메뉴 건너뛰기




Volumn 23, Issue 8, 2009, Pages 912-927

Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery

Author keywords

3C ; Chromatin; DNA double strand break; DNA repair; Mps3p; Rad52

Indexed keywords

DOUBLE STRANDED DNA; ENVELOPE PROTEIN; MPS3P PROTEIN; NUCLEAR PROTEIN; TELOMERASE; UNCLASSIFIED DRUG; CDC13 PROTEIN, S CEREVISIAE; DNA BINDING PROTEIN; HELICASE; MEMBRANE PROTEIN; MPS3 PROTEIN, S CEREVISIAE; PIF1 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; SLX5 PROTEIN, S CEREVISIAE; TELOMERE BINDING PROTEIN;

EID: 65249150132     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.1782209     Document Type: Article
Times cited : (261)

References (79)
  • 1
    • 10344227735 scopus 로고    scopus 로고
    • The spindle pole body assembly component Mps3p/Nep98p functions in sister chromatid cohesion
    • Antoniacci, L.M., Kenna, M.A., Uetz, P., Fields, S., and Skibbens, R.V. 2004. The spindle pole body assembly component Mps3p/Nep98p functions in sister chromatid cohesion. J. Biol. Chem. 279:49542-49550.
    • (2004) J. Biol. Chem , vol.279 , pp. 49542-49550
    • Antoniacci, L.M.1    Kenna, M.A.2    Uetz, P.3    Fields, S.4    Skibbens, R.V.5
  • 2
    • 33846605450 scopus 로고    scopus 로고
    • The nuclear envelope and spindle pole body-associated Mps3 protein bind telomere regulators and function in telomere clustering
    • Antoniacci, L.M., Kenna, M.A., and Skibbens, R.V. 2007. The nuclear envelope and spindle pole body-associated Mps3 protein bind telomere regulators and function in telomere clustering. Cell Cycle 6:75-79.
    • (2007) Cell Cycle , vol.6 , pp. 75-79
    • Antoniacci, L.M.1    Kenna, M.A.2    Skibbens, R.V.3
  • 3
    • 0347988236 scopus 로고    scopus 로고
    • Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains
    • Aten, J.A., Stap, J., Krawczyk, P.M., van Oven, C.H., Hoebe, R.A., Essers, J., and Kanaar, R. 2004. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303:92-95.
    • (2004) Science , vol.303 , pp. 92-95
    • Aten, J.A.1    Stap, J.2    Krawczyk, P.M.3    van Oven, C.H.4    Hoebe, R.A.5    Essers, J.6    Kanaar, R.7
  • 4
    • 11244269445 scopus 로고    scopus 로고
    • The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
    • Aylon, Y., Liefshitz, B., and Kupiec, M. 2004. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23:4868-4875.
    • (2004) EMBO J , vol.23 , pp. 4868-4875
    • Aylon, Y.1    Liefshitz, B.2    Kupiec, M.3
  • 5
    • 0037472924 scopus 로고    scopus 로고
    • DNA damage activates ATM through intermolecular autophosphorylation and di- mer dissociation
    • Bakkenist, C.J. and Kastan, M.B. 2003. DNA damage activates ATM through intermolecular autophosphorylation and di- mer dissociation. Nature 421:499-506.
    • (2003) Nature , vol.421 , pp. 499-506
    • Bakkenist, C.J.1    Kastan, M.B.2
  • 6
    • 11144261727 scopus 로고    scopus 로고
    • Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints
    • Banerjee, S. and Myung, K. 2004. Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints. Eukaryot. Cell 3:1557-1566.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1557-1566
    • Banerjee, S.1    Myung, K.2
  • 7
    • 3242881500 scopus 로고    scopus 로고
    • The cellular response to general and programmed DNA double strand breaks
    • Bassing, C.H. and Alt, F.W. 2004. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst.) 3:781-796.
    • (2004) DNA Repair (Amst.) , vol.3 , pp. 781-796
    • Bassing, C.H.1    Alt, F.W.2
  • 8
    • 0032030657 scopus 로고    scopus 로고
    • In vivo visualization of chromosomes using lac operator-repressor binding
    • Belmont, A.S. and Straight, A.F. 1998. In vivo visualization of chromosomes using lac operator-repressor binding. Trends Cell Biol. 8:121-124.
    • (1998) Trends Cell Biol , vol.8 , pp. 121-124
    • Belmont, A.S.1    Straight, A.F.2
  • 9
    • 48249132443 scopus 로고    scopus 로고
    • Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion
    • Ben-Shahar, T.R., Heeger, S., Lehane, C., East, P., Flynn, H., Skehel, M., and Uhlmann, F. 2008. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321:563-566.
    • (2008) Science , vol.321 , pp. 563-566
    • Ben-Shahar, T.R.1    Heeger, S.2    Lehane, C.3    East, P.4    Flynn, H.5    Skehel, M.6    Uhlmann, F.7
  • 10
    • 47549086947 scopus 로고    scopus 로고
    • How telomerase reaches its end: Mechanism of telomerase regulation by the telomeric complex
    • Bianchi, A. and Shore, D. 2008. How telomerase reaches its end: Mechanism of telomerase regulation by the telomeric complex. Mol Cell. 31:153-165.
    • (2008) Mol Cell , vol.31 , pp. 153-165
    • Bianchi, A.1    Shore, D.2
  • 11
    • 4944265507 scopus 로고    scopus 로고
    • Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1
    • Bianchi, A., Negrini, S., and Shore, D. 2004. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol. Cell. 16:139-146.
    • (2004) Mol. Cell , vol.16 , pp. 139-146
    • Bianchi, A.1    Negrini, S.2    Shore, D.3
  • 12
    • 36849008181 scopus 로고    scopus 로고
    • Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3
    • Bupp, J.M., Martin, A.E., Stensrud, E.S., and Jaspersen, S.L. 2007. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J. Cell Biol. 179:845-854.
    • (2007) J. Cell Biol , vol.179 , pp. 845-854
    • Bupp, J.M.1    Martin, A.E.2    Stensrud, E.S.3    Jaspersen, S.L.4
  • 13
    • 59249101747 scopus 로고    scopus 로고
    • Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex
    • Bystricky, K., Van Attikum, H., Montiel, M.-D., Dion, V., Gehlen, L., and Gasser, S.M. 2008. Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol. Cell. Biol. 29:835-848.
    • (2008) Mol. Cell. Biol , vol.29 , pp. 835-848
    • Bystricky, K.1    Van Attikum, H.2    Montiel, M.-D.3    Dion, V.4    Gehlen, L.5    Gasser, S.M.6
  • 14
    • 55449131136 scopus 로고    scopus 로고
    • Chan, A., Boule, J.-B., and Zakian, V.A. 2008. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet. 4:e1000236. doi: 10.1371/journal.pgen.1000236.
    • Chan, A., Boule, J.-B., and Zakian, V.A. 2008. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet. 4:e1000236. doi: 10.1371/journal.pgen.1000236.
  • 15
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen, C. and Kolodner, R.D. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23:81-85.
    • (1999) Nat. Genet , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 16
    • 34547412110 scopus 로고    scopus 로고
    • MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae
    • Conrad, M.N., Lee, C.-Y., Wilkerson, J.L., and Dresser, M.E. 2007. MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 104:8863-8868.
    • (2007) Proc. Natl. Acad. Sci , vol.104 , pp. 8863-8868
    • Conrad, M.N.1    Lee, C.-Y.2    Wilkerson, J.L.3    Dresser, M.E.4
  • 18
    • 39549114412 scopus 로고    scopus 로고
    • GC- and AT-rich chromatin domains differ in conformation and histone modification status and are differentially modulated by Rpd3p
    • doi: 10.1186/gb-2007-8-6-r116
    • Dekker, J. 2007. GC- and AT-rich chromatin domains differ in conformation and histone modification status and are differentially modulated by Rpd3p. Genome Biol. 8:R116. doi: 10.1186/gb-2007-8-6-r116.
    • (2007) Genome Biol , vol.8
    • Dekker, J.1
  • 19
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. 2002. Capturing chromosome conformation. Science 295:1306-1311.
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1    Rippe, K.2    Dekker, M.3    Kleckner, N.4
  • 20
    • 36749099375 scopus 로고    scopus 로고
    • Alternative ends: Telomeres and meiosis
    • de La Roche Saint-Andre, C. 2008. Alternative ends: Telomeres and meiosis. Biochimie 90:181-189.
    • (2008) Biochimie , vol.90 , pp. 181-189
    • de La1    Roche Saint-Andre, C.2
  • 21
    • 0033598944 scopus 로고    scopus 로고
    • Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ
    • Diede, S.J. and Gottschling, D.E. 1999. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell 99:723-733.
    • (1999) Cell , vol.99 , pp. 723-733
    • Diede, S.J.1    Gottschling, D.E.2
  • 22
    • 0035806955 scopus 로고    scopus 로고
    • Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere
    • Diede, S.J. and Gottschling, D.E. 2001. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr. Biol. 11:1336-1340.
    • (2001) Curr. Biol , vol.11 , pp. 1336-1340
    • Diede, S.J.1    Gottschling, D.E.2
  • 23
    • 34249313304 scopus 로고    scopus 로고
    • SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice
    • Ding, X., Xu, R., Yu, J., Xu, T., Zhuang, Y., and Han, M. 2007. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12:863-872.
    • (2007) Dev. Cell , vol.12 , pp. 863-872
    • Ding, X.1    Xu, R.2    Yu, J.3    Xu, T.4    Zhuang, Y.5    Han, M.6
  • 24
    • 33749400168 scopus 로고    scopus 로고
    • Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements
    • Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C., et al. 2006. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Res. 16:1299-1309.
    • (2006) Genome Res , vol.16 , pp. 1299-1309
    • Dostie, J.1    Richmond, T.A.2    Arnaout, R.A.3    Selzer, R.R.4    Lee, W.L.5    Honan, T.A.6    Rubio, E.D.7    Krumm, A.8    Lamb, J.9    Nusbaum, C.10
  • 25
    • 0034700511 scopus 로고    scopus 로고
    • A role for Saccharomyces cerevisiae histone H2A in DNA repair
    • Downs, J.A., Lowndes, N.F., and Jackson, S.P. 2000. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001-1004.
    • (2000) Nature , vol.408 , pp. 1001-1004
    • Downs, J.A.1    Lowndes, N.F.2    Jackson, S.P.3
  • 26
    • 33745211644 scopus 로고    scopus 로고
    • Methods for determining spontaneous mutation rates
    • Foster, P.L. 2006. Methods for determining spontaneous mutation rates. Methods Enzymol. 409:195-213.
    • (2006) Methods Enzymol , vol.409 , pp. 195-213
    • Foster, P.L.1
  • 27
    • 33646555082 scopus 로고    scopus 로고
    • SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton
    • Haque, F., Lloyd, D.J., Smallwood, D.T., Dent, C.L., Shanahan, C.M., Fry, A.M., Trembath, R.C., and Shackleton, S. 2006. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell. Biol. 26:3738-3751.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3738-3751
    • Haque, F.1    Lloyd, D.J.2    Smallwood, D.T.3    Dent, C.L.4    Shanahan, C.M.5    Fry, A.M.6    Trembath, R.C.7    Shackleton, S.8
  • 28
    • 0037164718 scopus 로고    scopus 로고
    • Live imaging of telomeres: YKu and Sir proteins define redundant telomere-anchoring pathways in yeast
    • Hediger, F., Neumann, F.R., Van Houwe, G., Dubrana, K., and Gasser, S.M. 2002. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12:2076-2089.
    • (2002) Curr. Biol , vol.12 , pp. 2076-2089
    • Hediger, F.1    Neumann, F.R.2    Van Houwe, G.3    Dubrana, K.4    Gasser, S.M.5
  • 29
    • 0034612253 scopus 로고    scopus 로고
    • Identification of the single-strand telo- meric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein
    • Hughes, T.R., Weilbaecher, R.G., Walterscheid, M., and Lundblad, V. 2000. Identification of the single-strand telo- meric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc. Natl. Acad. Sci. 97:6457-6462.
    • (2000) Proc. Natl. Acad. Sci , vol.97 , pp. 6457-6462
    • Hughes, T.R.1    Weilbaecher, R.G.2    Walterscheid, M.3    Lundblad, V.4
  • 31
    • 0037164818 scopus 로고    scopus 로고
    • Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p
    • Jaspersen, S.L., Giddings Jr., T.H., and Winey, M. 2002. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J. Cell Biol. 159:945-956.
    • (2002) J. Cell Biol , vol.159 , pp. 945-956
    • Jaspersen, S.L.1    Giddings Jr., T.H.2    Winey, M.3
  • 32
    • 33748119341 scopus 로고    scopus 로고
    • The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope
    • Jaspersen, S.L., Martin, A.E., Glazko, G., Giddings Jr., T.H., Morgan, G., Mushegian, A., and Winey, M. 2006. The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J. Cell Biol. 174:665-675.
    • (2006) J. Cell Biol , vol.174 , pp. 665-675
    • Jaspersen, S.L.1    Martin, A.E.2    Glazko, G.3    Giddings Jr., T.H.4    Morgan, G.5    Mushegian, A.6    Winey, M.7
  • 33
    • 10344225665 scopus 로고    scopus 로고
    • DNA breaks promote genomic instability by impeding proper chromosome segregation
    • Kaye, J.A., Melo, J.A., Cheung, S.K., Vaze, M.B., Haber, J.E., and Toczyski, D.P. 2004. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr. Biol. 14:2096-2106.
    • (2004) Curr. Biol , vol.14 , pp. 2096-2106
    • Kaye, J.A.1    Melo, J.A.2    Cheung, S.K.3    Vaze, M.B.4    Haber, J.E.5    Toczyski, D.P.6
  • 34
    • 33747188326 scopus 로고    scopus 로고
    • Initiation of meiotic recombination by formation of DNA double-strand breaks: Mechanism and regulation
    • Keeney, S. and Neale, M.J. 2006. Initiation of meiotic recombination by formation of DNA double-strand breaks: Mechanism and regulation. Biochem. Soc. Trans. 34:523-525.
    • (2006) Biochem. Soc. Trans , vol.34 , pp. 523-525
    • Keeney, S.1    Neale, M.J.2
  • 37
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee, S.E., Moore, J.K., Holmes, A., Umezu, K., Kolodner, R.D., and Haber, J.E. 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399-409.
    • (1998) Cell , vol.94 , pp. 399-409
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.D.5    Haber, J.E.6
  • 38
    • 0242468917 scopus 로고    scopus 로고
    • Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break
    • Lee, S.E., Pellicioli, A., Vaze, M.B., Sugawara, N., Malkova, A., Foiani, M., and Haber, J.E. 2003. Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break. Mol. Cell. Biol. 23:8913-8923.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 8913-8923
    • Lee, S.E.1    Pellicioli, A.2    Vaze, M.B.3    Sugawara, N.4    Malkova, A.5    Foiani, M.6    Haber, J.E.7
  • 39
    • 0035816621 scopus 로고    scopus 로고
    • Specific binding of single-stranded telomeric DNA by Cdc13p of Saccharomyces cerevisiae
    • Lin, Y.-C., Hsu, C.-L., Shih, J.-W., and Lin, J.-J. 2001. Specific binding of single-stranded telomeric DNA by Cdc13p of Saccharomyces cerevisiae. J. Biol. Chem. 276:24588-24593.
    • (2001) J. Biol. Chem , vol.276 , pp. 24588-24593
    • Lin, Y.-C.1    Hsu, C.-L.2    Shih, J.-W.3    Lin, J.-J.4
  • 40
    • 0038141976 scopus 로고    scopus 로고
    • Colocaliza- tion of multiple DNA double-strand breaks at a single Rad52 repair centre
    • Lisby, M., Mortensen, U.H., and Rothstein, R. 2003. Colocaliza- tion of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5:572-577.
    • (2003) Nat. Cell Biol , vol.5 , pp. 572-577
    • Lisby, M.1    Mortensen, U.H.2    Rothstein, R.3
  • 41
    • 10344240414 scopus 로고    scopus 로고
    • Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex
    • Lobachev, K., Vitriol, E., Stemple, J., Resnick, M.A., and Bloom, K. 2004. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14:2107-2112.
    • (2004) Curr. Biol , vol.14 , pp. 2107-2112
    • Lobachev, K.1    Vitriol, E.2    Stemple, J.3    Resnick, M.A.4    Bloom, K.5
  • 43
    • 33645807824 scopus 로고    scopus 로고
    • Sub-nuclear localization of Rad51 in response to DNA damage
    • Mladenov, E., Anachkov, B., and Tsaneva, I. 2006. Sub-nuclear localization of Rad51 in response to DNA damage. Genes Cells 11:513-524.
    • (2006) Genes Cells , vol.11 , pp. 513-524
    • Mladenov, E.1    Anachkov, B.2    Tsaneva, I.3
  • 44
    • 34249066085 scopus 로고    scopus 로고
    • PCNA, the maestro of the replication fork
    • Moldovan, G.L., Pfander, B., and Jentsch, S. 2007. PCNA, the maestro of the replication fork. Cell 129:665-679.
    • (2007) Cell , vol.129 , pp. 665-679
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 45
    • 0029970701 scopus 로고    scopus 로고
    • Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks
    • Moore, J.K. and Haber, J.E. 1996. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383:644-646.
    • (1996) Nature , vol.383 , pp. 644-646
    • Moore, J.K.1    Haber, J.E.2
  • 46
    • 0037356692 scopus 로고    scopus 로고
    • Induction of genome instability by DNA damage in Saccharomyces cerevisiae
    • Myung, K. and Kolodner, R.D. 2003. Induction of genome instability by DNA damage in Saccharomyces cerevisiae. DNA Repair (Amst.) 2:243-258.
    • (2003) DNA Repair (Amst.) , vol.2 , pp. 243-258
    • Myung, K.1    Kolodner, R.D.2
  • 47
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung, K., Chen, C., and Kolodner, R.D. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411:1073-1076.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 49
    • 33846970933 scopus 로고    scopus 로고
    • DNA breaks are masked by multiple Rap1 binding in yeast: Implications for telomere capping and telomerase regulation
    • Negrini, S., Ribaud, V., Bianchi, A., and Shore, D. 2007. DNA breaks are masked by multiple Rap1 binding in yeast: Implications for telomere capping and telomerase regulation. Genes & Dev. 21:292-302.
    • (2007) Genes & Dev , vol.21 , pp. 292-302
    • Negrini, S.1    Ribaud, V.2    Bianchi, A.3    Shore, D.4
  • 50
    • 0037646545 scopus 로고    scopus 로고
    • Nep98p is a component of the yeast spindle pole body and essential for nuclear division and fusion
    • Nishikawa, S., Terazawa, Y., Nakayama, T., Hirata, A., Makio, T., and Endo, T. 2003. Nep98p is a component of the yeast spindle pole body and essential for nuclear division and fusion. J. Biol. Chem. 278:9938-9943.
    • (2003) J. Biol. Chem , vol.278 , pp. 9938-9943
    • Nishikawa, S.1    Terazawa, Y.2    Nakayama, T.3    Hirata, A.4    Makio, T.5    Endo, T.6
  • 51
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Paques, F. and Haber, J.E. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349-404.
    • (1999) Microbiol. Mol. Biol. Rev , vol.63 , pp. 349-404
    • Paques, F.1    Haber, J.E.2
  • 52
    • 33645093716 scopus 로고    scopus 로고
    • Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae
    • Pennaneach, V., Putnam, C.D., and Kolodner, R.D. 2006. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae. Mol. Microbiol. 59:1357-1368.
    • (2006) Mol. Microbiol , vol.59 , pp. 1357-1368
    • Pennaneach, V.1    Putnam, C.D.2    Kolodner, R.D.3
  • 53
    • 0035830494 scopus 로고    scopus 로고
    • Cdc13 delivers separate complexes to the telomere for end protection and replication
    • Pennock, E., Buckley, K., and Lundblad, V. 2001. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104:387-396.
    • (2001) Cell , vol.104 , pp. 387-396
    • Pennock, E.1    Buckley, K.2    Lundblad, V.3
  • 54
    • 22944474665 scopus 로고    scopus 로고
    • SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
    • Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., and Jentsch, S. 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428-433.
    • (2005) Nature , vol.436 , pp. 428-433
    • Pfander, B.1    Moldovan, G.L.2    Sacher, M.3    Hoege, C.4    Jentsch, S.5
  • 55
    • 33750033205 scopus 로고    scopus 로고
    • The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology
    • Riha, K., Heacock, M.L., and Shippen, D.E. 2006. The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu. Rev. Genet. 40:237-277.
    • (2006) Annu. Rev. Genet , vol.40 , pp. 237-277
    • Riha, K.1    Heacock, M.L.2    Shippen, D.E.3
  • 57
    • 65249165924 scopus 로고    scopus 로고
    • Telomerase and SUN domain protein Mps3 anchor and protect telomeres in budding yeast
    • this issue, doi: 10.1101/gad.1787509
    • Schober, H., Ferreira, H., Kalck, V., Gehlen, L.R., and Gasser, S.M. 2009. Telomerase and SUN domain protein Mps3 anchor and protect telomeres in budding yeast. Genes & Dev. (this issue). doi: 10.1101/gad.1787509.
    • (2009) Genes & Dev
    • Schober, H.1    Ferreira, H.2    Kalck, V.3    Gehlen, L.R.4    Gasser, S.M.5
  • 59
    • 0033539171 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle
    • Seto, A.G., Zaug, A.J., Sobel, S.G., Wolin, S.L., and Cech, T.R. 1999. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401:177-180.
    • (1999) Nature , vol.401 , pp. 177-180
    • Seto, A.G.1    Zaug, A.J.2    Sobel, S.G.3    Wolin, S.L.4    Cech, T.R.5
  • 60
    • 33847176208 scopus 로고    scopus 로고
    • RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin
    • Shim, E.Y., Hong, S.J., Oum, J.H., Yanez, Y., Zhang, Y., and Lee, S.E. 2007. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol. 27:1602-1613.
    • (2007) Mol. Cell. Biol , vol.27 , pp. 1602-1613
    • Shim, E.Y.1    Hong, S.J.2    Oum, J.H.3    Yanez, Y.4    Zhang, Y.5    Lee, S.E.6
  • 61
  • 62
    • 33750212321 scopus 로고    scopus 로고
    • Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)
    • Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B., and de Laat, W. 2006. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38:1348-1354.
    • (2006) Nat. Genet , vol.38 , pp. 1348-1354
    • Simonis, M.1    Klous, P.2    Splinter, E.3    Moshkin, Y.4    Willemsen, R.5    de Wit, E.6    van Steensel, B.7    de Laat, W.8
  • 63
    • 0141525391 scopus 로고    scopus 로고
    • Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends
    • Stellwagen, A.E., Haimberger, Z.W., Veatch, J.R., and Gottschling, D.E. 2003. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes & Dev. 17:2384-2395.
    • (2003) Genes & Dev , vol.17 , pp. 2384-2395
    • Stellwagen, A.E.1    Haimberger, Z.W.2    Veatch, J.R.3    Gottschling, D.E.4
  • 64
    • 33745208227 scopus 로고    scopus 로고
    • Repair of DNA double strand breaks: In vivo biochemistry
    • Sugawara, N. and Haber, J.E. 2006. Repair of DNA double strand breaks: In vivo biochemistry. Methods Enzymol. 408:416-429.
    • (2006) Methods Enzymol , vol.408 , pp. 416-429
    • Sugawara, N.1    Haber, J.E.2
  • 65
    • 0242384946 scopus 로고    scopus 로고
    • Rad51 recombinase and recombination mediators
    • Sung, P., Krejci, L., Van Komen, S., and Sehorn, M.G. 2003. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278:42729-42732.
    • (2003) J. Biol. Chem , vol.278 , pp. 42729-42732
    • Sung, P.1    Krejci, L.2    Van Komen, S.3    Sehorn, M.G.4
  • 66
    • 31044432248 scopus 로고    scopus 로고
    • Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region
    • Therizols, P., Fairhead, C., Cabal, G.G., Genovesio, A., Olivo- Marin, J.C., Dujon, B., and Fabre, E. 2006. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol. 172:189-199.
    • (2006) J. Cell Biol , vol.172 , pp. 189-199
    • Therizols, P.1    Fairhead, C.2    Cabal, G.G.3    Genovesio, A.4    Olivo- Marin, J.C.5    Dujon, B.6    Fabre, E.7
  • 67
    • 0036923833 scopus 로고    scopus 로고
    • Looping and interaction between hypersensitive sites in the active β-globin locus
    • Tolhuis, B., Palstra, R.-J., Splinter, E., Grosveld, F., and de Laat, W. 2002. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10:1453-1465.
    • (2002) Mol. Cell , vol.10 , pp. 1453-1465
    • Tolhuis, B.1    Palstra, R.-J.2    Splinter, E.3    Grosveld, F.4    de Laat, W.5
  • 68
    • 33845669591 scopus 로고    scopus 로고
    • The telomerase- recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation
    • Tseng, S.-F., Lin, J.-J., and Teng, S.-C. 2006. The telomerase- recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Res. 34:6327-6336.
    • (2006) Nucleic Acids Res , vol.34 , pp. 6327-6336
    • Tseng, S.-F.1    Lin, J.-J.2    Teng, S.-C.3
  • 69
    • 34447536708 scopus 로고    scopus 로고
    • DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
    • Unal, E., Heidinger-Pauli, J.M., and Koshland, D. 2007. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317:245-248.
    • (2007) Science , vol.317 , pp. 245-248
    • Unal, E.1    Heidinger-Pauli, J.M.2    Koshland, D.3
  • 71
    • 13244272059 scopus 로고    scopus 로고
    • Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1
    • Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1. Mol. Cell 17:453-462.
    • Mol. Cell , vol.17 , pp. 453-462
  • 72
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
    • Vaze, M.B., Pellicioli, A., Lee, S.E., Ira, G., Liberi, G., Arbel-Eden, A., Foiani, M., and Haber, J.E. 2002. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10:373-385.
    • (2002) Mol. Cell , vol.10 , pp. 373-385
    • Vaze, M.B.1    Pellicioli, A.2    Lee, S.E.3    Ira, G.4    Liberi, G.5    Arbel-Eden, A.6    Foiani, M.7    Haber, J.E.8
  • 73
    • 0242300088 scopus 로고    scopus 로고
    • Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer
    • Vilenchik, M.M. and Knudson, A.G. 2003. Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proc. Natl. Acad. Sci. 100:12871-12876.
    • (2003) Proc. Natl. Acad. Sci , vol.100 , pp. 12871-12876
    • Vilenchik, M.M.1    Knudson, A.G.2
  • 75
    • 15444364449 scopus 로고    scopus 로고
    • ATP-dependent and ATP- independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break
    • Wolner, B. and Peterson, C.L. 2005. ATP-dependent and ATP- independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J. Biol. Chem. 280:10855-10860.
    • (2005) J. Biol. Chem , vol.280 , pp. 10855-10860
    • Wolner, B.1    Peterson, C.L.2
  • 76
    • 0042626553 scopus 로고    scopus 로고
    • Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast
    • Wolner, B., van Komen, S., Sung, P., and Peterson, C.L. 2003. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell 12:221-232.
    • (2003) Mol. Cell , vol.12 , pp. 221-232
    • Wolner, B.1    van Komen, S.2    Sung, P.3    Peterson, C.L.4
  • 77
    • 32644477235 scopus 로고    scopus 로고
    • Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae
    • Zhang, C., Roberts, T.M., Yang, J., Desai, R., and Brown, G.W. 2006. Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae. DNA Repair (Amst.) 5:336-346.
    • (2006) DNA Repair (Amst.) , vol.5 , pp. 336-346
    • Zhang, C.1    Roberts, T.M.2    Yang, J.3    Desai, R.4    Brown, G.W.5
  • 78
    • 33750203582 scopus 로고    scopus 로고
    • Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions
    • Zhao, Z., Tavoosidana, G., Sjolinder, M., Gondor, A., Mariano, P., Wang, S., Kanduri, C., Lezcano, M., Sandhu, K.S., Singh, U., et al. 2006. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38:1341-1347.
    • (2006) Nat. Genet , vol.38 , pp. 1341-1347
    • Zhao, Z.1    Tavoosidana, G.2    Sjolinder, M.3    Gondor, A.4    Mariano, P.5    Wang, S.6    Kanduri, C.7    Lezcano, M.8    Sandhu, K.S.9    Singh, U.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.