메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages 62-75

Chromatin and the genome integrity network

Author keywords

[No Author keywords available]

Indexed keywords

ATM PROTEIN; ATR PROTEIN; DNA DEPENDENT PROTEIN KINASE; DOUBLE STRANDED DNA; HISTONE DEACETYLASE 1; HISTONE DEACETYLASE 2; HISTONE DEACETYLASE 3; HISTONE DEACETYLASE 4; HISTONE H2AX; HISTONE H2AZ; HISTONE H2B; RAD54 PROTEIN; RING FINGER PROTEIN; SIRTUIN 1; SIRTUIN 6; TRANSCRIPTION FACTOR EZH2; UBIQUITIN PROTEIN LIGASE E3;

EID: 84871344464     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg3345     Document Type: Review
Times cited : (184)

References (133)
  • 1
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives
    • Ciccia, A. & Elledge, S. J. The DNA damage response: Making it safe to play with knives. Mol. Cell 40, 179-204 (2010
    • (2010) Mol. Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 2
    • 77649165394 scopus 로고    scopus 로고
    • Maintaining genome stability at the replication fork
    • Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nature Rev. Mol. Cell Biol. 11, 208-219 (2010
    • (2010) Nature Rev. Mol. Cell Biol , vol.11 , pp. 208-219
    • Branzei, D.1    Foiani, M.2
  • 3
    • 84857192718 scopus 로고    scopus 로고
    • Causes and consequences of aneuploidy in cancer
    • Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet. 13, 189-203 (2012
    • (2012) Nature Rev. Genet , vol.13 , pp. 189-203
    • Gordon, D.J.1    Resio, B.2    Pellman, D.3
  • 4
    • 80755187806 scopus 로고    scopus 로고
    • Double-Strand break end resection and repair pathway choice
    • Symington, L. S. & Gautier, J. Double-Strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247-271 (2011
    • (2011) Annu. Rev. Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 5
    • 0036166206 scopus 로고    scopus 로고
    • When repair meets chromatin
    • Green, C. M. & Almouzni, G. When repair meets chromatin. EMBO Rep. 3, 28-33 (2002
    • (2002) EMBO Rep , vol.3 , pp. 28-33
    • Green, C.M.1    Almouzni, G.2
  • 6
    • 34948874900 scopus 로고    scopus 로고
    • Dual chromatin remodeling roles for RSC during DNA double strand break induction and repair at the yeast MAT locus
    • Kent, N. A., Chambers, A. L. & Downs, J. A. Dual chromatin remodeling roles for RSC during DNA double strand break induction and repair at the yeast MAT locus. J. Biol. Chem. 282, 27693-27701 (2007
    • (2007) J. Biol. Chem , vol.282 , pp. 27693-27701
    • Kent, N.A.1    Chambers, A.L.2    Downs, J.A.3
  • 7
    • 33847176208 scopus 로고    scopus 로고
    • RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin
    • Shim, E. Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol. 27, 1602-1613 (2007
    • (2007) Mol. Cell. Biol , vol.27 , pp. 1602-1613
    • Shim, E.Y.1
  • 8
    • 34447551681 scopus 로고    scopus 로고
    • Roles of ATM and NBS1 in chromatin structure modulation and DNA double-Strand break repair
    • Berkovich, E., Monnat, R. J. Jr & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-Strand break repair. Nature Cell Biol. 9, 683-690 (2007
    • (2007) Nature Cell Biol , vol.9 , pp. 683-690
    • Berkovich, E.1    Monnat Jr., R.J.2    Kastan, M.B.3
  • 9
    • 59149092573 scopus 로고    scopus 로고
    • INO80 dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination
    • Tsukuda, T. et al. INO80 dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair 8, 360-369 (2009
    • (2009) DNA Repair , vol.8 , pp. 360-369
    • Tsukuda, T.1
  • 10
    • 18144423533 scopus 로고    scopus 로고
    • The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-Strand breaks
    • Shim, E. Y., Ma, J. L., Oum, J. H., Yanez, Y. & Lee, S. E. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-Strand breaks. Mol. Cell. Biol. 25, 3934-3944 (2005
    • (2005) Mol. Cell. Biol , vol.25 , pp. 3934-3944
    • Shim, E.Y.1    Ma, J.L.2    Oum, J.H.3    Yanez, Y.4    Lee, S.E.5
  • 11
    • 23044479628 scopus 로고    scopus 로고
    • Distinct roles for the RSC and SWI/SNF ATP-Dependent chromatin remodelers in DNA double-Strand break repair
    • Chai, B., Huang, J., Cairns, B. R. & Laurent, B. C. Distinct roles for the RSC and SWI/SNF ATP-Dependent chromatin remodelers in DNA double-Strand break repair. Genes Dev. 19, 1656-1661 (2005
    • (2005) Genes Dev , vol.19 , pp. 1656-1661
    • Chai, B.1    Huang, J.2    Cairns, B.R.3    Laurent, B.C.4
  • 12
    • 33748272677 scopus 로고    scopus 로고
    • Interplay between INO80 and SWR1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage
    • Papamichos-Chronakis, M., Krebs, J. E. & Peterson, C. L. Interplay between INO80 and SWR1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437-2449 (2006
    • (2006) Genes Dev , vol.20 , pp. 2437-2449
    • Papamichos-Chronakis, M.1    Krebs, J.E.2    Peterson, C.L.3
  • 13
    • 84857166722 scopus 로고    scopus 로고
    • Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination
    • Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26, 369-383 (2012
    • (2012) Genes Dev , vol.26 , pp. 369-383
    • Neumann, F.R.1
  • 14
    • 10944233962 scopus 로고    scopus 로고
    • Recruitment of the INO80 complex by H2A phosphorylation links ATP-Dependent chromatin remodeling with DNA double-Strand break repair
    • van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-Dependent chromatin remodeling with DNA double-Strand break repair. Cell 119, 777-788 (2004
    • (2004) Cell , vol.119 , pp. 777-788
    • Van Attikum, H.1    Fritsch, O.2    Hohn, B.3    Gasser, S.M.4
  • 15
    • 84866954195 scopus 로고    scopus 로고
    • The Fun30 nucleosome remodeller promotes resection of DNA double-Strand break ends
    • Chen, X. et al. The Fun30 nucleosome remodeller promotes resection of DNA double-Strand break ends. Nature 489, 576-580 (2012
    • (2012) Nature , vol.489 , pp. 576-580
    • Chen, X.1
  • 16
    • 84868694661 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end-Resection and checkpoint deactivation
    • Eapen, V. V., Sugawara, N., Tsabar, M., Wu, W. H. & Haber, J. E. The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end-Resection and checkpoint deactivation. Mol. Cell. Biol. 32, 4727-4740 (2012
    • (2012) Mol. Cell. Biol , vol.32 , pp. 4727-4740
    • Eapen, V.V.1    Sugawara, N.2    Tsabar, M.3    Wu, W.H.4    Haber, J.E.5
  • 17
    • 8644273963 scopus 로고    scopus 로고
    • The INO80 protein controls homologous recombination in Arabidopsis thaliana
    • Fritsch, O., Benvenuto, G., Bowler, C., Molinier, J. & Hohn, B. The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol. Cell 16, 479-485 (2004
    • (2004) Mol. Cell , vol.16 , pp. 479-485
    • Fritsch, O.1    Benvenuto, G.2    Bowler, C.3    Molinier, J.4    Hohn, B.5
  • 18
    • 34648834736 scopus 로고    scopus 로고
    • Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-Strand breaks
    • van Attikum, H., Fritsch, O. & Gasser, S. M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-Strand breaks. EMBO J. 26, 4113-4125 (2007
    • (2007) EMBO J. , vol.26 , pp. 4113-4125
    • Van Attikum, H.1    Fritsch, O.2    Gasser, S.M.3
  • 19
    • 59649124496 scopus 로고    scopus 로고
    • Chromosome-wide Rad51 spreading and SUMO H2A.Z dependent chromosome fixation in response to a persistent DNA double-Strand break
    • Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO H2A.Z dependent chromosome fixation in response to a persistent DNA double-Strand break. Mol. Cell 33, 335-343 (2009
    • (2009) Mol. Cell , vol.33 , pp. 335-343
    • Kalocsay, M.1    Hiller, N.J.2    Jentsch, S.3
  • 20
    • 77957738825 scopus 로고    scopus 로고
    • The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair
    • Xu, Y. et al. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J. Cell Biol. 191, 31-43 (2010
    • (2010) J. Cell Biol , vol.191 , pp. 31-43
    • Xu, Y.1
  • 21
    • 33644905252 scopus 로고    scopus 로고
    • Changes in chromatin structure and mobility in living cells at sites of DNA double-Strand breaks
    • Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-Strand breaks. J. Cell Biol. 172, 823-834 (2006
    • (2006) J. Cell Biol , vol.172 , pp. 823-834
    • Kruhlak, M.J.1
  • 22
    • 79951971464 scopus 로고    scopus 로고
    • Regulation of homologous recombination by RNF20 dependent H2B ubiquitination
    • Nakamura, K. et al. Regulation of homologous recombination by RNF20 dependent H2B ubiquitination. Mol. Cell 41, 515-528 (2011
    • (2011) Mol. Cell , vol.41 , pp. 515-528
    • Nakamura, K.1
  • 23
    • 78751515133 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction
    • Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nature Chem. Biol. 7, 113-119 (2011
    • (2011) Nature Chem. Biol , vol.7 , pp. 113-119
    • Fierz, B.1
  • 24
    • 79955613209 scopus 로고    scopus 로고
    • Histone acetylation by CBP and p300 at double-Strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors
    • Ogiwara, H. et al. Histone acetylation by CBP and p300 at double-Strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene 30, 2135-2146 (2011
    • (2011) Oncogene , vol.30 , pp. 2135-2146
    • Ogiwara, H.1
  • 25
    • 80455149670 scopus 로고    scopus 로고
    • Role for hACF1 in the G2/M damage checkpoint
    • Sanchez-Molina, S. et al. Role for hACF1 in the G2/M damage checkpoint. Nucleic Acids Res. 39, 8445-8456 (2011
    • (2011) Nucleic Acids Res , vol.39 , pp. 8445-8456
    • Sanchez-Molina, S.1
  • 26
    • 79951974992 scopus 로고    scopus 로고
    • Requirement of ATM-Dependent monoubiquitylation of histone H2B for timely repair of DNA double-Strand breaks
    • Moyal, L. et al. Requirement of ATM-Dependent monoubiquitylation of histone H2B for timely repair of DNA double-Strand breaks. Mol. Cell 41, 529-542 (2011
    • (2011) Mol. Cell , vol.41 , pp. 529-542
    • Moyal, L.1
  • 27
    • 0032535036 scopus 로고    scopus 로고
    • Double-Strand break repair by interchromosomal recombination: Suppression of chromosomal translocations
    • Richardson, C., Moynahan, M. E. & Jasin, M. Double-Strand break repair by interchromosomal recombination: Suppression of chromosomal translocations. Genes Dev. 12, 3831-3842 (1998
    • (1998) Genes Dev , vol.12 , pp. 3831-3842
    • Richardson, C.1    Moynahan, M.E.2    Jasin, M.3
  • 28
    • 0033008194 scopus 로고    scopus 로고
    • Homology search and choice of homologous partner during mitotic recombination
    • Inbar, O. & Kupiec, M. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol. 19, 4134-4142 (1999
    • (1999) Mol. Cell. Biol , vol.19 , pp. 4134-4142
    • Inbar, O.1    Kupiec, M.2
  • 29
    • 79551562850 scopus 로고    scopus 로고
    • Chromatin dynamics during repair of chromosomal DNA double-Strand breaks
    • Sinha, M. & Peterson, C. L. Chromatin dynamics during repair of chromosomal DNA double-Strand breaks. Epigenomics 1, 371-385 (2009
    • (2009) Epigenomics , vol.1 , pp. 371-385
    • Sinha, M.1    Peterson, C.L.2
  • 30
    • 70149105916 scopus 로고    scopus 로고
    • Recombinational repair within heterochromatin requires ATP-Dependent chromatin remodeling
    • Sinha, M., Watanabe, S., Johnson, A., Moazed, D. & Peterson, C. L. Recombinational repair within heterochromatin requires ATP-Dependent chromatin remodeling. Cell 138, 1109-1121 (2009
    • (2009) Cell , vol.138 , pp. 1109-1121
    • Sinha, M.1    Watanabe, S.2    Johnson, A.3    Moazed, D.4    Peterson, C.L.5
  • 31
    • 84860517399 scopus 로고    scopus 로고
    • Increased chromosome mobility facilitates homology search during recombination
    • Mine-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nature Cell Biol. 14, 510-517 (2012
    • (2012) Nature Cell Biol , vol.14 , pp. 510-517
    • Mine-Hattab, J.1    Rothstein, R.2
  • 32
    • 84860500314 scopus 로고    scopus 로고
    • Increased mobility of double-Strand breaks requires mec1 rad9 and the homologous recombination machinery
    • Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-Strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biol. 14, 502-509 (2012
    • (2012) Nature Cell Biol , vol.14 , pp. 502-509
    • Dion, V.1    Kalck, V.2    Horigome, C.3    Towbin, B.D.4    Gasser, S.M.5
  • 33
    • 34447574977 scopus 로고    scopus 로고
    • Positional stability of single double-Strand breaks in mammalian cells
    • Soutoglou, E. et al. Positional stability of single double-Strand breaks in mammalian cells. Nature Cell Biol. 9, 675-682 (2007
    • (2007) Nature Cell Biol , vol.9 , pp. 675-682
    • Soutoglou, E.1
  • 34
    • 67349228524 scopus 로고    scopus 로고
    • RAG 1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci
    • Hewitt, S. L. et al. RAG 1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunol. 10, 655-664 (2009
    • (2009) Nature Immunol , vol.10 , pp. 655-664
    • Hewitt, S.L.1
  • 35
    • 79952314830 scopus 로고    scopus 로고
    • Double-Strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
    • Chiolo, I. et al. Double-Strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732-744 (2011
    • (2011) Cell , vol.144 , pp. 732-744
    • Chiolo, I.1
  • 36
    • 34547591933 scopus 로고    scopus 로고
    • The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus
    • Torres-Rosell, J. et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biol. 9, 923-931 (2007
    • (2007) Nature Cell Biol , vol.9 , pp. 923-931
    • Torres-Rosell, J.1
  • 37
    • 0035449355 scopus 로고    scopus 로고
    • Cell cycle checkpoint signaling through the ATM & ATR kinases
    • Abraham, R. T. Cell cycle checkpoint signaling through the ATM & ATR kinases. Genes Dev. 15, 2177-2196 (2001
    • (2001) Genes Dev , vol.15 , pp. 2177-2196
    • Abraham, R.T.1
  • 39
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-SsDNA complexes
    • Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-SsDNA complexes. Science 300, 1542-1548 (2003
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 40
    • 33847737716 scopus 로고    scopus 로고
    • DNA damage checkpoints: From initiation to recovery or adaptation
    • Bartek, J. & Lukas, J. DNA damage checkpoints: From initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238-245 (2007
    • (2007) Curr. Opin. Cell Biol , vol.19 , pp. 238-245
    • Bartek, J.1    Lukas, J.2
  • 41
    • 0019319471 scopus 로고
    • Histone 2A, a heteromorphous family of eight protein species
    • West, M. H. & Bonner, W. M. Histone 2A, a heteromorphous family of eight protein species. Biochemistry 19, 3238-3245 (1980
    • (1980) Biochemistry , vol.19 , pp. 3238-3245
    • West, M.H.1    Bonner, W.M.2
  • 42
    • 77951498720 scopus 로고    scopus 로고
    • A cooperative activation loop among SWI/SNF, gamma H2AX and H3 acetylation for DNA double-Strand break repair
    • Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J. & Kwon, J. A cooperative activation loop among SWI/SNF, gamma H2AX and H3 acetylation for DNA double-Strand break repair. EMBO J. 29, 1434-1445 (2010
    • (2010) EMBO J. , vol.29 , pp. 1434-1445
    • Lee, H.S.1    Park, J.H.2    Kim, S.J.3    Kwon, S.J.4    Kwon, J.5
  • 43
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4 K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak, M. et al. Histone H4 K16 acetylation controls chromatin structure and protein interactions. Science 311, 844-847 (2006
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1
  • 44
    • 78649533191 scopus 로고    scopus 로고
    • MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1
    • Li, X. et al. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol. Cell. Biol. 30, 5335-5347 (2010
    • (2010) Mol. Cell. Biol , vol.30 , pp. 5335-5347
    • Li, X.1
  • 45
    • 77954360144 scopus 로고    scopus 로고
    • MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-Strand break repair
    • Sharma, G. G. et al. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-Strand break repair. Mol. Cell. Biol. 30, 3582-3595 (2010
    • (2010) Mol. Cell. Biol , vol.30 , pp. 3582-3595
    • Sharma, G.G.1
  • 46
    • 77956341931 scopus 로고    scopus 로고
    • Human HDAC1 and HDAC2 function in the DNA-Damage response to promote DNA nonhomologous end-joining
    • Miller, K. M. et al. Human HDAC1 and HDAC2 function in the DNA-Damage response to promote DNA nonhomologous end-joining. Nature Struct. Mol. Biol. 17, 1144-1151 (2010
    • (2010) Nature Struct. Mol. Biol , vol.17 , pp. 1144-1151
    • Miller, K.M.1
  • 47
    • 35548970638 scopus 로고    scopus 로고
    • Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast
    • Hammet, A., Magill, C., Heierhorst, J. & Jackson, S. P. Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep. 8, 851-857 (2007
    • (2007) EMBO Rep , vol.8 , pp. 851-857
    • Hammet, A.1    Magill, C.2    Heierhorst, J.3    Jackson, S.P.4
  • 48
    • 33748807217 scopus 로고    scopus 로고
    • Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling
    • Javaheri, A. et al. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling. Proc. Natl Acad. Sci. USA 103, 13771-13776 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 13771-13776
    • Javaheri, A.1
  • 49
    • 10944219768 scopus 로고    scopus 로고
    • Control of sister chromatid recombination by histone H2AX
    • Xie, A. et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell 16, 1017-1025 (2004
    • (2004) Mol. Cell , vol.16 , pp. 1017-1025
    • Xie, A.1
  • 50
    • 78651406669 scopus 로고    scopus 로고
    • H2AX prevents CtIP-Mediated DNA end resection and aberrant repair in G1 phase lymphocytes
    • Helmink, B. A. et al. H2AX prevents CtIP-Mediated DNA end resection and aberrant repair in G1 phase lymphocytes. Nature 469, 245-249 (2011
    • (2011) Nature , vol.469 , pp. 245-249
    • Helmink, B.A.1
  • 51
    • 0037012845 scopus 로고    scopus 로고
    • Genomic instability in mice lacking histone H2AX
    • Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922-927 (2002
    • (2002) Science , vol.296 , pp. 922-927
    • Celeste, A.1
  • 52
    • 36249031962 scopus 로고    scopus 로고
    • RNF8 transduces the DNA-Damage signal via histone ubiquitylation and checkpoint protein assembly
    • Huen, M. S. et al. RNF8 transduces the DNA-Damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901-914 (2007
    • (2007) Cell , vol.131 , pp. 901-914
    • Huen, M.S.1
  • 53
    • 36749084931 scopus 로고    scopus 로고
    • Orchestration of the DNA-Damage response by the RNF8 ubiquitin ligase
    • Kolas, N. K. et al. Orchestration of the DNA-Damage response by the RNF8 ubiquitin ligase. Science 318, 1637-1640 (2007
    • (2007) Science , vol.318 , pp. 1637-1640
    • Kolas, N.K.1
  • 54
    • 36248966246 scopus 로고    scopus 로고
    • RNF8 ubiquitylates histones at DNA double-Strand breaks and promotes assembly of repair proteins
    • Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-Strand breaks and promotes assembly of repair proteins. Cell 131, 887-900 (2007
    • (2007) Cell , vol.131 , pp. 887-900
    • Mailand, N.1
  • 55
    • 59049091728 scopus 로고    scopus 로고
    • RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins
    • Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435-446 (2009
    • (2009) Cell , vol.136 , pp. 435-446
    • Doil, C.1
  • 56
    • 59049103900 scopus 로고    scopus 로고
    • The RIDDLE syndrome protein mediates a ubiquitin-Dependent signaling cascade at sites of DNA damage
    • Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-Dependent signaling cascade at sites of DNA damage. Cell 136, 420-434 (2009
    • (2009) Cell , vol.136 , pp. 420-434
    • Stewart, G.S.1
  • 57
    • 84861895067 scopus 로고    scopus 로고
    • A new non-Catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure
    • Luijsterburg, M. S. et al. A new non-Catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO J. 31, 2511-2527 (2012
    • (2012) EMBO J. , vol.31 , pp. 2511-2527
    • Luijsterburg, M.S.1
  • 58
    • 78649349810 scopus 로고    scopus 로고
    • A chromatin localization screen reveals poly (ADP ribose)-Regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage
    • Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-Regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA 107, 18475-18480 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 18475-18480
    • Chou, D.M.1
  • 59
    • 33845666681 scopus 로고    scopus 로고
    • Structural basis for the methylation state-Specific recognition of histone H4 K20 by 53BP1 and Crb2 in DNA repair
    • Botuyan, M. V. et al. Structural basis for the methylation state-Specific recognition of histone H4 K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361-1373 (2006
    • (2006) Cell , vol.127 , pp. 1361-1373
    • Botuyan, M.V.1
  • 60
    • 9244252580 scopus 로고    scopus 로고
    • Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-Strand breaks
    • Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-Strand breaks. Nature 432, 406-411 (2004
    • (2004) Nature , vol.432 , pp. 406-411
    • Huyen, Y.1
  • 61
    • 8844248619 scopus 로고    scopus 로고
    • Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage
    • Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603-614 (2004
    • (2004) Cell , vol.119 , pp. 603-614
    • Sanders, S.L.1
  • 62
    • 79551665780 scopus 로고    scopus 로고
    • MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites
    • Pei, H. et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470, 124-128 (2011
    • (2011) Nature , vol.470 , pp. 124-128
    • Pei, H.1
  • 63
    • 33747884339 scopus 로고    scopus 로고
    • DNA damage-induced cell death by apoptosis
    • Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12, 440-450 (2006
    • (2006) Trends Mol. Med , vol.12 , pp. 440-450
    • Roos, W.P.1    Kaina, B.2
  • 64
    • 63849187827 scopus 로고    scopus 로고
    • Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions
    • Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591-596 (2009
    • (2009) Nature , vol.458 , pp. 591-596
    • Cook, P.J.1
  • 65
    • 58149242430 scopus 로고    scopus 로고
    • WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity
    • Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57-62 (2008
    • (2008) Nature , vol.457 , pp. 57-62
    • Xiao, A.1
  • 66
    • 84865975058 scopus 로고    scopus 로고
    • Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1
    • Singh, N. et al. Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1. Proc. Natl Acad. Sci. USA 109, 14381-14386 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 14381-14386
    • Singh, N.1
  • 67
    • 77953720192 scopus 로고    scopus 로고
    • ATM-Dependent chromatin changes silence transcription in cis to DNA double-Strand breaks
    • Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-Dependent chromatin changes silence transcription in cis to DNA double-Strand breaks. Cell 141, 970-981 (2010
    • (2010) Cell , vol.141 , pp. 970-981
    • Shanbhag, N.M.1    Rafalska-Metcalf, I.U.2    Balane-Bolivar, C.3    Janicki, S.M.4    Greenberg, R.A.5
  • 68
    • 7244234099 scopus 로고    scopus 로고
    • Role of histone H2A ubiquitination in Polycomb silencing
    • Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873-878 (2004
    • (2004) Nature , vol.431 , pp. 873-878
    • Wang, H.1
  • 69
    • 77951498531 scopus 로고    scopus 로고
    • High-Resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome
    • Iacovoni, J. S. et al. High-Resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446-1457 (2010
    • (2010) EMBO J. , vol.29 , pp. 1446-1457
    • Iacovoni, J.S.1
  • 70
    • 78651510784 scopus 로고    scopus 로고
    • Global regulation of H2A.Z localization by the INO80 chromatin-Remodeling enzyme is essential for genome integrity
    • Papamichos-Chronakis, M., Watanabe, S., Rando, O. J. & Peterson, C. L. Global regulation of H2A.Z localization by the INO80 chromatin-Remodeling enzyme is essential for genome integrity. Cell 144, 200-213 (2011
    • (2011) Cell , vol.144 , pp. 200-213
    • Papamichos-Chronakis, M.1    Watanabe, S.2    Rando, O.J.3    Peterson, C.L.4
  • 71
    • 28444483130 scopus 로고    scopus 로고
    • Gamma H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-Strand break repair
    • Chowdhury, D. et al. Gamma H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-Strand break repair. Mol. Cell 20, 801-809 (2005
    • (2005) Mol. Cell , vol.20 , pp. 801-809
    • Chowdhury, D.1
  • 72
    • 53249100305 scopus 로고    scopus 로고
    • PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint
    • Nakada, S., Chen, G. I., Gingras, A. C. & Durocher, D. PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep. 9, 1019-1026 (2008
    • (2008) EMBO Rep , vol.9 , pp. 1019-1026
    • Nakada, S.1    Chen, G.I.2    Gingras, A.C.3    Durocher, D.4
  • 73
    • 31444445458 scopus 로고    scopus 로고
    • A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery
    • Keogh, M. C. et al. A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery. Nature 439, 497-501 (2006
    • (2006) Nature , vol.439 , pp. 497-501
    • Keogh, M.C.1
  • 74
    • 47549105301 scopus 로고    scopus 로고
    • Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair
    • Chen, C. C. et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231-243 (2008
    • (2008) Cell , vol.134 , pp. 231-243
    • Chen, C.C.1
  • 75
    • 68249122027 scopus 로고    scopus 로고
    • The checkpoint response to replication stress
    • Branzei, D. & Foiani, M. The checkpoint response to replication stress. DNA Repair 8, 1038-1046 (2009
    • (2009) DNA Repair , vol.8 , pp. 1038-1046
    • Branzei, D.1    Foiani, M.2
  • 76
    • 84858053395 scopus 로고    scopus 로고
    • Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases
    • De Piccoli, G. et al. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell 45, 696-704 (2012
    • (2012) Mol. Cell , vol.45 , pp. 696-704
    • De Piccoli, G.1
  • 77
    • 29144486147 scopus 로고    scopus 로고
    • Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations
    • Cobb, J. A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055-3069 (2005
    • (2005) Genes Dev , vol.19 , pp. 3055-3069
    • Cobb, J.A.1
  • 78
    • 77649276054 scopus 로고    scopus 로고
    • Histone H3 Thr 45 phosphorylation is a replication-Associated post-Translational modification in S cerevisiae
    • Baker, S. P. et al. Histone H3 Thr 45 phosphorylation is a replication-Associated post-Translational modification in S. cerevisiae. Nature Cell Biol. 12, 294-298 (2010
    • (2010) Nature Cell Biol , vol.12 , pp. 294-298
    • Baker, S.P.1
  • 79
    • 78049372333 scopus 로고    scopus 로고
    • Loss of H3 K79 trimethylation leads to suppression of Rtt107 dependent DNA damage sensitivity through the translesion synthesis pathway
    • Levesque, N., Leung, G. P., Fok, A. K., Schmidt, T. I. & Kobor, M. S. Loss of H3 K79 trimethylation leads to suppression of Rtt107 dependent DNA damage sensitivity through the translesion synthesis pathway. J. Biol. Chem. 285, 35113-35122 (2010
    • (2010) J. Biol. Chem , vol.285 , pp. 35113-35122
    • Levesque, N.1    Leung, G.P.2    Fok, A.K.3    Schmidt, T.I.4    Kobor, M.S.5
  • 80
    • 52049126610 scopus 로고    scopus 로고
    • Role of Dot1 in the response to alkylating DNA damage in Saccharomyces cerevisiae: Regulation of DNA damage tolerance by the error-prone polymerases Polzeta/Rev1
    • Conde, F. & San-Segundo, P. A. Role of Dot1 in the response to alkylating DNA damage in Saccharomyces cerevisiae: Regulation of DNA damage tolerance by the error-prone polymerases Polzeta/Rev1. Genetics 179, 1197-1210 (2008
    • (2008) Genetics , vol.179 , pp. 1197-1210
    • Conde, F.1    San-Segundo, P.A.2
  • 81
    • 25444466892 scopus 로고    scopus 로고
    • Role of Dot1 dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9
    • Wysocki, R. et al. Role of Dot1 dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol. Cell. Biol. 25, 8430-8443 (2005
    • (2005) Mol. Cell. Biol , vol.25 , pp. 8430-8443
    • Wysocki, R.1
  • 82
    • 77953326127 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae RAD9 RAD17 and RAD24 genes are required for suppression of mutagenic post-Replicative repair during chronic DNA damage
    • Murakami-Sekimata, A., Huang, D., Piening, B. D., Bangur, C. & Paulovich, A. G. The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-Replicative repair during chronic DNA damage. DNA Repair 9, 824-834 (2010
    • (2010) DNA Repair , vol.9 , pp. 824-834
    • Murakami-Sekimata, A.1    Huang, D.2    Piening, B.D.3    Bangur, C.4    Paulovich, A.G.5
  • 83
    • 47549092547 scopus 로고    scopus 로고
    • Acetylation of histone H3 lysine 56 regulates replication-Coupled nucleosome assembly
    • Li, Q. et al. Acetylation of histone H3 lysine 56 regulates replication-Coupled nucleosome assembly. Cell 134, 244-255 (2008
    • (2008) Cell , vol.134 , pp. 244-255
    • Li, Q.1
  • 84
    • 37549049820 scopus 로고    scopus 로고
    • Regulation of replication fork progression through histone supply and demand
    • Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science 318, 1928-1931 (2007
    • (2007) Science , vol.318 , pp. 1928-1931
    • Groth, A.1
  • 85
    • 84862776917 scopus 로고    scopus 로고
    • Intrinsic coupling of lagging-Strand synthesis to chromatin assembly
    • Smith, D. J. & Whitehouse, I. Intrinsic coupling of lagging-Strand synthesis to chromatin assembly. Nature 483, 434-438 (2012
    • (2012) Nature , vol.483 , pp. 434-438
    • Smith, D.J.1    Whitehouse, I.2
  • 86
    • 76849084692 scopus 로고    scopus 로고
    • A role for Gcn5 in replication-Coupled nucleosome assembly
    • Burgess, R. J., Zhou, H., Han, J. & Zhang, Z. A role for Gcn5 in replication-Coupled nucleosome assembly. Mol. Cell 37, 469-480 (2010
    • (2010) Mol. Cell , vol.37 , pp. 469-480
    • Burgess, R.J.1    Zhou, H.2    Han, J.3    Zhang, Z.4
  • 87
    • 58149522909 scopus 로고    scopus 로고
    • Making copies of chromatin: The challenge of nucleosomal organization and epigenetic information
    • Corpet, A. & Almouzni, G. Making copies of chromatin: The challenge of nucleosomal organization and epigenetic information. Trends Cell Biol. 19, 29-41 (2009
    • (2009) Trends Cell Biol , vol.19 , pp. 29-41
    • Corpet, A.1    Almouzni, G.2
  • 88
    • 83255185782 scopus 로고    scopus 로고
    • ATP-Dependent chromatin remodeling factors tune S phase checkpoint activity
    • Au, T. J., Rodriguez, J., Vincent, J. A. & Tsukiyama, T. ATP-Dependent chromatin remodeling factors tune S phase checkpoint activity. Mol. Cell. Biol. 31, 4454-4463 (2011
    • (2011) Mol. Cell. Biol , vol.31 , pp. 4454-4463
    • Au, T.J.1    Rodriguez, J.2    Vincent, J.A.3    Tsukiyama, T.4
  • 89
    • 41649111513 scopus 로고    scopus 로고
    • The INO80 chromatin-Remodeling enzyme regulates replisome function and stability
    • Papamichos-Chronakis, M. & Peterson, C. L. The INO80 chromatin-Remodeling enzyme regulates replisome function and stability. Nature Struct. Mol. Biol. 15, 338-345 (2008
    • (2008) Nature Struct. Mol. Biol , vol.15 , pp. 338-345
    • Papamichos-Chronakis, M.1    Peterson, C.L.2
  • 90
    • 42049094866 scopus 로고    scopus 로고
    • INO80 chromatin remodeling complex promotes recovery of stalled replication forks
    • Shimada, K. et al. INO80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol. 18, 566-575 (2008
    • (2008) Curr. Biol , vol.18 , pp. 566-575
    • Shimada, K.1
  • 91
    • 77954060598 scopus 로고    scopus 로고
    • Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability
    • Hur, S. K. et al. Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability. Cell. Mol. Life Sci. 67, 2283-2296 (2010
    • (2010) Cell. Mol. Life Sci , vol.67 , pp. 2283-2296
    • Hur, S.K.1
  • 92
    • 70350783732 scopus 로고    scopus 로고
    • Involvement of a chromatin remodeling complex in damage tolerance during DNA replication
    • Falbo, K. B. et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nature Struct. Mol. Biol. 16, 1167-1172 (2009
    • (2009) Nature Struct. Mol. Biol , vol.16 , pp. 1167-1172
    • Falbo, K.B.1
  • 93
    • 18544381908 scopus 로고    scopus 로고
    • Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia
    • Boerkoel, C. F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nature Genet. 30, 215-220 (2002
    • (2002) Nature Genet , vol.30 , pp. 215-220
    • Boerkoel, C.F.1
  • 94
    • 70350088521 scopus 로고    scopus 로고
    • The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
    • Ciccia, A. et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 23, 2415-2425 (2009
    • (2009) Genes Dev , vol.23 , pp. 2415-2425
    • Ciccia, A.1
  • 95
    • 70350111290 scopus 로고    scopus 로고
    • The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    • Bansbach, C. E., Betous, R., Lovejoy, C. A., Glick, G. G. & Cortez, D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 23, 2405-2414 (2009
    • (2009) Genes Dev , vol.23 , pp. 2405-2414
    • Bansbach, C.E.1    Betous, R.2    Lovejoy, C.A.3    Glick, G.G.4    Cortez, D.5
  • 96
    • 70350118815 scopus 로고    scopus 로고
    • The annealing helicase HARP protects stalled replication forks
    • Yuan, J., Ghosal, G. & Chen, J. The annealing helicase HARP protects stalled replication forks. Genes Dev. 23, 2394-2399 (2009
    • (2009) Genes Dev , vol.23 , pp. 2394-2399
    • Yuan, J.1    Ghosal, G.2    Chen, J.3
  • 97
    • 70350103969 scopus 로고    scopus 로고
    • The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
    • Yusufzai, T., Kong, X., Yokomori, K. & Kadonaga, J. T. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev. 23, 2400-2404 (2009
    • (2009) Genes Dev , vol.23 , pp. 2400-2404
    • Yusufzai, T.1    Kong, X.2    Yokomori, K.3    Kadonaga, J.T.4
  • 98
    • 55349121223 scopus 로고    scopus 로고
    • HARP is an ATP-Driven annealing helicase
    • Yusufzai, T. & Kadonaga, J. T. HARP is an ATP-Driven annealing helicase. Science 322, 748-750 (2008
    • (2008) Science , vol.322 , pp. 748-750
    • Yusufzai, T.1    Kadonaga, J.T.2
  • 99
    • 70350124025 scopus 로고    scopus 로고
    • HARPing on about the DNA damage response during replication
    • Driscoll, R. & Cimprich, K. A. HARPing on about the DNA damage response during replication. Genes Dev. 23, 2359-2365 (2009
    • (2009) Genes Dev , vol.23 , pp. 2359-2365
    • Driscoll, R.1    Cimprich, K.A.2
  • 100
    • 84856246154 scopus 로고    scopus 로고
    • Smarcal1 catalyzes fork regression and holliday junction migration to maintain genome stability during DNA replication
    • Betous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151-162 (2012
    • (2012) Genes Dev , vol.26 , pp. 151-162
    • Betous, R.1
  • 101
    • 43249095257 scopus 로고    scopus 로고
    • ATP-Dependent chromatin remodeling shapes the DNA replication landscape
    • Vincent, J. A., Kwong, T. J. & Tsukiyama, T. ATP-Dependent chromatin remodeling shapes the DNA replication landscape. Nature Struct. Mol. Biol. 15, 477-484 (2008
    • (2008) Nature Struct. Mol. Biol , vol.15 , pp. 477-484
    • Vincent, J.A.1    Kwong, T.J.2    Tsukiyama, T.3
  • 102
    • 0036899341 scopus 로고    scopus 로고
    • An ACF1 ISWI chromatin-Remodeling complex is required for DNA replication through heterochromatin
    • Collins, N. et al. An ACF1 ISWI chromatin-Remodeling complex is required for DNA replication through heterochromatin. Nature Genet. 32, 627-632 (2002
    • (2002) Nature Genet , vol.32 , pp. 627-632
    • Collins, N.1
  • 103
    • 10344261484 scopus 로고    scopus 로고
    • The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci
    • Poot, R. A. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nature Cell Biol. 6, 1236-1244 (2004
    • (2004) Nature Cell Biol , vol.6 , pp. 1236-1244
    • Poot, R.A.1
  • 104
    • 37249077649 scopus 로고    scopus 로고
    • Chromatin remodelling at promoters suppresses antisense transcription
    • Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031-1035 (2007
    • (2007) Nature , vol.450 , pp. 1031-1035
    • Whitehouse, I.1    Rando, O.J.2    Delrow, J.3    Tsukiyama, T.4
  • 105
    • 0942290537 scopus 로고    scopus 로고
    • Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo
    • Fyodorov, D. V., Blower, M. D., Karpen, G. H. & Kadonaga, J. T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170-183 (2004
    • (2004) Genes Dev , vol.18 , pp. 170-183
    • Fyodorov, D.V.1    Blower, M.D.2    Karpen, G.H.3    Kadonaga, J.T.4
  • 106
    • 79955507553 scopus 로고    scopus 로고
    • Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1
    • Rowbotham, S. P. et al. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell 42, 285-296 (2011
    • (2011) Mol. Cell , vol.42 , pp. 285-296
    • Rowbotham, S.P.1
  • 107
    • 79953741267 scopus 로고    scopus 로고
    • The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation
    • Stralfors, A., Walfridsson, J., Bhuiyan, H. & Ekwall, K. The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation. PLoS Genet. 7, e1001334 (2011
    • (2011) Plos Genet , vol.7
    • Stralfors, A.1    Walfridsson, J.2    Bhuiyan, H.3    Ekwall, K.4
  • 108
    • 0347762556 scopus 로고    scopus 로고
    • From polyploidy to aneuploidy, genome instability and cancer
    • Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Rev. Mol. Cell Biol. 5, 45-54 (2004
    • (2004) Nature Rev. Mol. Cell Biol , vol.5 , pp. 45-54
    • Storchova, Z.1    Pellman, D.2
  • 109
    • 77949874234 scopus 로고    scopus 로고
    • Histone variants-ancient wrap artists of the epigenome
    • Talbert, P. B. & Henikoff, S. Histone variants - Ancient wrap artists of the epigenome. Nature Rev. Mol. Cell Biol. 11, 264-275 (2010
    • (2010) Nature Rev. Mol. Cell Biol , vol.11 , pp. 264-275
    • Talbert, P.B.1    Henikoff, S.2
  • 110
    • 79955413557 scopus 로고    scopus 로고
    • Centromeres: Unique chromatin structures that drive chromosome segregation
    • Verdaasdonk, J. S. & Bloom, K. Centromeres: Unique chromatin structures that drive chromosome segregation. Nature Rev. Mol. Cell Biol. 12, 320-332 (2011
    • (2011) Nature Rev. Mol. Cell Biol , vol.12 , pp. 320-332
    • Verdaasdonk, J.S.1    Bloom, K.2
  • 111
    • 71449102268 scopus 로고    scopus 로고
    • An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe
    • Kim, H. S. et al. An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nature Struct. Mol. Biol. 16, 1286-1293 (2009
    • (2009) Nature Struct. Mol. Biol , vol.16 , pp. 1286-1293
    • Kim, H.S.1
  • 112
    • 4544262211 scopus 로고    scopus 로고
    • Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4
    • Krogan, N. J. et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc. Natl Acad. Sci. USA 101, 13513-13518 (2004
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 13513-13518
    • Krogan, N.J.1
  • 113
    • 70349694389 scopus 로고    scopus 로고
    • H3 phosphorylation: Dual role in mitosis and interphase
    • Perez-Cadahia, B., Drobic, B. & Davie, J. R. H3 phosphorylation: Dual role in mitosis and interphase. Biochem. Cell Biol. 87, 695-709 (2009
    • (2009) Biochem. Cell Biol , vol.87 , pp. 695-709
    • Perez-Cadahia, B.1    Drobic, B.2    Davie, J.R.3
  • 114
    • 74249093169 scopus 로고    scopus 로고
    • Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin
    • Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327, 172-177 (2010
    • (2010) Science , vol.327 , pp. 172-177
    • Kawashima, S.A.1    Yamagishi, Y.2    Honda, T.3    Ishiguro, K.4    Watanabe, Y.5
  • 115
    • 77957725753 scopus 로고    scopus 로고
    • Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase aurora B
    • Kelly, A. E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330, 235-239 (2010
    • (2010) Science , vol.330 , pp. 235-239
    • Kelly, A.E.1
  • 116
    • 77957731584 scopus 로고    scopus 로고
    • Two histone marks establish the inner centromere and chromosome bi orientation
    • Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi orientation. Science 330, 239-243 (2010
    • (2010) Science , vol.330 , pp. 239-243
    • Yamagishi, Y.1    Honda, T.2    Tanno, Y.3    Watanabe, Y.4
  • 117
    • 79959549133 scopus 로고    scopus 로고
    • Condensin association with histone H2A shapes mitotic chromosomes
    • Tada, K., Susumu, H., Sakuno, T. & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474, 477-483 (2011
    • (2011) Nature , vol.474 , pp. 477-483
    • Tada, K.1    Susumu, H.2    Sakuno, T.3    Watanabe, Y.4
  • 118
    • 0037405734 scopus 로고    scopus 로고
    • The yeast RSC chromatin-Remodeling complex is required for kinetochore function in chromosome segregation
    • Hsu, J. M., Huang, J., Meluh, P. B. & Laurent, B. C. The yeast RSC chromatin-Remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23, 3202-3215 (2003
    • (2003) Mol. Cell. Biol , vol.23 , pp. 3202-3215
    • Hsu, J.M.1    Huang, J.2    Meluh, P.B.3    Laurent, B.C.4
  • 119
    • 34248217977 scopus 로고    scopus 로고
    • The INO80 chromatin remodeling complex functions in sister chromatid cohesion
    • Ogiwara, H., Enomoto, T. & Seki, M. The INO80 chromatin remodeling complex functions in sister chromatid cohesion. Cell Cycle 6, 1090-1095 (2007
    • (2007) Cell Cycle , vol.6 , pp. 1090-1095
    • Ogiwara, H.1    Enomoto, T.2    Seki, M.3
  • 120
    • 0034700134 scopus 로고    scopus 로고
    • The human SWI/SNF B chromatin-Remodeling complex is related to yeast RSC and localizes at kinetochores of mitotic chromosomes
    • Xue, Y. et al. The human SWI/SNF B chromatin-Remodeling complex is related to yeast RSC and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA 97, 13015-13020 (2000
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 13015-13020
    • Xue, Y.1
  • 121
    • 85027932914 scopus 로고    scopus 로고
    • The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4
    • Gkikopoulos, T. et al. The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J. 30, 1919-1927 (2011
    • (2011) EMBO J. , vol.30 , pp. 1919-1927
    • Gkikopoulos, T.1
  • 122
    • 36849066365 scopus 로고    scopus 로고
    • A YY1 INO80 complex regulates genomic stability through homologous recombination-Based repair
    • Wu, S. et al. A YY1 INO80 complex regulates genomic stability through homologous recombination-Based repair. Nature Struct. Mol. Biol. 14, 1165-1172 (2007
    • (2007) Nature Struct. Mol. Biol , vol.14 , pp. 1165-1172
    • Wu, S.1
  • 123
    • 34347328248 scopus 로고    scopus 로고
    • Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance
    • Campsteijn, C., Wijnands-Collin, A. M. & Logie, C. Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance. PLoS Genet. 3, e92 (2007
    • (2007) Plos Genet , vol.3
    • Campsteijn, C.1    Wijnands-Collin, A.M.2    Logie, C.3
  • 124
    • 59049101302 scopus 로고    scopus 로고
    • Aurora B mediated abscission checkpoint protects against tetraploidization
    • Steigemann, P. et al. Aurora B mediated abscission checkpoint protects against tetraploidization. Cell 136, 473-484 (2009
    • (2009) Cell , vol.136 , pp. 473-484
    • Steigemann, P.1
  • 125
    • 33645968660 scopus 로고    scopus 로고
    • The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage
    • Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85-98 (2006
    • (2006) Cell , vol.125 , pp. 85-98
    • Norden, C.1
  • 126
    • 33845981777 scopus 로고    scopus 로고
    • PICH a centromere-Associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint
    • Baumann, C., Korner, R., Hofmann, K. & Nigg, E. A. PICH, a centromere-Associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101-114 (2007
    • (2007) Cell , vol.128 , pp. 101-114
    • Baumann, C.1    Korner, R.2    Hofmann, K.3    Nigg, E.A.4
  • 127
    • 34547192058 scopus 로고    scopus 로고
    • BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges
    • Chan, K. L., North, P. S. & Hickson, I. D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26, 3397-3409 (2007
    • (2007) EMBO J. , vol.26 , pp. 3397-3409
    • Chan, K.L.1    North, P.S.2    Hickson, I.D.3
  • 128
    • 67349227137 scopus 로고    scopus 로고
    • Replication stress induces sister-Chromatid bridging at fragile site loci in mitosis
    • Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-Chromatid bridging at fragile site loci in mitosis. Nature Cell Biol. 11, 753-760 (2009
    • (2009) Nature Cell Biol , vol.11 , pp. 753-760
    • Chan, K.L.1    Palmai-Pallag, T.2    Ying, S.3    Hickson, I.D.4
  • 129
    • 34548474527 scopus 로고    scopus 로고
    • Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity
    • Sillibourne, J. E., Delaval, B., Redick, S., Sinha, M. & Doxsey, S. J. Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity. Mol. Biol. Cell 18, 3667-3680 (2007
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3667-3680
    • Sillibourne, J.E.1    Delaval, B.2    Redick, S.3    Sinha, M.4    Doxsey, S.J.5
  • 130
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-Mediated arrest after repair of a double-Strand break requires Srs2 helicase
    • Vaze, M. B. et al. Recovery from checkpoint-Mediated arrest after repair of a double-Strand break requires Srs2 helicase. Mol. Cell 10, 373-385 (2002
    • (2002) Mol. Cell , vol.10 , pp. 373-385
    • Vaze, M.B.1
  • 131
    • 4644257681 scopus 로고    scopus 로고
    • Distribution and dynamics of chromatin modification induced by a defined DNA double-Strand break
    • Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-Strand break. Curr. Biol. 14, 1703-1711 (2004
    • (2004) Curr. Biol , vol.14 , pp. 1703-1711
    • Shroff, R.1
  • 132
    • 10044296220 scopus 로고    scopus 로고
    • Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter
    • Korber, P., Luckenbach, T., Blaschke, D. & Horz, W. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol. Cell. Biol. 24, 10965-10974 (2004
    • (2004) Mol. Cell. Biol , vol.24 , pp. 10965-10974
    • Korber, P.1    Luckenbach, T.2    Blaschke, D.3    Horz, W.4
  • 133
    • 70249142494 scopus 로고    scopus 로고
    • Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae
    • Klopf, E. et al. Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 29, 4994-5007 (2009
    • (2009) Mol. Cell. Biol , vol.29 , pp. 4994-5007
    • Klopf, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.