
-
Holliday, R.1
-
5
-
-
70349280357
-
Recombinational DNA repair in a cellular context: A search for the homology search
-
Weiner, A., Zauberman, N. & Minsky, A. Recombinational DNA repair in a cellular context: a search for the homology search. Nature Rev. Microbiol. 7, 748-755 (2009).
-
(2009)
Nature Rev. Microbiol.
, vol.7
, pp. 748-755
-
-
Weiner, A.1
Zauberman, N.2
Minsky, A.3
-
6
-
-
37249046360
-
Finding a match: How do homologous sequences get together for recombination?
-
DOI 10.1038/nrg2224, PII NRG2224
-
Barzel, A. & Kupiec, M. Finding a match: how do homologous sequences get together for recombination? Nature Rev. Genet. 9, 27-37 (2008). (Pubitemid 350277300)
-
(2008)
Nature Reviews Genetics
, vol.9
, Issue.1
, pp. 27-37
-
-
Barzel, A.1
Kupiec, M.2
-
7
-
-
3242892765
-
DSB repair: The yeast paradigm
-
DOI 10.1016/j.dnarep.2004.04.013, PII S1568786404001442
-
Aylon, Y. & Kupiec, M. DSB repair: the yeast paradigm. DNA Repair 3, 797-815 (2004). (Pubitemid 38997923)
-
(2004)
DNA Repair
, vol.3
, Issue.8-9
, pp. 797-815
-
-
Aylon, Y.1
Kupiec, M.2
-
8
-
-
84901508700
-
Single-molecule views on homologous recombination
-
Candelli, A., Modesti, M., Peterman, E. J. G. & Wuite, G. J. L. Single-molecule views on homologous recombination. Q. Rev. Biophys. 46, 323-348 (2013).
-
(2013)
Q. Rev. Biophys.
, vol.46
, pp. 323-348
-
-
Candelli, A.1
Modesti, M.2
Peterman, E.J.G.3
Wuite, G.J.L.4
-
9
-
-
84875207723
-
Chromatin movement in the maintenance of genome stability
-
Dion, V. & Gasser, S. M. Chromatin movement in the maintenance of genome stability. Cell 152, 1355-1364 (2013).
-
(2013)
Cell
, vol.152
, pp. 1355-1364
-
-
Dion, V.1
Gasser, S.M.2
-
10
-
-
84886751857
-
DNA in motion during double-strand break repair
-
Miné-Hattab, J. & Rothstein, R. DNA in motion during double-strand break repair. Trends Cell Biol. 23, 529-536 (2013).
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 529-536
-
-
Miné-Hattab, J.1
Rothstein, R.2
-
11
-
-
0029174547
-
Homologous recombination proteins in prokaryotes and eukaryotes
-
Camerini-Otero, R. D. & Hsieh, P. Homologous recombination proteins in prokaryotes and eukaryotes. Annu. Rev. Genet. 29, 509-552 (1995). (Pubitemid 26005352)
-
(1995)
Annual Review of Genetics
, vol.29
, pp. 509-552
-
-
Daniel Camerini-Otero, R.1
Hsieh, P.2
-
12
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247-271 (2011).
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
13
-
-
84865810905
-
Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis
-
Cloud, V., Chan, Y.-L., Grubb, J., Budke, B. & Bishop, D. K. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-1225 (2012).
-
(2012)
Science
, vol.337
, pp. 1222-1225
-
-
Cloud, V.1
Chan, Y.-L.2
Grubb, J.3
Budke, B.4
Bishop, D.K.5
-
15
-
-
0032481374
-
The function of the secondary DNA-binding site of RecA protein during DNA strand exchange
-
DOI 10.1093/emboj/17.4.1161
-
Mazin, A. V. & Kowalczykowski, S. C. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. EMBO J. 17, 1161-1168 (1998). (Pubitemid 28077669)
-
(1998)
EMBO Journal
, vol.17
, Issue.4
, pp. 1161-1168
-
-
Mazin, A.V.1
Kowalczykowski, S.C.2
-
16
-
-
84861978524
-
Mechanism of homology recognition in DNA recombination from dual-molecule experiments
-
De Vlaminck, I. et al. Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol. Cell 46, 616-624 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 616-624
-
-
De Vlaminck, I.1
-
17
-
-
4644220324
-
Synaptic complex revisited: A homologous recombinase flips and switches bases
-
DOI 10.1016/j.molcel.2004.09.010, PII S1097276504005465
-
Voloshin, O. N. & Camerini-Otero, R. D. Synaptic complex revisited; a homologous recombinase flips and switches bases. Mol. Cell 15, 846-847 (2004). (Pubitemid 39277981)
-
(2004)
Molecular Cell
, vol.15
, Issue.6
, pp. 846-847
-
-
Voloshin, O.N.1
Camerini-Otero, R.D.2
-
18
-
-
4644225318
-
Exchange of DNA base pairs that coincides with recognition of homology promoted by E. Coli RecA protein
-
DOI 10.1016/j.molcel.2004.08.017, PII S1097276504004873
-
Folta-Stogniew, E., O'Malley, S., Gupta, R., Anderson, K. S. & Radding, C. M. Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol. Cell 15, 965-975 (2004). (Pubitemid 39277992)
-
(2004)
Molecular Cell
, vol.15
, Issue.6
, pp. 965-975
-
-
Folta-Stogniew, E.1
O'Malley, S.2
Gupta, R.3
Anderson, K.S.4
Radding, C.M.5
-
19
-
-
0033231554
-
Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein
-
Gupta, R. C., Folta-Stogniew, E., O'Malley, S., Takahashi, M. & Radding, C. M. Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. Mol. Cell 4, 705-714 (1999).
-
(1999)
Mol. Cell
, vol.4
, pp. 705-714
-
-
Gupta, R.C.1
Folta-Stogniew, E.2
O'Malley, S.3
Takahashi, M.4
Radding, C.M.5
-
20
-
-
44349162159
-
Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
-
Chen, Z., Yang, H. & Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-484 (2008).
-
(2008)
Nature
, vol.453
, pp. 489-484
-
-
Chen, Z.1
Yang, H.2
Pavletich, N.P.3
-
21
-
-
69449083857
-
Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy
-
Reymer, A., Frykholm, K., Morimatsu, K., Takahashi, M. & Nordén, B. Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy. Proc. Natl Acad. Sci. USA 106, 13248-13253 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 13248-13253
-
-
Reymer, A.1
Frykholm, K.2
Morimatsu, K.3
Takahashi, M.4
Nordén, B.5
-
22
-
-
77956062712
-
RecA-mediated homology search as a nearly optimal signal detection system
-
Savir, Y. & Tlusty, T. RecA-mediated homology search as a nearly optimal signal detection system. Mol. Cell 40, 388-396 (2010).
-
(2010)
Mol. Cell
, vol.40
, pp. 388-396
-
-
Savir, Y.1
Tlusty, T.2
-
23
-
-
84891766191
-
The differential extension in dsDNA bound to Rad51 filaments may play important roles in homology recognition and strand exchange
-
Danilowicz, C. et al. The differential extension in dsDNA bound to Rad51 filaments may play important roles in homology recognition and strand exchange. Nucleic Acids Res. 42, 526-533 (2014).
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 526-533
-
-
Danilowicz, C.1
-
24
-
-
84857883369
-
RecA homology search is promoted by mechanical stress along the scanned duplex DNA
-
Danilowicz, C. et al. RecA homology search is promoted by mechanical stress along the scanned duplex DNA. Nucleic Acids Res. 40, 1717-1727 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 1717-1727
-
-
Danilowicz, C.1
-
25
-
-
0026740399
-
The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA
-
Hsieh, P., Camerini-Otero, C. S. & Camerini-Otero, R. D. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc. Natl Acad. Sci. USA 89, 6492-6496 (1992).
-
(1992)
Proc. Natl Acad. Sci. USA
, vol.89
, pp. 6492-6496
-
-
Hsieh, P.1
Camerini-Otero, C.S.2
Camerini-Otero, R.D.3
-
26
-
-
0242384946
-
Rad51 Recombinase and Recombination Mediators
-
DOI 10.1074/jbc.R300027200
-
Sung, P., Krejci, L., van Komen, S. & Sehorn, M. G. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729-42732 (2003). (Pubitemid 37345880)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.44
, pp. 42729-42732
-
-
Sung, P.1
Krejci, L.2
Van Komen, S.3
Sehorn, M.G.4
-
27
-
-
32644466860
-
Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function
-
DOI 10.1016/j.dnarep.2005.11.005, PII S1568786405003174
-
Chi, P., van Komen, S., Sehorn, M. G., Sigurdsson, S. & Sung, P. Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair 5, 381-391 (2006). (Pubitemid 43247603)
-
(2006)
DNA Repair
, vol.5
, Issue.3
, pp. 381-391
-
-
Chi, P.1
Van Komen, S.2
Sehorn, M.G.3
Sigurdsson, S.4
Sung, P.5
-
28
-
-
0025166577
-
Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis
-
Menetski, J. P., Bear, D. G. & Kowalczykowski, S. C. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc. Natl Acad. Sci. USA 87, 21-25 (1990).
-
(1990)
Proc. Natl Acad. Sci. USA
, vol.87
, pp. 21-25
-
-
Menetski, J.P.1
Bear, D.G.2
Kowalczykowski, S.C.3
-
29
-
-
0029953512
-
Yeast RAD51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis
-
DOI 10.1074/jbc.271.45.27983
-
Sung, P. & Stratton, S. A. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271, 27983-27986 (1996). (Pubitemid 26374597)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.45
, pp. 27983-27986
-
-
Sung, P.1
Stratton, S.A.2
-
30
-
-
84869053072
-
Complementary strand relocation may play vital roles in RecA-based homology recognition
-
Peacock-Villada, A. et al. Complementary strand relocation may play vital roles in RecA-based homology recognition. Nucleic Acids Res. 40, 10441-10451 (2012).
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 10441-10451
-
-
Peacock-Villada, A.1
-
31
-
-
80051527439
-
Real-time observation of strand exchange reaction with high spatiotemporal resolution
-
Ragunathan, K., Joo, C. & Ha, T. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19, 1064-1073 (2011).
-
(2011)
Structure
, vol.19
, pp. 1064-1073
-
-
Ragunathan, K.1
Joo, C.2
Ha, T.3
-
32
-
-
78649446615
-
Regulation of DNA strand exchange in homologous recombination
-
Holthausen, J. T., Wyman, C. & Kanaar, R. Regulation of DNA strand exchange in homologous recombination. DNA Repair 9, 1264-1272 (2010).
-
(2010)
DNA Repair
, vol.9
, pp. 1264-1272
-
-
Holthausen, J.T.1
Wyman, C.2
Kanaar, R.3
-
33
-
-
0025891414
-
Biochemistry of genetic recombination: Energetics and mechanism of DNA strand exchange
-
Kowalczykowski, S. C. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 20, 539-575 (1991).
-
(1991)
Annu. Rev. Biophys. Biophys. Chem.
, vol.20
, pp. 539-575
-
-
Kowalczykowski, S.C.1
-
34
-
-
0022646708
-
On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli
-
Julin, D. A., Riddles, P. W. & Lehman, I. R. On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA binding proteins of Escherichia coli. J. Biol. Chem. 261, 1025-1030 (1986). (Pubitemid 16144759)
-
(1986)
Journal of Biological Chemistry
, vol.261
, Issue.3
, pp. 1025-1030
-
-
Julin, D.A.1
Riddles, P.W.2
Lehman, I.R.3
-
35
-
-
0020823126
-
By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology
-
Gonda, D. K. & Radding, C. M. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34, 647-654 (1983).
-
(1983)
Cell
, vol.34
, pp. 647-654
-
-
Gonda, D.K.1
Radding, C.M.2
-
36
-
-
0019887628
-
Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory
-
Berg, O. G. & Winter, R. B. & von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929-6948 (1981).
-
(1981)
Biochemistry
, vol.20
, pp. 6929-6948
-
-
Berg, O.G.1
Winter, R.B.2
Von Hippel, P.H.3
-
37
-
-
65549171477
-
An end to 40 years of mistakes in DNA-protein association kinetics?
-
Halford, S. E. An end to 40 years of mistakes in DNA-protein association kinetics? Biochem. Soc. Trans. 37, 343-348 (2009).
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 343-348
-
-
Halford, S.E.1
-
38
-
-
0032553529
-
No sliding during homology search by RecA protein
-
DOI 10.1074/jbc.273.47.31565
-
Adzuma, K. No sliding during homology search by RecA protein. J. Biol. Chem. 273, 31565-31573 (1998). (Pubitemid 28533180)
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.47
, pp. 31565-31573
-
-
Adzuma, K.1
-
39
-
-
84881494657
-
RecA filament sliding on DNA facilitates homology search
-
Ragunathan, K., Liu, C. & Ha, T. RecA filament sliding on DNA facilitates homology search. eLife 1, e00067 (2012).
-
(2012)
ELife
, vol.1
-
-
Ragunathan, K.1
Liu, C.2
Ha, T.3
-
40
-
-
43449094034
-
Homologous recombination in real time: DNA strand exchange by RecA
-
van der Heijden, T. et al. Homologous recombination in real time: DNA strand exchange by RecA. Mol. Cell 30, 530-538 (2008).
-
(2008)
Mol. Cell
, vol.30
, pp. 530-538
-
-
Van Der-Heijden, T.1
-
41
-
-
84857118715
-
Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search
-
Forget, A. L. & Kowalczykowski, S. C. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482, 423-427 (2012).
-
(2012)
Nature
, vol.482
, pp. 423-427
-
-
Forget, A.L.1
Kowalczykowski, S.C.2
-
42
-
-
46949098616
-
Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
-
DOI 10.1038/emboj.2008.111, PII EMBOJ2008111
-
Zierhut, C. & Diffley, J. F. X. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875-1885 (2008). (Pubitemid 351960208)
-
(2008)
EMBO Journal
, vol.27
, Issue.13
, pp. 1875-1885
-
-
Zierhut, C.1
Diffley, J.F.X.2
-
43
-
-
0025020278
-
Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
-
White, C. I. & Haber, J. E. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9, 663-673 (1990).
-
(1990)
EMBO J.
, vol.9
, pp. 663-673
-
-
White, C.I.1
Haber, J.E.2
-
44
-
-
84876826267
-
Monitoring homology search during DNA double-strand break repair in vivo
-
Renkawitz, J., Lademann, C. A., Kalocsay, M. & Jentsch, S. Monitoring homology search during DNA double-strand break repair in vivo. Mol. Cell 50, 261-272 (2013).
-
(2013)
Mol. Cell
, vol.50
, pp. 261-272
-
-
Renkawitz, J.1
Lademann, C.A.2
Kalocsay, M.3
Jentsch, S.4
-
45
-
-
50649100744
-
Mechanism of eukaryotic homologous recombination
-
San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229-257 (2008).
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 229-257
-
-
San Filippo, J.1
Sung, P.2
Klein, H.3
-
46
-
-
77649165394
-
Maintaining genome stability at the replication fork
-
Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Naure. Rev. Mol. Cell Biol. 11, 208-219 (2010).
-
(2010)
Naure. Rev. Mol. Cell Biol.
, vol.11
, pp. 208-219
-
-
Branzei, D.1
Foiani, M.2
-
47
-
-
84873804860
-
The hidden talents of SPO11
-
Loidl, J. The hidden talents of SPO11. Dev. Cell 24, 123-124 (2013).
-
(2013)
Dev. Cell
, vol.24
, pp. 123-124
-
-
Loidl, J.1
-
48
-
-
73349127026
-
Cohesin: Its roles and mechanisms
-
Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525-558 (2009).
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 525-558
-
-
Nasmyth, K.1
Haering, C.H.2
-
49
-
-
19344366459
-
Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae
-
Glynn, E. F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, E259 (2004).
-
(2004)
PLoS Biol
, vol.2
-
-
Glynn, E.F.1
-
50
-
-
0034722387
-
Chromosomal addresses of the cohesin component Mcd1p
-
Laloraya, S., Guacci, V. & Koshland, D. Chromosomal addresses of the cohesin component Mcd1p. J. Cell Biol. 151, 1047-1056 (2000).
-
(2000)
J. Cell Biol.
, vol.151
, pp. 1047-1056
-
-
Laloraya, S.1
Guacci, V.2
Koshland, D.3
-
51
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491 (2013).
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
-
52
-
-
78650689283
-
Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination
-
Hoang, M. L. et al. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet. 6, e1001228 (2010).
-
(2010)
PLoS Genet.
, vol.6
-
-
Hoang, M.L.1
-
53
-
-
50149084043
-
Double-strand breaks associated with repetitive DNA can reshape the genome
-
Argueso, J. L. et al. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc. Natl Acad. Sci. USA 105, 11845-11850 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 11845-11850
-
-
Argueso, J.L.1
-
54
-
-
33747882660
-
Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae
-
DOI 10.1016/j.dnarep.2006.05.027, PII S1568786406001674, Mechanisms of Chromosomal Translocations
-
Mieczkowski, P. A., Lemoine, F. J. & Petes, T. D. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5, 1010-1020 (2006). (Pubitemid 44291618)
-
(2006)
DNA Repair
, vol.5
, Issue.9-10
, pp. 1010-1020
-
-
Mieczkowski, P.A.1
Lemoine, F.J.2
Petes, T.D.3
-
55
-
-
33747877763
-
Transpositions and translocations induced by site-specific double-strand breaks in budding yeast
-
DOI 10.1016/j.dnarep.2006.05.025, PII S1568786406001649, Mechanisms of Chromosomal Translocations
-
Haber, J. E. Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair 5, 998-1009 (2006). (Pubitemid 44291615)
-
(2006)
DNA Repair
, vol.5
, Issue.9-10
, pp. 998-1009
-
-
Haber, J.E.1
-
56
-
-
84878556268
-
Effect of nuclear architecture on the efficiency of double-strand break repair
-
Agmon, N., Liefshitz, B., Zimmer, C., Fabre, E. & Kupiec, M. Effect of nuclear architecture on the efficiency of double-strand break repair. Nature Cell Biol. 15, 694-699 (2013).
-
(2013)
Nature Cell Biol.
, vol.15
, pp. 694-699
-
-
Agmon, N.1
Liefshitz, B.2
Zimmer, C.3
Fabre, E.4
Kupiec, M.5
-
57
-
-
33746387508
-
Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization
-
DOI 10.1534/genetics.106.055392
-
Coïc, E., Richard, G.F. & Haber, J. E. Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization. Genetics 173, 1197-1206 (2006). (Pubitemid 44127629)
-
(2006)
Genetics
, vol.173
, Issue.3
, pp. 1197-1206
-
-
Coic, E.1
Richard, G.-F.2
Haber, J.E.3
-
58
-
-
0037317683
-
Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae
-
DOI 10.1128/MCB.23.4.1403-1417.2003
-
Aylon, Y., Liefshitz, B., Bitan-Banin, G. & Kupiec, M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403-1417 (2003). (Pubitemid 36177048)
-
(2003)
Molecular and Cellular Biology
, vol.23
, Issue.4
, pp. 1403-1417
-
-
Aylon, Y.1
Liefshitz, B.2
Bitan-Banin, G.3
Kupiec, M.4
-
59
-
-
0033565525
-
Collisions between yeast chromosomal loci in vivo are governed by three layers of organization
-
Burgess, S. M. & Kleckner, N. Collisions between yeast chromosomal loci In vivo are governed by three layers of organization. Genes Dev. 13, 1871-1883 (1999). (Pubitemid 29353053)
-
(1999)
Genes and Development
, vol.13
, Issue.14
, pp. 1871-1883
-
-
Burgess, S.M.1
Kleckner, N.2
-
60
-
-
0033008194
-
Homology search and choice of homologous partner during mitotic recombination
-
Inbar, O. & Kupiec, M. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol. 19, 4134-4142 (1999). (Pubitemid 29241987)
-
(1999)
Molecular and Cellular Biology
, vol.19
, Issue.6
, pp. 4134-4142
-
-
Inbar, O.1
Kupiec, M.2
-
62
-
-
0024419449
-
Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae
-
Lichten, M. & Haber, J. E. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123, 261-268 (1989). (Pubitemid 19248673)
-
(1989)
Genetics
, vol.123
, Issue.2
, pp. 261-268
-
-
Lichten, M.1
Haber, J.E.2
-
63
-
-
0041903834
-
In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
-
DOI 10.1016/S1097-2765(03)00269-7
-
Sugawara, N., Wang, X. & Haber, J. E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209-219 (2003). (Pubitemid 36945046)
-
(2003)
Molecular Cell
, vol.12
, Issue.1
, pp. 209-219
-
-
Sugawara, N.1
Wang, X.2
Haber, J.E.3
-
64
-
-
62849083222
-
The emerging role of nuclear architecture in DNA repair and genome maintenance
-
Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature Rev. Mol. Cell Biol. 10, 243-254 (2009).
-
(2009)
Nature Rev. Mol. Cell Biol.
, vol.10
, pp. 243-254
-
-
Misteli, T.1
Soutoglou, E.2
-
65
-
-
84879242423
-
The cellular etiology of chromosome translocations
-
Roukos, V., Burman, B. & Misteli, T. The cellular etiology of chromosome translocations. Curr. Opin. Cell Biol. 25, 357-364 (2013).
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 357-364
-
-
Roukos, V.1
Burman, B.2
Misteli, T.3
-
66
-
-
84879235246
-
The origin of recurrent translocations in recombining lymphocytes: A balance between break frequency and nuclear proximity
-
Rocha, P. P. & Skok, J. A. The origin of recurrent translocations in recombining lymphocytes: a balance between break frequency and nuclear proximity. Curr. Opin. Cell Biol. 25, 365-371 (2013).
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 365-371
-
-
Rocha, P.P.1
Skok, J.A.2
-
67
-
-
84881255212
-
Spatial dynamics of chromosome translocations in living cells
-
Roukos, V. et al. Spatial dynamics of chromosome translocations in living cells. Science 341, 660-664 (2013).
-
(2013)
Science
, vol.341
, pp. 660-664
-
-
Roukos, V.1
-
68
-
-
84862778059
-
Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
-
Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908-921 (2012).
-
(2012)
Cell
, vol.148
, pp. 908-921
-
-
Zhang, Y.1
-
69
-
-
84859474968
-
DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes
-
Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69-74 (2012).
-
(2012)
Nature
, vol.484
, pp. 69-74
-
-
Hakim, O.1
-
70
-
-
84866870443
-
Close proximity to Igh is a contributing factor to AID-mediated translocations
-
Rocha, P. P. et al. Close proximity to Igh is a contributing factor to AID-mediated translocations. Mol. Cell 47, 873-885 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 873-885
-
-
Rocha, P.P.1
-
71
-
-
80053558376
-
Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
-
Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107-119 (2011).
-
(2011)
Cell
, vol.147
, pp. 107-119
-
-
Chiarle, R.1
-
72
-
-
80053502216
-
Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
-
Klein, I. A. et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95-106 (2011).
-
(2011)
Cell
, vol.147
, pp. 95-106
-
-
Klein, I.A.1
-
73
-
-
0038054340
-
Spatial proximity of translocation-prone gene loci in human lymphomas
-
DOI 10.1038/ng1177
-
Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287-291 (2003). (Pubitemid 36792860)
-
(2003)
Nature Genetics
, vol.34
, Issue.3
, pp. 287-291
-
-
Roix, J.J.1
McQueen, P.G.2
Munson, P.J.3
Parada, L.A.4
Misteli, T.5
-
74
-
-
69849097676
-
Analysis of repair mechanism choice during homologous recombination
-
Agmon, N., Pur, S., Liefshitz, B. & Kupiec, M. Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res. 37, 5081-5092 (2009).
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 5081-5092
-
-
Agmon, N.1
Pur, S.2
Liefshitz, B.3
Kupiec, M.4
-
75
-
-
77952744854
-
A three-dimensional model of the yeast genome
-
Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363-367 (2010).
-
(2010)
Nature
, vol.465
, pp. 363-367
-
-
Duan, Z.1
-
76
-
-
0032412476
-
Mating-type gene switching in Saccharomyces cerevisiae
-
DOI 10.1146/annurev.genet.32.1.561
-
Haber, J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561-599 (1998). (Pubitemid 29045325)
-
(1998)
Annual Review of Genetics
, vol.32
, pp. 561-599
-
-
Haber, J.E.1
-
77
-
-
84868578003
-
Monitoring DNA recombination initiated by HO endonuclease
-
Sugawara, N. & Haber, J. E. Monitoring DNA recombination initiated by HO endonuclease. Methods Mol. Biol. 920, 349-370 (2012).
-
(2012)
Methods Mol. Biol.
, vol.920
, pp. 349-370
-
-
Sugawara, N.1
Haber, J.E.2
-
78
-
-
84860568718
-
Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1
-
Li, J. et al. Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet. 8, e1002630 (2012).
-
(2012)
PLoS Genet.
, vol.8
-
-
Li, J.1
-
79
-
-
0030592510
-
A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III
-
DOI 10.1016/S0092-8674(00)81345-8
-
Wu, X. & Haber, J. E. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87, 277-285 (1996). (Pubitemid 26359005)
-
(1996)
Cell
, vol.87
, Issue.2
, pp. 277-285
-
-
Wu, X.1
Haber, J.E.2
-
80
-
-
0029146302
-
MATa donor preference in yeast mating-type switching: Activation of a large chromosomal region for recombination
-
Wu, X. & Haber, J. E. MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev. 9, 1922-1932 (1995).
-
(1995)
Genes Dev.
, vol.9
, pp. 1922-1932
-
-
Wu, X.1
Haber, J.E.2
-
81
-
-
79952403632
-
Principles of chromosomal organization: Lessons from yeast
-
Zimmer, C. & Fabre, E. Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192, 723-733 (2011).
-
(2011)
J. Cell Biol.
, vol.192
, pp. 723-733
-
-
Zimmer, C.1
Fabre, E.2
-
82
-
-
0034041633
-
Centromere clustering is a major determinant of yeast interphase nuclear organization
-
Jin, Q. W., Fuchs, J. & Loidl, J. Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell. Sci. 113, 1903-1912 (2000). (Pubitemid 30386494)
-
(2000)
Journal of Cell Science
, vol.113
, Issue.11
, pp. 1903-1912
-
-
Jin, Q.-W.1
Fuchs, J.2
Loidl, J.3
-
83
-
-
85052279093
-
How to build a yeast nucleus
-
Wong, H., Arbona, J.-M. & Zimmer, C. How to build a yeast nucleus. Nucleus 4, 361-366 (2013).
-
(2013)
Nucleus
, vol.4
, pp. 361-366
-
-
Wong, H.1
Arbona, J.-M.2
Zimmer, C.3
-
84
-
-
84855321168
-
How broken DNA finds its template for repair: A computational approach
-
Gehlen, L. R., Gasser, S. M. & Dion, V. How broken DNA finds its template for repair: a computational approach. Prog. Theor. Phys. Suppl. 191, 20-29 (2011).
-
(2011)
Prog. Theor. Phys. Suppl.
, vol.191
, pp. 20-29
-
-
Gehlen, L.R.1
Gasser, S.M.2
Dion, V.3
-
85
-
-
84860500314
-
Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
-
Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biol. 14, 502-509 (2012).
-
(2012)
Nature Cell Biol.
, vol.14
, pp. 502-509
-
-
Dion, V.1
Kalck, V.2
Horigome, C.3
Towbin, B.D.4
Gasser, S.M.5
-
86
-
-
84860517399
-
Increased chromosome mobility facilitates homology search during recombination
-
Miné-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nature Cell Biol. 14, 510-517 (2012).
-
(2012)
Nature Cell Biol.
, vol.14
, pp. 510-517
-
-
Miné-Hattab, J.1
Rothstein, R.2
-
87
-
-
84884557189
-
Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage
-
Seeber, A., Dion, V. & Gasser, S. M. Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev. 27, 1999-2008 (2013).
-
(2013)
Genes Dev.
, vol.27
, pp. 1999-2008
-
-
Seeber, A.1
Dion, V.2
Gasser, S.M.3
-
88
-
-
84887064569
-
Cohesin and the nucleolus constrain the mobility of spontaneous repair foci
-
Dion, V., Kalck, V., Seeber, A., Schleker, T. & Gasser, S. M. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep. 14, 984-991 (2013).
-
(2013)
EMBO Rep.
, vol.14
, pp. 984-991
-
-
Dion, V.1
Kalck, V.2
Seeber, A.3
Schleker, T.4
Gasser, S.M.5
-
89
-
-
84857166722
-
Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination
-
Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26, 369-383 (2012).
-
(2012)
Genes Dev.
, vol.26
, pp. 369-383
-
-
Neumann, F.R.1
-
91
-
-
84893945960
-
RecA bundles mediate homology pairing between distant sisters during DNA break repair
-
Lesterlin, C., Ball, G., Schermelleh, L. & Sherratt, D. J. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506, 249-253 (2014).
-
(2014)
Nature
, vol.506
, pp. 249-253
-
-
Lesterlin, C.1
Ball, G.2
Schermelleh, L.3
Sherratt, D.J.4
-
92
-
-
80052675332
-
Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination
-
Ceballos, S. J. & Heyer, W.-D. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim. Biophys. Acta 1809, 509-523 (2011).
-
(2011)
Biochim. Biophys. Acta
, vol.1809
, pp. 509-523
-
-
Ceballos, S.J.1
Heyer, W.-D.2
-
93
-
-
0033634677
-
Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament
-
Mazin, A. V., Bornarth, C. J., Solinger, J. A., Heyer, W. D. & Kowalczykowski, S. C. Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol. Cell 6, 583-592 (2000).
-
(2000)
Mol. Cell
, vol.6
, pp. 583-592
-
-
Mazin, A.V.1
Bornarth, C.J.2
Solinger, J.A.3
Heyer, W.D.4
Kowalczykowski, S.C.5
-
94
-
-
0032492853
-
Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins
-
DOI 10.1038/30037
-
Petukhova, G., Stratton, S. & Sung, P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91-94 (1998). (Pubitemid 28240262)
-
(1998)
Nature
, vol.393
, Issue.6680
, pp. 91-94
-
-
Petukhova, G.1
Stratton, S.2
Sung, P.3
-
95
-
-
33745498749
-
Visualization of Rad54, a Chromatin Remodeling Protein, Translocating on Single DNA Molecules
-
DOI 10.1016/j.molcel.2006.05.009, PII S1097276506003017
-
Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell 23, 143-148 (2006). (Pubitemid 43963440)
-
(2006)
Molecular Cell
, vol.23
, Issue.1
, pp. 143-148
-
-
Amitani, I.1
Baskin, R.J.2
Kowalczykowski, S.C.3
-
96
-
-
0037334946
-
Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament
-
DOI 10.1038/nsb901
-
Alexeev, A., Mazin, A. & Kowalczykowski, S. C. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nature Struct. Biol. 10, 182-186 (2003). (Pubitemid 36297987)
-
(2003)
Nature Structural Biology
, vol.10
, Issue.3
, pp. 182-186
-
-
Alexeev, A.1
Mazin, A.2
Kowalczykowski, S.C.3
-
97
-
-
34247600650
-
Homology-driven chromatin remodeling by human RAD54
-
DOI 10.1038/nsmb1223, PII NSMB1223
-
Zhang, Z., Fan, H. Y., Goldman, J. A. & Kingston, R. E. Homology-driven chromatin remodeling by human RAD54. Nature Struct. Mol. Biol. 14, 397-405 (2007). (Pubitemid 46685877)
-
(2007)
Nature Structural and Molecular Biology
, vol.14
, Issue.5
, pp. 397-405
-
-
Zhang, Z.1
Fan, H.-Y.2
Goldman, J.A.3
Kingston, R.E.4
-
98
-
-
0038100136
-
Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin
-
DOI 10.1074/jbc.M211545200
-
Jaskelioff, M., van Komen, S., Krebs, J. E., Sung, P. & Peterson, C. L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212-9218 (2003). (Pubitemid 36800403)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.11
, pp. 9212-9218
-
-
Jaskelioff, M.1
Van Komen, S.2
Krebs, J.E.3
Sung, P.4
Peterson, C.L.5
-
99
-
-
0033864250
-
Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1
-
Petukhova, G., Sung, P. & Klein, H. Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev. 14, 2206-2215 (2000).
-
(2000)
Genes Dev.
, vol.14
, pp. 2206-2215
-
-
Petukhova, G.1
Sung, P.2
Klein, H.3
-
100
-
-
34248512303
-
A DNA-translocating Snf2 Molecular Motor: Saccharomyces cerevisiae Rdh54 Displays Processive Translocation and Extrudes DNA Loops
-
DOI 10.1016/j.jmb.2007.04.005, PII S0022283607004597
-
Prasad, T. K. et al. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J. Mol. Biol. 369, 940-953 (2007). (Pubitemid 46759523)
-
(2007)
Journal of Molecular Biology
, vol.369
, Issue.4
, pp. 940-953
-
-
Prasad, T.K.1
Robertson, R.B.2
Visnapuu, M.-L.3
Chi, P.4
Sung, P.5
Greene, E.C.6
-
101
-
-
35648966525
-
Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules
-
DOI 10.1074/jbc.M704767200
-
Nimonkar, A. V., Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. Single molecule imaging of Tid1/Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules. J. Biol. Chem. 282, 30776-30784 (2007). (Pubitemid 350035166)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.42
, pp. 30776-30784
-
-
Nimonkar, A.V.1
Amitani, I.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
102
-
-
44849138547
-
ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54
-
Kwon, Y. et al. ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54. J. Biol. Chem. 283, 10445-10452 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10445-10452
-
-
Kwon, Y.1
-
103
-
-
0033635247
-
Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54
-
Van Komen, S., Petukhova, G., Sigurdsson, S., Stratton, S. & Sung, P. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell 6, 563-572 (2000).
-
(2000)
Mol. Cell
, vol.6
, pp. 563-572
-
-
Van Komen, S.1
Petukhova, G.2
Sigurdsson, S.3
Stratton, S.4
Sung, P.5
-
104
-
-
33748945703
-
Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation
-
DOI 10.1038/sj.emboj.7601260, PII 7601260
-
Fulconis, R., Mine, J., Bancaud, A., Dutreix, M. & Viovy, J-L. Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation. EMBO J. 25, 4293-4304 (2006). (Pubitemid 44435227)
-
(2006)
EMBO Journal
, vol.25
, Issue.18
, pp. 4293-4304
-
-
Fulconis, R.1
Mine, J.2
Bancaud, A.3
Dutreix, M.4
Viovy, J.-L.5
-
105
-
-
44949091416
-
A Rad51 Presynaptic Filament Is Sufficient to Capture Nucleosomal Homology during Recombinational Repair of a DNA Double-Strand Break
-
DOI 10.1016/j.molcel.2008.04.015, PII S1097276508002992
-
Sinha, M. & Peterson, C. L. A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol. Cell 30, 803-810 (2008). (Pubitemid 351815124)
-
(2008)
Molecular Cell
, vol.30
, Issue.6
, pp. 803-810
-
-
Sinha, M.1
Peterson, C.L.2
-
106
-
-
15444364449
-
ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break
-
DOI 10.1074/jbc.M414388200
-
Wolner, B. & Peterson, C. L. ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J. Biol. Chem. 280, 10855-10860 (2005). (Pubitemid 40395950)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.11
, pp. 10855-10860
-
-
Wolner, B.1
Peterson, C.L.2
-
107
-
-
79952768906
-
Real-time analysis of double-strand DNA break repair by homologous recombination
-
Hicks, W. M., Yamaguchi, M. & Haber, J. E. Real-time analysis of double-strand DNA break repair by homologous recombination. Proc. Natl Acad. Sci. USA 108, 3108-3115 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 3108-3115
-
-
Hicks, W.M.1
Yamaguchi, M.2
Haber, J.E.3
-
108
-
-
84893749175
-
Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation
-
Wright, W. D. & Heyer, W.-D. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol. Cell 53, 420-432 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 420-432
-
-
Wright, W.D.1
Heyer, W.-D.2
-
109
-
-
70149105916
-
Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling
-
Sinha, M., Watanabe, S., Johnson, A., Moazed, D. & Peterson, C. L. Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138, 1109-1121 (2009).
-
(2009)
Cell
, vol.138
, pp. 1109-1121
-
-
Sinha, M.1
Watanabe, S.2
Johnson, A.3
Moazed, D.4
Peterson, C.L.5
-
110
-
-
84877816931
-
Chromatin modifications and chromatin remodeling during DNA repair in budding yeast
-
Tsabar, M. & Haber, J. E. Chromatin modifications and chromatin remodeling during DNA repair in budding yeast. Curr. Opin. Genet. Dev. 23, 166-173 (2013).
-
(2013)
Curr. Opin. Genet. Dev.
, vol.23
, pp. 166-173
-
-
Tsabar, M.1
Haber, J.E.2
-
111
-
-
59149092573
-
INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination
-
Tsukuda, T. et al. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair 8, 360-369 (2009).
-
(2009)
DNA Repair
, vol.8
, pp. 360-369
-
-
Tsukuda, T.1
-
112
-
-
23044479628
-
Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair
-
DOI 10.1101/gad.1273105
-
Chai, B., Huang, J., Cairns, B. R. & Laurent, B. C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656-1661 (2005). (Pubitemid 41058359)
-
(2005)
Genes and Development
, vol.19
, Issue.14
, pp. 1656-1661
-
-
Chai, B.1
Huang, J.2
Cairns, B.R.3
Laurent, B.C.4
-
113
-
-
77951498531
-
High-resolution profiling of γh2AX around DNA double strand breaks in the mammalian genome
-
Iacovoni, J. S. et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446-1457 (2010).
-
(2010)
EMBO J.
, vol.29
, pp. 1446-1457
-
-
Iacovoni, J.S.1
-
114
-
-
10944232673
-
Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
-
DOI 10.1016/j.molcel.2004.11.026, PII S1097276504007178
-
Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003-1015 (2004). (Pubitemid 40018409)
-
(2004)
Molecular Cell
, vol.16
, Issue.6
, pp. 1003-1015
-
-
Strom, L.1
Lindroos, H.B.2
Shirahige, K.3
Sjogren, C.4
-
115
-
-
84883258272
-
γH2AX spreading linked to homology search
-
Renkawitz, J., Lademann, C. A. & Jentsch, S. γH2AX spreading linked to homology search. Cell Cycle 12, 2526-2527 (2013).
-
(2013)
Cell Cycle
, vol.12
, pp. 2526-2527
-
-
Renkawitz, J.1
Lademann, C.A.2
Jentsch, S.3
-
116
-
-
84893810363
-
Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break
-
Lee, C.-S., Lee, K., Legube, G. & Haber, J. E. Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nature Struct. Mol. Biol. 21, 103-109 (2014).
-
(2014)
Nature Struct. Mol. Biol.
, vol.21
, pp. 103-109
-
-
Lee, C.-S.1
Lee, K.2
Legube, G.3
Haber, J.E.4
-
117
-
-
84885373715
-
DNA repair choice defines a common pathway for recruitment of chromatin regulators
-
Bennett, G., Papamichos-Chronakis, M. & Peterson, C. L. DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nature Commun. 4, 2084 (2013).
-
(2013)
Nature Commun.
, vol.4
, pp. 2084
-
-
Bennett, G.1
Papamichos-Chronakis, M.2
Peterson, C.L.3
-
118
-
-
33646177549
-
At the heart of the chromosome: SMC proteins in action
-
Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311-322 (2006).
-
(2006)
Nature Rev. Mol. Cell Biol.
, vol.7
, pp. 311-322
-
-
Hirano, T.1
-
119
-
-
84875127327
-
CTCF and cohesin: Linking gene regulatory elements with their targets
-
Merkenschlager, M. & Odom, D. T. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152, 1285-1297 (2013).
-
(2013)
Cell
, vol.152
, pp. 1285-1297
-
-
Merkenschlager, M.1
Odom, D.T.2
-
120
-
-
0035954251
-
Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
-
DOI 10.1016/S0960-9822(01)00271-8
-
Sjogren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991-995 (2001). (Pubitemid 32589193)
-
(2001)
Current Biology
, vol.11
, Issue.12
, pp. 991-995
-
-
Sjogren, C.1
Nasmyth, K.2
-
121
-
-
34447536708
-
DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
-
DOI 10.1126/science.1140637
-
Unal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245-248 (2007). (Pubitemid 47076200)
-
(2007)
Science
, vol.317
, Issue.5835
, pp. 245-248
-
-
Unal, E.1
Heidinger-Pauli, J.M.2
Koshland, D.3
-
122
-
-
34447549077
-
Postreplicative formation of cohesion is required for repair and induced by a single DNA break
-
DOI 10.1126/science.1140649
-
Strom, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242-245 (2007). (Pubitemid 47076199)
-
(2007)
Science
, vol.317
, Issue.5835
, pp. 242-245
-
-
Strom, L.1
Karlsson, C.2
Lindroos, H.B.3
Wedahl, S.4
Katou, Y.5
Shirahige, K.6
Sjogren, C.7
-
123
-
-
18044404949
-
Scc1/Rad21/Mcd1 Is Required for Sister Chromatid Cohesion and Kinetochore Function in Vertebrate Cells
-
DOI 10.1016/S1534-5807(01)00088-0, PII S1534580701000880
-
Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759-770 (2001). (Pubitemid 33586131)
-
(2001)
Developmental Cell
, vol.1
, Issue.6
, pp. 759-770
-
-
Sonoda, E.1
Matsusaka, T.2
Morrison, C.3
Vagnarelli, P.4
Hoshi, O.5
Ushiki, T.6
Nojima, K.7
Fukagawa, T.8
Waizenegger, I.C.9
Peters, J.-M.10
Earnshaw, W.C.11
Takeda, S.12
-
124
-
-
10944262393
-
DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
-
DOI 10.1016/j.molcel.2004.11.027, PII S1097276504007191
-
Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991-1002 (2004). (Pubitemid 40018408)
-
(2004)
Molecular Cell
, vol.16
, Issue.6
, pp. 991-1002
-
-
Unal, E.1
Arbel-Eden, A.2
Sattler, U.3
Shroff, R.4
Lichten, M.5
Haber, J.E.6
Koshland, D.7
-
125
-
-
33748199605
-
Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination
-
DOI 10.1038/ncb1466, PII NCB1466
-
De Piccoli, G. et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biol. 8, 1032-1034 (2006). (Pubitemid 44314736)
-
(2006)
Nature Cell Biology
, vol.8
, Issue.9
, pp. 1032-1034
-
-
De Piccoli, G.1
Cortes-Ledesma, F.2
Ira, G.3
Torres-Rosell, J.4
Uhle, S.5
Farmer, S.6
Hwang, J.-Y.7
Machin, F.8
Ceschia, A.9
McAleenan, A.10
Cordon-Preciado, V.11
Clemente-Blanco, A.12
Vilella-Mitjana, F.13
Ullal, P.14
Jarmuz, A.15
Leitao, B.16
Bressan, D.17
Dotiwala, F.18
Papusha, A.19
Zhao, X.20
Myung, K.21
Haber, J.E.22
Aguilera, A.23
Aragon, L.24
more..
-
126
-
-
33746515537
-
Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks
-
DOI 10.1038/sj.emboj.7601218, PII 7601218
-
Potts, P. R., Porteus, M. H. & Yu, H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377-3388 (2006). (Pubitemid 44141795)
-
(2006)
EMBO Journal
, vol.25
, Issue.14
, pp. 3377-3388
-
-
Potts, P.R.1
Porteus, M.H.2
Yu, H.3
-
127
-
-
77957363057
-
Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes
-
Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet. 6, e1001006 (2010).
-
(2010)
PLoS Genet.
, vol.6
-
-
Covo, S.1
Westmoreland, J.W.2
Gordenin, D.A.3
Resnick, M.A.4
-
128
-
-
83455197497
-
Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition
-
Coïc, E. et al. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics 189, 1225-1233 (2011).
-
(2011)
Genetics
, vol.189
, pp. 1225-1233
-
-
Coïc, E.1
-
129
-
-
84876838711
-
The hierarchy of the 3D genome
-
Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol. Cell 49, 773-782 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 773-782
-
-
Gibcus, J.H.1
Dekker, J.2
-
130
-
-
84892500958
-
Double-strand break repair by interchromosomal recombination: An in vivo repair mechanism utilized by multiple somatic tissues in mammals
-
White, R. R. et al. Double-strand break repair by interchromosomal recombination: an In vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS ONE 8, e84379 (2013).
-
(2013)
PLoS ONE
, vol.8
-
-
White, R.R.1
-
131
-
-
0029745577
-
The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location
-
Goldman, A. S. & Lichten, M. The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144, 43-55 (1996). (Pubitemid 26291916)
-
(1996)
Genetics
, vol.144
, Issue.1
, pp. 43-55
-
-
Goldman, A.S.H.1
-
132
-
-
79952314830
-
Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
-
Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732-744 (2011).
-
(2011)
Cell
, vol.144
, pp. 732-744
-
-
Chiolo, I.1
-
133
-
-
79961207835
-
DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin
-
Jakob, B. et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 6489-6499 (2011).
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 6489-6499
-
-
Jakob, B.1
-
134
-
-
34447532525
-
Heterochromatin is refractory to γ-H2AX modification in yeast and mammals
-
DOI 10.1083/jcb.200612031
-
Kim, J.A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J. E. Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209-218 (2007). (Pubitemid 47076458)
-
(2007)
Journal of Cell Biology
, vol.178
, Issue.2
, pp. 209-218
-
-
Kim, J.-A.1
Kruhlak, M.2
Dotiwala, F.3
Nussenzweig, A.4
Haber, J.E.5
-
135
-
-
34547591933
-
The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus
-
DOI 10.1038/ncb1619, PII NCB1619
-
Torres-Rosell, J. et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biol. 9, 923-931 (2007). (Pubitemid 47190447)
-
(2007)
Nature Cell Biology
, vol.9
, Issue.8
, pp. 923-931
-
-
Torres-Rosell, J.1
Sunjevaric, I.2
De Piccoli, G.3
Sacher, M.4
Eckert-Boulet, N.5
Reid, R.6
Jentsch, S.7
Rothstein, R.8
Aragon, L.9
Lisby, M.10
-
136
-
-
0022689021
-
Homologous recombination in Escherichia coli: Dependence on substrate length and homology
-
Shen, P. & Huang, H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112, 441-457 (1986).
-
(1986)
Genetics
, vol.112
, pp. 441-457
-
-
Shen, P.1
Huang, H.V.2
-
137
-
-
0036723660
-
Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences
-
Ira, G. & Haber, J. E. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22, 6384-6392 (2002).
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 6384-6392
-
-
Ira, G.1
Haber, J.E.2
-
138
-
-
0025073480
-
Homologous recombination in hybridoma cells: Dependence on time and fragment length
-
Shulman, M. J., Nissen, L. & Collins, C. Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol. Cell. Biol. 10, 4466-4472 (1990).
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 4466-4472
-
-
Shulman, M.J.1
Nissen, L.2
Collins, C.3
-
139
-
-
0025943412
-
The length of homology required for gene targeting in embryonic stem cells
-
Hasty, P., Rivera-Pérez, J. & Bradley, A. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586-5591 (1991). (Pubitemid 21895325)
-
(1991)
Molecular and Cellular Biology
, vol.11
, Issue.11
, pp. 5586-5591
-
-
Hasty, P.1
Rivera-Perez, J.2
Bradley, A.3
-
140
-
-
84901355743
-
Nascent DNA synthesis during homologous recombination is synergistically promoted by the Rad51 recombinase and DNA homology
-
Mundia, M. M., Desai, V., Magwood, A. C. & Baker, M. D. Nascent DNA synthesis during homologous recombination is synergistically promoted by the Rad51 recombinase and DNA homology. Genetics http://dx.doi.org/10.1534/genetics. 114.161455 (2014).
-
(2014)
Genetics
-
-
Mundia, M.M.1
Desai, V.2
Magwood, A.C.3
Baker, M.D.4
-
141
-
-
0345447604
-
Srs2 and Sgs1-Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast
-
DOI 10.1016/S0092-8674(03)00886-9
-
Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401-411 (2003). (Pubitemid 37456803)
-
(2003)
Cell
, vol.115
, Issue.4
, pp. 401-411
-
-
Ira, G.1
Malkova, A.2
Liberi, G.3
Foiani, M.4
Haber, J.E.5
-
142
-
-
54949093203
-
Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase
-
Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597-602 (2008).
-
(2008)
Science
, vol.322
, pp. 597-602
-
-
Nagai, S.1
-
143
-
-
59649124496
-
Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break
-
Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335-343 (2009).
-
(2009)
Mol. Cell
, vol.33
, pp. 335-343
-
-
Kalocsay, M.1
Hiller, N.J.2
Jentsch, S.3
-
144
-
-
65249150132
-
Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery
-
Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912-927 (2009).
-
(2009)
Genes Dev.
, vol.23
, pp. 912-927
-
-
Oza, P.1
Jaspersen, S.L.2
Miele, A.3
Dekker, J.4
Peterson, C.L.5
-
145
-
-
84873320525
-
Mechanisms of programmed DNA lesions and genomic instability in the immune system
-
Alt, F. W., Zhang, Y., Meng, F.-L., Guo, C. & Schwer, B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417-429 (2013).
-
(2013)
Cell
, vol.152
, pp. 417-429
-
-
Alt, F.W.1
Zhang, Y.2
Meng, F.-L.3
Guo, C.4
Schwer, B.5
-
146
-
-
79953164038
-
Recombination centres and the orchestration of V(D)J recombination
-
Schatz, D. G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nature Rev. Immunol. 11, 251-263 (2011).
-
(2011)
Nature Rev. Immunol.
, vol.11
, pp. 251-263
-
-
Schatz, D.G.1
Ji, Y.2
-
147
-
-
84867706893
-
Genetics of Borrelia burgdorferi
-
Brisson, D., Drecktrah, D., Eggers, C. H. & Samuels, D. S. Genetics of Borrelia burgdorferi. Annu. Rev. Genet. 46, 515-536 (2012).
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 515-536
-
-
Brisson, D.1
Drecktrah, D.2
Eggers, C.H.3
Samuels, D.S.4
-
148
-
-
80051936225
-
Focusing homologous recombination: Pilin antigenic variation in the pathogenic Neisseria
-
Cahoon, L. A. & Seifert, H. S. Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol. Microbiol. 81, 1136-1143 (2011).
-
(2011)
Mol. Microbiol.
, vol.81
, pp. 1136-1143
-
-
Cahoon, L.A.1
Seifert, H.S.2
-
149
-
-
84887614639
-
Antigenic variation in African trypanosomes: The importance of chromosomal and nuclear context in VSG expression control
-
Glover, L. et al. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell. Microbiol. 15, 1984-1993 (2013).
-
(2013)
Cell. Microbiol.
, vol.15
, pp. 1984-1993
-
-
Glover, L.1
-
150
-
-
84876342100
-
Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum
-
Guizetti, J. & Scherf, A. Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell. Microbiol. 15, 718-726 (2013).
-
(2013)
Cell. Microbiol.
, vol.15
, pp. 718-726
-
-
Guizetti, J.1
Scherf, A.2
-
151
-
-
38449084519
-
Repetitive sequences in complex genomes: Structure and evolution
-
Jurka, J., Kapitonov, V. V., Kohany, O. & Jurka, M. V. Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genom. Hum. Genet. 8, 241-259 (2007).
-
(2007)
Annu. Rev. Genom. Hum. Genet.
, vol.8
, pp. 241-259
-
-
Jurka, J.1
Kapitonov, V.V.2
Kohany, O.3
Jurka, M.V.4
-
153
-
-
80053339755
-
In vitro assays for DNA pairing and recombination-associated DNA synthesis
-
Liu, J., Sneeden, J. & Heyer, W.-D. In vitro assays for DNA pairing and recombination-associated DNA synthesis. Methods Mol. Biol. 745, 363-383 (2011).
-
(2011)
Methods Mol. Biol.
, vol.745
, pp. 363-383
-
-
Liu, J.1
Sneeden, J.2
Heyer, W.-D.3
-
154
-
-
0030915446
-
Kinetic analysis of pairing and strand exchange catalyzed by RecA: Detection by fluorescence energy transfer
-
DOI 10.1074/jbc.272.23.14672
-
Bazemore, L. R., Takahashi, M. & Radding, C. M. Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J. Biol. Chem. 272, 14672-14682 (1997). (Pubitemid 27251731)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.23
, pp. 14672-14682
-
-
Bazemore, L.R.1
Takahashi, M.2
Radding, C.M.3
-
155
-
-
77951229260
-
Caught in the act: The lifetime of synaptic intermediates during the search for homology on DNA
-
Mani, A., Braslavsky, I., Arbel-Goren, R. & Stavans, J. Caught in the act: the lifetime of synaptic intermediates during the search for homology on DNA. Nucleic Acids Res. 38, 2036-2043 (2010).
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 2036-2043
-
-
Mani, A.1
Braslavsky, I.2
Arbel-Goren, R.3
Stavans, J.4
-
156
-
-
77952545470
-
Single-molecule imaging brings Rad51 nucleoprotein filaments into focus
-
Forget, A. L. & Kowalczykowski, S. C. Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol. 20, 269-276 (2010).
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 269-276
-
-
Forget, A.L.1
Kowalczykowski, S.C.2
-
157
-
-
0028061666
-
Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
-
Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096-8106 (1994). (Pubitemid 24373558)
-
(1994)
Molecular and Cellular Biology
, vol.14
, Issue.12
, pp. 8096-8106
-
-
Rouet, P.1
Smih, F.2
Jasin, M.3
-
158
-
-
0028013486
-
Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
-
Kramer, K. M., Brock, J. A., Bloom, K., Moore, J. K. & Haber, J. E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293-1301 (1994). (Pubitemid 24036579)
-
(1994)
Molecular and Cellular Biology
, vol.14
, Issue.2
, pp. 1293-1301
-
-
Kramer, K.M.1
Brock, J.A.2
Bloom, K.3
Moore, J.K.4
Haber, J.E.5
-
159
-
-
84875190221
-
Genome architecture: Domain organization of interphase chromosomes
-
Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270-1284 (2013).
-
(2013)
Cell
, vol.152
, pp. 1270-1284
-
-
Bickmore, W.A.1
Van Steensel, B.2
-
160
-
-
84879230617
-
Nuclear organization in the nematode C. Elegans
-
Sharma, R. & Meister, P. Nuclear organization in the nematode C. elegans. Curr. Opin. Cell Biol. 25, 395-402 (2013).
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 395-402
-
-
Sharma, R.1
Meister, P.2
-
161
-
-
84874192725
-
Organization and segregation of bacterial chromosomes
-
Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nature Rev. Genet. 14, 191-203 (2013).
-
(2013)
Nature Rev. Genet.
, vol.14
, pp. 191-203
-
-
Wang, X.1
Montero Llopis, P.2
Rudner, D.Z.3
-
162
-
-
77954817153
-
Yeast chromosomal interactions and nuclear architecture
-
O'Sullivan, J. M. Yeast chromosomal interactions and nuclear architecture. Curr. Opin. Cell Biol. 22, 298-304 (2010).
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 298-304
-
-
O'Sullivan, J.M.1
-
163
-
-
78951488313
-
Advancing our understanding of functional genome organisation through studies in the fission yeast
-
Olsson, I. & Bjerling, P. Advancing our understanding of functional genome organisation through studies in the fission yeast. Curr. Genet. 57, 1-12 (2011).
-
(2011)
Curr. Genet.
, vol.57
, pp. 1-12
-
-
Olsson, I.1
Bjerling, P.2
-
165
-
-
0035316574
-
Chromosome territories, nuclear architecture and gene regulation in mammalian cells
-
DOI 10.1038/35066075
-
Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292-301 (2001). (Pubitemid 33674777)
-
(2001)
Nature Reviews Genetics
, vol.2
, Issue.4
, pp. 292-301
-
-
Cremer, T.1
Cremer, C.2
-
166
-
-
77954995399
-
A guide to super-resolution fluorescence microscopy
-
Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165-175 (2010).
-
(2010)
J. Cell Biol.
, vol.190
, pp. 165-175
-
-
Schermelleh, L.1
Heintzmann, R.2
Leonhardt, H.3
-
167
-
-
84878011578
-
Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data
-
Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Rev. Genet. 14, 390-403 (2013).
-
(2013)
Nature Rev. Genet.
, vol.14
, pp. 390-403
-
-
Dekker, J.1
Marti-Renom, M.A.2
Mirny, L.A.3
-
168
-
-
77957932111
-
Genomics tools for unraveling chromosome architecture
-
van Steensel, B. & Dekker, J. Genomics tools for unraveling chromosome architecture. Nature Biotech. 28, 1089-1095 (2010).
-
(2010)
Nature Biotech.
, vol.28
, pp. 1089-1095
-
-
Van Steensel, B.1
Dekker, J.2
-
169
-
-
84875200698
-
Functional implications of genome topology
-
Cavalli, G. & Misteli, T. Functional implications of genome topology. Nature Struct. Mol. Biol. 20, 290-299 (2013).
-
(2013)
Nature Struct. Mol. Biol.
, vol.20
, pp. 290-299
-
-
Cavalli, G.1
Misteli, T.2
-
170
-
-
79957803199
-
Nuclear organization: Taking a position on gene expression
-
Geyer, P. K., Vitalini, M. W. & Wallrath, L. L. Nuclear organization: taking a position on gene expression. Curr. Opin. Cell Biol. 23, 354-359 (2011).
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 354-359
-
-
Geyer, P.K.1
Vitalini, M.W.2
Wallrath, L.L.3
-
171
-
-
35848952522
-
Gene regulation through nuclear organization
-
DOI 10.1038/nsmb1324, PII NSMB1324
-
Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nature Struct. Mol. Biol. 14, 1049-1055 (2007). (Pubitemid 350060340)
-
(2007)
Nature Structural and Molecular Biology
, vol.14
, Issue.11
, pp. 1049-1055
-
-
Sexton, T.1
Schober, H.2
Fraser, P.3
Gasser, S.M.4
-
172
-
-
34249307315
-
Nuclear organization of the genome and the potential for gene regulation
-
DOI 10.1038/nature05916, PII NATURE05916
-
Fraser, P. & Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413-417 (2007). (Pubitemid 46816747)
-
(2007)
Nature
, vol.447
, Issue.7143
, pp. 413-417
-
-
Fraser, P.1
Bickmore, W.2
-
173
-
-
57049179496
-
High-resolution statistical mapping reveals gene territories in live yeast
-
Berger, A. B. et al. High-resolution statistical mapping reveals gene territories in live yeast. Nature Methods 5, 1031-1037 (2008).
-
(2008)
Nature Methods
, vol.5
, pp. 1031-1037
-
-
Berger, A.B.1
-
174
-
-
13444257509
-
Chromosome looping in yeast: Telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization
-
DOI 10.1083/jcb.200409091
-
Bystricky, K., Laroche, T., van Houwe, G., Blaszczyk, M. & Gasser, S. M. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168, 375-387 (2005). (Pubitemid 40205061)
-
(2005)
Journal of Cell Biology
, vol.168
, Issue.3
, pp. 375-387
-
-
Bystricky, K.1
Laroche, T.2
Van Houwe, G.3
Blaszczyk, M.4
Gasser, S.M.5
-
175
-
-
84867842663
-
A predictive computational model of the dynamic 3D interphase yeast nucleus
-
Wong, H. et al. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr. Biol. 22, 1881-1890 (2012).
-
(2012)
Curr. Biol.
, vol.22
, pp. 1881-1890
-
-
Wong, H.1
-
176
-
-
84863540362
-
Physical tethering and volume exclusion determine higher-order genome organization in budding yeast
-
Tjong, H., Gong, K., Chen, L. & Alber, F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res. 22, 1295-1305 (2012).
-
(2012)
Genome Res.
, vol.22
, pp. 1295-1305
-
-
Tjong, H.1
Gong, K.2
Chen, L.3
Alber, F.4
|