메뉴 건너뛰기




Volumn 7, Issue 10, 2009, Pages 748-755

Recombinational DNA repair in a cellular context: A search for the homology search

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL DNA; COHESIN; MRE11 PROTEIN; NIBRIN; RAD50 PROTEIN;

EID: 70349280357     PISSN: 17401526     EISSN: None     Source Type: Journal    
DOI: 10.1038/nrmicro2206     Document Type: Review
Times cited : (33)

References (126)
  • 2
    • 0032715175 scopus 로고    scopus 로고
    • Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ
    • Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol. Mol. Biol. Rev. 63, 751-813 (1999).
    • (1999) Microbiol. Mol. Biol. Rev , vol.63 , pp. 751-813
    • Kuzminov, A.1
  • 3
    • 0035679232 scopus 로고    scopus 로고
    • Recombinational DNA repair of damaged replication forks in Escherichia coli: Questions
    • Cox, M. M. Recombinational DNA repair of damaged replication forks in Escherichia coli: Questions. Annu. Rev. Genet. 35, 53-82 (2001).
    • (2001) Annu. Rev. Genet , vol.35 , pp. 53-82
    • Cox, M.M.1
  • 4
    • 70349273527 scopus 로고    scopus 로고
    • eds Friedbey, E. C. et al, ASM, Washington DC
    • Friedbey, E. C. et al. in DNA Repair and Mutagenesis (eds Friedbey, E. C. et al.) 569-612 (ASM, Washington DC, 2006).
    • (2006) DNA Repair and Mutagenesis , pp. 569-612
    • Friedbey, E.C.1
  • 5
    • 34249789279 scopus 로고    scopus 로고
    • Spontaneous DNA breakage in single living Escherichia coli cells
    • Pennington, J. M. & Rosenberg, S. M. Spontaneous DNA breakage in single living Escherichia coli cells. Nature Genet. 39, 797-802 (2007).
    • (2007) Nature Genet , vol.39 , pp. 797-802
    • Pennington, J.M.1    Rosenberg, S.M.2
  • 6
    • 0020541955 scopus 로고
    • The double-strand-break repair model for recombination
    • Szostak, J. W., Orrweaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25-35 (1983).
    • (1983) Cell , vol.33 , pp. 25-35
    • Szostak, J.W.1    Orrweaver, T.L.2    Rothstein, R.J.3    Stahl, F.W.4
  • 8
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349-404 (1999).
    • (1999) Microbiol. Mol. Biol. Rev , vol.63 , pp. 349-404
    • Paques, F.1    Haber, J.E.2
  • 9
    • 33749533999 scopus 로고    scopus 로고
    • Reassembly of shattered chromosomes in D. radiodurans
    • Zahradka, K. et al. Reassembly of shattered chromosomes in D. radiodurans. Nature 443, 569-573 (2006).
    • (2006) Nature , vol.443 , pp. 569-573
    • Zahradka, K.1
  • 10
    • 3242892765 scopus 로고    scopus 로고
    • DSB repair: The yeast paradigm
    • Aylon, Y. & Kupiec, M. DSB repair: The yeast paradigm. DNA Repair 3, 797-815 (2004).
    • (2004) DNA Repair , vol.3 , pp. 797-815
    • Aylon, Y.1    Kupiec, M.2
  • 11
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233-271 (2004).
    • (2004) Annu. Rev. Genet , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 12
    • 33845604556 scopus 로고    scopus 로고
    • DNA double-strand break repair: All's well that ends well
    • Wyman, C. & Kanaar, R. DNA double-strand break repair: All's well that ends well. Annu. Rev. Genet. 40, 363-383 (2006).
    • (2006) Annu. Rev. Genet , vol.40 , pp. 363-383
    • Wyman, C.1    Kanaar, R.2
  • 13
    • 37249046360 scopus 로고    scopus 로고
    • Finding a match: How do homologous sequences get together for recombination?
    • Barzel, A. & Kupiec, M. Finding a match: How do homologous sequences get together for recombination? Nature Rev. Genet. 9, 27-37 (2008).
    • (2008) Nature Rev. Genet , vol.9 , pp. 27-37
    • Barzel, A.1    Kupiec, M.2
  • 14
    • 62849083222 scopus 로고    scopus 로고
    • The emerging role of nuclear architecture in DNA repair and genome maintenance
    • Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature Rev. Mol. Cell Biol. 10, 243-254 (2009).
    • (2009) Nature Rev. Mol. Cell Biol , vol.10 , pp. 243-254
    • Misteli, T.1    Soutoglou, E.2
  • 15
    • 0020823126 scopus 로고
    • By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology
    • Gonda, D. K. & Radding, C. M. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34, 647-654 (1983).
    • (1983) Cell , vol.34 , pp. 647-654
    • Gonda, D.K.1    Radding, C.M.2
  • 16
    • 0029379540 scopus 로고
    • The search for DNA homology does not limit stable homologous pairing promoted by RecA protein
    • Yancey-Wrona, J. E. & Camerini-Otero, R. D. The search for DNA homology does not limit stable homologous pairing promoted by RecA protein. Curr. Biol. 5, 1149-1158 (1995).
    • (1995) Curr. Biol , vol.5 , pp. 1149-1158
    • Yancey-Wrona, J.E.1    Camerini-Otero, R.D.2
  • 17
    • 41349091609 scopus 로고    scopus 로고
    • Probing single DNA mobility with fluorescence correlation microscopy
    • Tatarkova, S. A. & Berk, D. A. Probing single DNA mobility with fluorescence correlation microscopy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 041913 (2005).
    • (2005) Phys. Rev. E Stat. Nonlin. Soft Matter Phys , vol.71 , pp. 041913
    • Tatarkova, S.A.1    Berk, D.A.2
  • 18
    • 0034611785 scopus 로고    scopus 로고
    • High mobility of proteins in the mammalian cell nucleus
    • Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604-609 (2000).
    • (2000) Nature , vol.404 , pp. 604-609
    • Phair, R.D.1    Misteli, T.2
  • 19
    • 0031457326 scopus 로고    scopus 로고
    • Interphase chromosomes undergo constrained diffusional motion in living cells
    • Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930-939 (1997).
    • (1997) Curr. Biol , vol.7 , pp. 930-939
    • Marshall, W.F.1
  • 20
    • 14844324003 scopus 로고    scopus 로고
    • Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm
    • Dauty, E. & Verkman, A. S. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm. J. Biol. Chem. 280, 7823-7828 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 7823-7828
    • Dauty, E.1    Verkman, A.S.2
  • 21
    • 0036006293 scopus 로고    scopus 로고
    • Chromatin motion is constrained by association with nuclear compartments in human cells
    • Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439-445 (2002).
    • (2002) Curr. Biol , vol.12 , pp. 439-445
    • Chubb, J.R.1    Boyle, S.2    Perry, P.3    Bickmore, W.A.4
  • 22
    • 34249932435 scopus 로고    scopus 로고
    • Probing transcription factor dynamics at the single-molecule level in a living cell
    • Elf, J., Li, G. W. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191-1194 (2007).
    • (2007) Science , vol.316 , pp. 1191-1194
    • Elf, J.1    Li, G.W.2    Xie, X.S.3
  • 23
    • 0034176335 scopus 로고    scopus 로고
    • Initiation of genetic recombination and recombination-dependent replication
    • Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25 156-165 (2000).
    • (2000) Trends Biochem. Sci , vol.25 , pp. 156-165
    • Kowalczykowski, S.C.1
  • 24
    • 0035997347 scopus 로고    scopus 로고
    • The bacterial RecA protein and the recombinational DNA repair of stalled replication forks
    • Lusetti, S. L. & Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71-100 (2002).
    • (2002) Annu. Rev. Biochem , vol.71 , pp. 71-100
    • Lusetti, S.L.1    Cox, M.M.2
  • 25
    • 33947287490 scopus 로고    scopus 로고
    • ed. Higgins, N. P, ASM, Washington DC
    • Cox, M. M. in The Bacterial Chromosome (ed. Higgins, N. P.) 369-388 (ASM, Washington DC, 2005).
    • (2005) The Bacterial Chromosome , pp. 369-388
    • Cox, M.M.1
  • 26
    • 33847795537 scopus 로고    scopus 로고
    • Regulation of bacterial RecA protein function
    • Cox, M. M. Regulation of bacterial RecA protein function. Crit. Rev. Biochem. Mol. Biol. 42, 41-63 (2007).
    • (2007) Crit. Rev. Biochem. Mol. Biol , vol.42 , pp. 41-63
    • Cox, M.M.1
  • 27
    • 0035695023 scopus 로고    scopus 로고
    • Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans
    • Cromie, G. A., Connelly, J. C. & Leach, D. R. F. Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans. Mol. Cell 8, 1163-1174 (2001).
    • (2001) Mol. Cell , vol.8 , pp. 1163-1174
    • Cromie, G.A.1    Connelly, J.C.2    Leach, D.R.F.3
  • 28
    • 0035954251 scopus 로고    scopus 로고
    • Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
    • Sjogren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991-995 (2001).
    • (2001) Curr. Biol , vol.11 , pp. 991-995
    • Sjogren, C.1    Nasmyth, K.2
  • 29
    • 38049155945 scopus 로고    scopus 로고
    • Regulation of DNA double-strand break repair pathway choice
    • Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18, 134-147 (2008).
    • (2008) Cell Res , vol.18 , pp. 134-147
    • Shrivastav, M.1    De Haro, L.P.2    Nickoloff, J.A.3
  • 30
    • 41149094512 scopus 로고    scopus 로고
    • Regulation of DNA repair throughout the cell cycle
    • Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nature Rev. Mol. Cell Biol. 9, 297-308 (2008).
    • (2008) Nature Rev. Mol. Cell Biol , vol.9 , pp. 297-308
    • Branzei, D.1    Foiani, M.2
  • 31
    • 33747889722 scopus 로고    scopus 로고
    • Role of nonhomologous end joining (NHEJ) in maintaining genomic integrity
    • Burma, S., Chen, B. P. C. & Chen, D. J. Role of nonhomologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair 5 1042-1048 (2006).
    • (2006) DNA Repair , vol.5 , pp. 1042-1048
    • Burma, S.1    Chen, B.P.C.2    Chen, D.J.3
  • 32
    • 0026709385 scopus 로고
    • Sister chromatids are preferred over homologs as substrates for recombinational repair in S. cerevisiae
    • Kadyk, L. C. & Hartwell, L. H. Sister chromatids are preferred over homologs as substrates for recombinational repair in S. cerevisiae. Genetics 132, 387-402 (1992).
    • (1992) Genetics , vol.132 , pp. 387-402
    • Kadyk, L.C.1    Hartwell, L.H.2
  • 33
    • 10344233210 scopus 로고    scopus 로고
    • DNA repair: Keeping it together
    • Lisby, M. & Rothstein, R. DNA repair: Keeping it together. Curr. Biol. 14, R994-R996 (2004).
    • (2004) Curr. Biol , vol.14
    • Lisby, M.1    Rothstein, R.2
  • 34
    • 33746662847 scopus 로고    scopus 로고
    • Cohesin and DNA damage repair
    • Watrin, E. & Peters, J. M. Cohesin and DNA damage repair. Exp. Cell Res. 312, 2687-2693 (2006).
    • (2006) Exp. Cell Res , vol.312 , pp. 2687-2693
    • Watrin, E.1    Peters, J.M.2
  • 35
    • 34447521980 scopus 로고    scopus 로고
    • How and when the genome sticks together
    • Watrin, E. & Peters, J. M. How and when the genome sticks together. Science 317, 209-210 (2007).
    • (2007) Science , vol.317 , pp. 209-210
    • Watrin, E.1    Peters, J.M.2
  • 36
    • 10944232673 scopus 로고    scopus 로고
    • Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
    • Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003-1015 (2004).
    • (2004) Mol. Cell , vol.16 , pp. 1003-1015
    • Strom, L.1    Lindroos, H.B.2    Shirahige, K.3    Sjogren, C.4
  • 37
    • 0035930329 scopus 로고    scopus 로고
    • Human Rad50/Mre11 is a flexible complex that can tether DNA ends
    • de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129-1135 (2001).
    • (2001) Mol. Cell , vol.8 , pp. 1129-1135
    • de Jager, M.1
  • 38
    • 10344240414 scopus 로고    scopus 로고
    • Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex
    • Lobachev, K., Vitriol, E., Stemple, J., Resnick, M. A. & Bloom, K. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14, 2107-2112 (2004).
    • (2004) Curr. Biol , vol.14 , pp. 2107-2112
    • Lobachev, K.1    Vitriol, E.2    Stemple, J.3    Resnick, M.A.4    Bloom, K.5
  • 39
    • 24944540931 scopus 로고    scopus 로고
    • Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA
    • Moreno-Herrero, F. et al. Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437, 440-443 (2005).
    • (2005) Nature , vol.437 , pp. 440-443
    • Moreno-Herrero, F.1
  • 40
    • 0842331349 scopus 로고    scopus 로고
    • Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III
    • Bressan, D. A., Vazquez, J. & Haber, J. E. Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III. J. Cell Biol. 164, 361-371 (2004).
    • (2004) J. Cell Biol , vol.164 , pp. 361-371
    • Bressan, D.A.1    Vazquez, J.2    Haber, J.E.3
  • 41
    • 0032562595 scopus 로고    scopus 로고
    • In situ visualization of DNA double-strand break repair in human fibroblasts
    • Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. J. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590-592 (1998).
    • (1998) Science , vol.280 , pp. 590-592
    • Nelms, B.E.1    Maser, R.S.2    MacKay, J.F.3    Lagally, M.G.4    Petrini, J.H.J.5
  • 42
    • 0034613291 scopus 로고    scopus 로고
    • Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells
    • Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138-141 (2000).
    • (2000) Science , vol.290 , pp. 138-141
    • Nikiforova, M.N.1
  • 43
    • 33644905252 scopus 로고    scopus 로고
    • Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks
    • Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823-834 (2006).
    • (2006) J. Cell Biol , vol.172 , pp. 823-834
    • Kruhlak, M.J.1
  • 44
    • 35549011494 scopus 로고    scopus 로고
    • Mobility and immobility of chromatin in transcription and genome stability
    • Soutoglou, E. & Misteli, T. Mobility and immobility of chromatin in transcription and genome stability. Curr. Opin. Genet. Dev. 17 435-442 (2007).
    • (2007) Curr. Opin. Genet. Dev , vol.17 , pp. 435-442
    • Soutoglou, E.1    Misteli, T.2
  • 45
    • 34447574977 scopus 로고    scopus 로고
    • Positional stability of single double-strand breaks in mammalian cells
    • Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nature Cell Biol. 9, 675-686 (2007).
    • (2007) Nature Cell Biol , vol.9 , pp. 675-686
    • Soutoglou, E.1
  • 46
    • 33645967473 scopus 로고    scopus 로고
    • From early homologue recognition to synaptonemal complex formation
    • Zickler, D. From early homologue recognition to synaptonemal complex formation. Chromosoma 115, 158-174 (2006).
    • (2006) Chromosoma , vol.115 , pp. 158-174
    • Zickler, D.1
  • 47
    • 0036050398 scopus 로고    scopus 로고
    • The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation
    • Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17-29 (2002).
    • (2002) Mol. Microbiol , vol.45 , pp. 17-29
    • Woldringh, C.L.1
  • 51
    • 33750531252 scopus 로고    scopus 로고
    • Chromosome organization and segregation in bacteria
    • Thanbichler, M. & Shapiro, L. Chromosome organization and segregation in bacteria. J. Struct. Biol. 156, 292-303 (2006).
    • (2006) J. Struct. Biol , vol.156 , pp. 292-303
    • Thanbichler, M.1    Shapiro, L.2
  • 52
    • 3042579602 scopus 로고    scopus 로고
    • How do site-specific DNA-binding proteins find their targets?
    • Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040-3052 (2004).
    • (2004) Nucleic Acids Res , vol.32 , pp. 3040-3052
    • Halford, S.E.1    Marko, J.F.2
  • 53
    • 27644460480 scopus 로고    scopus 로고
    • Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA
    • Gowers, D. M., Wilson, G. G. & Halford, S. E. Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc. Natl Acad. Sci. USA 102, 15883-15888 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 15883-15888
    • Gowers, D.M.1    Wilson, G.G.2    Halford, S.E.3
  • 54
    • 4444342112 scopus 로고    scopus 로고
    • Physics of RecA-mediated homologous recognition
    • Klapstein, K., Chou, T. & Bruinsma, R. Physics of RecA-mediated homologous recognition. Biophys. J. 87, 1466-1477 (2004).
    • (2004) Biophys. J , vol.87 , pp. 1466-1477
    • Klapstein, K.1    Chou, T.2    Bruinsma, R.3
  • 55
    • 0038141976 scopus 로고    scopus 로고
    • Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre
    • Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol. 5, 572-577 (2003).
    • (2003) Nature Cell Biol , vol.5 , pp. 572-577
    • Lisby, M.1    Mortensen, U.H.2    Rothstein, R.3
  • 56
    • 0036360142 scopus 로고    scopus 로고
    • Homologous chromosome associations and nuclear order in meiotic and mitotically dividing cells of budding yeast
    • Burgess, S. M. Homologous chromosome associations and nuclear order in meiotic and mitotically dividing cells of budding yeast. Adv. Genet. 46, 49-90 (2002).
    • (2002) Adv. Genet , vol.46 , pp. 49-90
    • Burgess, S.M.1
  • 57
    • 0142247081 scopus 로고    scopus 로고
    • Chromosome pairing does not contribute to nuclear architecture in vegetative yeast cells
    • Lorenz, A., Fuchs, J., Burger, R. & Loidl, J. Chromosome pairing does not contribute to nuclear architecture in vegetative yeast cells. Eukaryotic Cell 2, 856-866 (2003).
    • (2003) Eukaryotic Cell , vol.2 , pp. 856-866
    • Lorenz, A.1    Fuchs, J.2    Burger, R.3    Loidl, J.4
  • 58
    • 0041853780 scopus 로고    scopus 로고
    • Spatial and temporal organization of replicating E. coli chromosomes
    • Lau, I. F. et al. Spatial and temporal organization of replicating E. coli chromosomes. Mol. Microbiol. 49, 731-743 (2003).
    • (2003) Mol. Microbiol , vol.49 , pp. 731-743
    • Lau, I.F.1
  • 59
    • 33745603713 scopus 로고    scopus 로고
    • The two Escherichia coli chromosome arms locate to separate cell halves
    • Wang, X. D., Liu, X., Possoz, C. & Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727-1731 (2006).
    • (2006) Genes Dev , vol.20 , pp. 1727-1731
    • Wang, X.D.1    Liu, X.2    Possoz, C.3    Sherratt, D.J.4
  • 61
    • 0034595010 scopus 로고    scopus 로고
    • The importance of repairing stalled replication forks
    • Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37-41 (2000).
    • (2000) Nature , vol.404 , pp. 37-41
    • Cox, M.M.1
  • 62
    • 0028998597 scopus 로고
    • Collapse and repair of replication forks in Escherichia coli
    • Kuzminov, A. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16, 373-384 (1995).
    • (1995) Mol. Microbiol , vol.16 , pp. 373-384
    • Kuzminov, A.1
  • 63
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
    • Kogoma, T. Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61, 212-238 (1997).
    • (1997) Microbiol. Mol. Biol. Rev , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 64
    • 0037196076 scopus 로고    scopus 로고
    • The nonmutagenic repair of broken replication forks via recombination
    • Cox, M. M. The nonmutagenic repair of broken replication forks via recombination. Mutat. Res. 510, 107-120 (2002).
    • (2002) Mutat. Res , vol.510 , pp. 107-120
    • Cox, M.M.1
  • 65
    • 0034612347 scopus 로고    scopus 로고
    • Ordered intracellular RecA-DNA assemblies: A potential site of in vivo RecA-mediated activities
    • Levin-Zaidman, S. et al. Ordered intracellular RecA-DNA assemblies: A potential site of in vivo RecA-mediated activities. Proc. Natl Acad. Sci. USA 97, 6791-6796 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 6791-6796
    • Levin-Zaidman, S.1
  • 66
    • 0142125302 scopus 로고    scopus 로고
    • Structural aspects of DNA repair: The role of restricted diffusion
    • Minsky, A. Structural aspects of DNA repair: The role of restricted diffusion. Mol. Microbiol. 50, 367-376 (2003).
    • (2003) Mol. Microbiol , vol.50 , pp. 367-376
    • Minsky, A.1
  • 67
    • 0035102449 scopus 로고    scopus 로고
    • Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics
    • Makarova, K. S. et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44-79 (2001).
    • (2001) Microbiol. Mol. Biol. Rev , vol.65 , pp. 44-79
    • Makarova, K.S.1
  • 68
    • 34247375191 scopus 로고    scopus 로고
    • Protein oxidation implicated as the primary determinant of bacterial radioresistance
    • Daly, M. J. et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 5, 769-779 (2007).
    • (2007) PLoS Biol , vol.5 , pp. 769-779
    • Daly, M.J.1
  • 69
    • 35948982966 scopus 로고    scopus 로고
    • Deinococcus geothermalis. The pool of extreme radiation resistance genes shrinks
    • Makarova, K. et al. Deinococcus geothermalis. The pool of extreme radiation resistance genes shrinks. PLoS ONE 2, e955 (2007).
    • (2007) PLoS ONE , vol.2
    • Makarova, K.1
  • 70
    • 0028366276 scopus 로고
    • Restoration of the DNA-damage resistance of D. radiodurans DNA-polymerase mutants by E. coli DNA-polymerase-I and Klenow fragment
    • Gutman, P. D., Fuchs, P. & Minton, K. W. Restoration of the DNA-damage resistance of D. radiodurans DNA-polymerase mutants by E. coli DNA-polymerase-I and Klenow fragment. Mutat. Res. 314, 87-97 (1994).
    • (1994) Mutat. Res , vol.314 , pp. 87-97
    • Gutman, P.D.1    Fuchs, P.2    Minton, K.W.3
  • 71
    • 34547892607 scopus 로고    scopus 로고
    • Role of RecA in DNA damage repair in Deinococcus radiodurans
    • Schlesinger, D. J. Role of RecA in DNA damage repair in Deinococcus radiodurans. FEMS Microbiol. Lett. 274, 342-347 (2007).
    • (2007) FEMS Microbiol. Lett , vol.274 , pp. 342-347
    • Schlesinger, D.J.1
  • 72
    • 0033231554 scopus 로고    scopus 로고
    • Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein
    • Gupta, R. C. et al. Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. Mol. Cell 4, 705-714 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 705-714
    • Gupta, R.C.1
  • 73
    • 4644225318 scopus 로고    scopus 로고
    • Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein
    • Folta-Stogniew, E. et al. Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol. Cell 15, 965-975 (2004).
    • (2004) Mol. Cell , vol.15 , pp. 965-975
    • Folta-Stogniew, E.1
  • 75
    • 62649088069 scopus 로고    scopus 로고
    • Chromatin organization and radio-resistance in the bacterium Gemmata obscuriglobus
    • Lieber, A., Leis, A., Kushmaro, A., Minsky, A. & Medalia, O. Chromatin organization and radio-resistance in the bacterium Gemmata obscuriglobus. J. Bacteriol. 191, 1439-1445 (2009).
    • (2009) J. Bacteriol , vol.191 , pp. 1439-1445
    • Lieber, A.1    Leis, A.2    Kushmaro, A.3    Minsky, A.4    Medalia, O.5
  • 76
    • 0037428220 scopus 로고    scopus 로고
    • Ringlike structure of the Deinococcus radiodurans genome: A key to radioresistance?
    • Levin-Zaidman, S. et al. Ringlike structure of the Deinococcus radiodurans genome: A key to radioresistance? Science 299 254-256 (2003).
    • (2003) Science , vol.299 , pp. 254-256
    • Levin-Zaidman, S.1
  • 77
    • 4444340238 scopus 로고    scopus 로고
    • DNA toroids: Framework for DNA repair in D. radiodurans and in germinating spores
    • Englander, J. et al. DNA toroids: Framework for DNA repair in D. radiodurans and in germinating spores. J. Bacteriol. 186 5973-5977 (2004).
    • (2004) J. Bacteriol , vol.186 , pp. 5973-5977
    • Englander, J.1
  • 78
    • 2442641534 scopus 로고    scopus 로고
    • Structure of the DNA-SspC complex: Implications for DNA packaging, protection, and repair in bacterial spores
    • Frenkiel-Krispin, D. et al. Structure of the DNA-SspC complex: implications for DNA packaging, protection, and repair in bacterial spores. J. Bacteriol. 186, 3525-3530 (2004).
    • (2004) J. Bacteriol , vol.186 , pp. 3525-3530
    • Frenkiel-Krispin, D.1
  • 79
    • 0029610802 scopus 로고
    • Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy
    • Pogliano, K., Harry, E. & Losick, R. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol. Microbiol. 18, 459-470 (1995).
    • (1995) Mol. Microbiol , vol.18 , pp. 459-470
    • Pogliano, K.1    Harry, E.2    Losick, R.3
  • 80
    • 0033807204 scopus 로고    scopus 로고
    • Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species
    • Ragkousi, K., Cowan, A. E., Ross, M. A. & Setlow, P. Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J. Bacteriol. 182, 5556-5562 (2000).
    • (2000) J. Bacteriol , vol.182 , pp. 5556-5562
    • Ragkousi, K.1    Cowan, A.E.2    Ross, M.A.3    Setlow, P.4
  • 81
    • 2642570858 scopus 로고    scopus 로고
    • Mechanisms of DNA double strand break repair and chromosome aberration formation
    • Iliakis, G. et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet. Genome Res. 104 14-20 (2004).
    • (2004) Cytogenet. Genome Res , vol.104 , pp. 14-20
    • Iliakis, G.1
  • 82
    • 38649133167 scopus 로고    scopus 로고
    • Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment
    • Moeller, R. et al. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190, 1134-1140 (2008).
    • (2008) J. Bacteriol , vol.190 , pp. 1134-1140
    • Moeller, R.1
  • 83
    • 0029932260 scopus 로고    scopus 로고
    • Flow of structural information between four DNA conformational levels
    • Levin-Zaidman, S., Reich, Z., Wachtel, E. J. & Minsky, A. Flow of structural information between four DNA conformational levels. Biochemistry 35, 2985-2991 (1996).
    • (1996) Biochemistry , vol.35 , pp. 2985-2991
    • Levin-Zaidman, S.1    Reich, Z.2    Wachtel, E.J.3    Minsky, A.4
  • 84
    • 0026608715 scopus 로고
    • Direct measurement of temperature-dependent solvation forces between DNA double helices
    • Rau, D. C. & Parsegian, V. A. Direct measurement of temperature-dependent solvation forces between DNA double helices. Biophys. J. 61, 260-271 (1992).
    • (1992) Biophys. J , vol.61 , pp. 260-271
    • Rau, D.C.1    Parsegian, V.A.2
  • 85
    • 18144376538 scopus 로고    scopus 로고
    • Electrostatic zipper motif for DNA aggregation
    • Kornyshev, A. A. & Leikin, S. Electrostatic zipper motif for DNA aggregation. Phys. Rev. Lett. 82, 4138-4141 (1999).
    • (1999) Phys. Rev. Lett , vol.82 , pp. 4138-4141
    • Kornyshev, A.A.1    Leikin, S.2
  • 86
    • 0037180865 scopus 로고    scopus 로고
    • Temperature-dependent DNA condensation triggered by rearrangement of adsorbed cations
    • Cherstvy, A. G., Kornyshev, A. A. & Leikin, S. Temperature-dependent DNA condensation triggered by rearrangement of adsorbed cations. J. Phys. Chem. B 106, 13362-13369 (2002).
    • (2002) J. Phys. Chem. B , vol.106 , pp. 13362-13369
    • Cherstvy, A.G.1    Kornyshev, A.A.2    Leikin, S.3
  • 87
    • 33645781346 scopus 로고    scopus 로고
    • Making ends meet: Repairing breaks in bacterial DNA by non-homologous end-joining
    • Bowater, R. & Doherty, A. J. Making ends meet: Repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2, 93-99 (2006).
    • (2006) PLoS Genet , vol.2 , pp. 93-99
    • Bowater, R.1    Doherty, A.J.2
  • 88
    • 0034889360 scopus 로고    scopus 로고
    • Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
    • Aravind, L. & Koonin, E. V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 11, 1365-1374 (2001).
    • (2001) Genome Res , vol.11 , pp. 1365-1374
    • Aravind, L.1    Koonin, E.V.2
  • 89
    • 7444269607 scopus 로고    scopus 로고
    • Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine
    • Della, M. et al. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306, 683-685 (2004).
    • (2004) Science , vol.306 , pp. 683-685
    • Della, M.1
  • 90
    • 0036021357 scopus 로고    scopus 로고
    • Enhancement of Saccharomyces cerevisiae end joining efficiency by cell growth stage but not by impairment of recombination
    • Karathanasis, E. & Wilson, T. E. Enhancement of Saccharomyces cerevisiae end joining efficiency by cell growth stage but not by impairment of recombination. Genetics 161, 1015-1027 (2002).
    • (2002) Genetics , vol.161 , pp. 1015-1027
    • Karathanasis, E.1    Wilson, T.E.2
  • 92
    • 4744354636 scopus 로고    scopus 로고
    • PprA: A novel protein from Deinococcus radiodurans that stimulates DNA ligation
    • Narumi, I. et al. PprA: A novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol. Microbiol. 54 278-285 (2004).
    • (2004) Mol. Microbiol , vol.54 , pp. 278-285
    • Narumi, I.1
  • 93
    • 34948840017 scopus 로고    scopus 로고
    • Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium D. radiodurans
    • Blasius, M., Buob, R., Shevelev, I. V. & Hubscher, U. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium D. radiodurans. BMC Mol. Biol. 8, 69 (2007).
    • (2007) BMC Mol. Biol , vol.8 , pp. 69
    • Blasius, M.1    Buob, R.2    Shevelev, I.V.3    Hubscher, U.4
  • 94
    • 33645097172 scopus 로고    scopus 로고
    • The forespore line of gene expression in B. subtilis
    • Wang, S. T. et al. The forespore line of gene expression in B. subtilis. J. Mol. Biol. 358, 16-37 (2006).
    • (2006) J. Mol. Biol , vol.358 , pp. 16-37
    • Wang, S.T.1
  • 95
    • 0037031655 scopus 로고    scopus 로고
    • Identification of a DNA nonhomologous end-joining complex in bacteria
    • Weller, G. R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686-1689 (2002).
    • (2002) Science , vol.297 , pp. 1686-1689
    • Weller, G.R.1
  • 96
    • 0037308590 scopus 로고    scopus 로고
    • Non-homologous end-joining: Bacteria join the chromosome breakdance
    • Wilson, T. E., Topper, L. M. & Palmbos, P. L. Non-homologous end-joining: Bacteria join the chromosome breakdance. Trends Biochem. Sci. 28, 62-66 (2003).
    • (2003) Trends Biochem. Sci , vol.28 , pp. 62-66
    • Wilson, T.E.1    Topper, L.M.2    Palmbos, P.L.3
  • 97
    • 34547842081 scopus 로고    scopus 로고
    • NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation
    • Pitcher, R. S. et al. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair 6 1271-1276 (2007).
    • (2007) DNA Repair , vol.6 , pp. 1271-1276
    • Pitcher, R.S.1
  • 98
    • 34247892342 scopus 로고    scopus 로고
    • Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation
    • Moeller, R. et al. Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J. Bacteriol. 189 3306-3311 (2007).
    • (2007) J. Bacteriol , vol.189 , pp. 3306-3311
    • Moeller, R.1
  • 99
    • 34447508310 scopus 로고    scopus 로고
    • Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks
    • Stephanou, N. C. et al. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J. Bacteriol. 189, 5237-5246 (2007).
    • (2007) J. Bacteriol , vol.189 , pp. 5237-5246
    • Stephanou, N.C.1
  • 100
    • 39449112668 scopus 로고    scopus 로고
    • Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining
    • Gu, J. F. & Lieber, M. R. Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes Dev. 22, 411-415 (2008).
    • (2008) Genes Dev , vol.22 , pp. 411-415
    • Gu, J.F.1    Lieber, M.R.2
  • 101
    • 0028823543 scopus 로고
    • Resistance to radiation
    • Daly, M. J. & Minton, K. W. Resistance to radiation. Science 270, 1318 (1995).
    • (1995) Science , vol.270 , pp. 1318
    • Daly, M.J.1    Minton, K.W.2
  • 102
    • 36749101359 scopus 로고    scopus 로고
    • Dynamics of Escherichia coli chromosome segregation during multifork replication
    • Nielsen, H. J., Youngren, B., Hansen, F. G. & Austin, S. Dynamics of Escherichia coli chromosome segregation during multifork replication. J. Bacteriol. 189, 8660-8666 (2007).
    • (2007) J. Bacteriol , vol.189 , pp. 8660-8666
    • Nielsen, H.J.1    Youngren, B.2    Hansen, F.G.3    Austin, S.4
  • 105
    • 3042681300 scopus 로고    scopus 로고
    • Information content and complexity in the high-order organization of DNA
    • Minsky, A. Information content and complexity in the high-order organization of DNA. Annu. Rev. Biophys. Biomol. Struct. 33, 317-342 (2004).
    • (2004) Annu. Rev. Biophys. Biomol. Struct , vol.33 , pp. 317-342
    • Minsky, A.1
  • 106
    • 0031558565 scopus 로고    scopus 로고
    • Nucleosomes: A solution to a crowded intracellular environment?
    • Minsky, A., Ghirlando, R. & Reich, Z. Nucleosomes: A solution to a crowded intracellular environment? J. Theor. Biol. 188, 379-385 (1997).
    • (1997) J. Theor. Biol , vol.188 , pp. 379-385
    • Minsky, A.1    Ghirlando, R.2    Reich, Z.3
  • 107
    • 0035316574 scopus 로고    scopus 로고
    • Chromosome territories, nuclear architecture and gene regulation in mammalian cells
    • Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292-301 (2001).
    • (2001) Nature Rev. Genet , vol.2 , pp. 292-301
    • Cremer, T.1    Cremer, C.2
  • 108
    • 0034748986 scopus 로고    scopus 로고
    • Arrangement of macro- and microchromosomes in chicken cells
    • Habermann, F. A. et al. Arrangement of macro- and microchromosomes in chicken cells. Chromosome Res. 9, 569-584 (2001).
    • (2001) Chromosome Res , vol.9 , pp. 569-584
    • Habermann, F.A.1
  • 109
    • 0037178719 scopus 로고    scopus 로고
    • Segregating sister genomes: The molecular biology of chromosome separation
    • Nasmyth, K. Segregating sister genomes: The molecular biology of chromosome separation. Science 297, 559-565 (2002).
    • (2002) Science , vol.297 , pp. 559-565
    • Nasmyth, K.1
  • 110
    • 25444496210 scopus 로고    scopus 로고
    • DNA damage-induced cohesion
    • Strom, L. & Sjogren, C. DNA damage-induced cohesion. Cell Cycle 4, 536-539 (2005).
    • (2005) Cell Cycle , vol.4 , pp. 536-539
    • Strom, L.1    Sjogren, C.2
  • 111
    • 34447549077 scopus 로고    scopus 로고
    • Postreplicative formation of cohesion is required for repair and induced by a single DNA break
    • Strom, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242-245 (2007).
    • (2007) Science , vol.317 , pp. 242-245
    • Strom, L.1
  • 112
    • 34447536708 scopus 로고    scopus 로고
    • DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
    • Unal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245-248 (2007).
    • (2007) Science , vol.317 , pp. 245-248
    • Unal, E.1    Heidinger-Pauli, J.M.2    Koshland, D.3
  • 113
    • 0029054792 scopus 로고
    • Comparison of recombination in-vitro and in Escherichia coli cells: Measure of the effective concentration of DNA in-vivo
    • Hildebrandt, E. R. & Cozzarelli, N. R. Comparison of recombination in-vitro and in Escherichia coli cells: Measure of the effective concentration of DNA in-vivo. Cell 81, 331-340 (1995).
    • (1995) Cell , vol.81 , pp. 331-340
    • Hildebrandt, E.R.1    Cozzarelli, N.R.2
  • 114
    • 1942436944 scopus 로고    scopus 로고
    • Unequal access of chromosomal regions to each other in Salmonella: Probing chromosome structure with phage lambda integrase-mediated long-range rearrangements
    • Garcia-Russell, N. et al. Unequal access of chromosomal regions to each other in Salmonella: Probing chromosome structure with phage lambda integrase-mediated long-range rearrangements. Mol. Microbiol. 52, 329-344 (2004).
    • (2004) Mol. Microbiol , vol.52 , pp. 329-344
    • Garcia-Russell, N.1
  • 115
    • 9144264275 scopus 로고    scopus 로고
    • Macrodomain organization of the Escherichia coli chromosome
    • Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23, 4330-4341 (2004).
    • (2004) EMBO J , vol.23 , pp. 4330-4341
    • Valens, M.1    Penaud, S.2    Rossignol, M.3    Cornet, F.4    Boccard, F.5
  • 116
    • 21244473094 scopus 로고    scopus 로고
    • Spatial arrangement and macrodomain organization of bacterial chromosomes
    • Boccard, F., Esnault, E. & Valens, M. Spatial arrangement and macrodomain organization of bacterial chromosomes. Mol. Microbiol. 57, 9-16 (2005).
    • (2005) Mol. Microbiol , vol.57 , pp. 9-16
    • Boccard, F.1    Esnault, E.2    Valens, M.3
  • 117
    • 44249103292 scopus 로고    scopus 로고
    • DNA dynamics vary according to macrodomain topography in the E. coli chromosome
    • Espeli, O., Mercier, R. & Boccard, F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol. 68, 1418-1427 (2008).
    • (2008) Mol. Microbiol , vol.68 , pp. 1418-1427
    • Espeli, O.1    Mercier, R.2    Boccard, F.3
  • 118
    • 3142774839 scopus 로고    scopus 로고
    • Topological domain structure of the Escherichia coli chromosome
    • Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766-1779 (2004).
    • (2004) Genes Dev , vol.18 , pp. 1766-1779
    • Postow, L.1    Hardy, C.D.2    Arsuaga, J.3    Cozzarelli, N.R.4
  • 120
    • 0032053854 scopus 로고    scopus 로고
    • Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning
    • Niki, H. & Hiraga, S. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 12, 1036-1045 (1998).
    • (1998) Genes Dev , vol.12 , pp. 1036-1045
    • Niki, H.1    Hiraga, S.2
  • 121
    • 0034650256 scopus 로고    scopus 로고
    • Dynamic organization of chromosomal DNA in Escherichia coli
    • Niki, H., Yamaichi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14, 212-223 (2000).
    • (2000) Genes Dev , vol.14 , pp. 212-223
    • Niki, H.1    Yamaichi, Y.2    Hiraga, S.3
  • 122
    • 3042548402 scopus 로고    scopus 로고
    • Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication
    • Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257-9262 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 9257-9262
    • Viollier, P.H.1
  • 123
    • 27144448812 scopus 로고    scopus 로고
    • The bacterial nucleoid: A highly organized and dynamic structure
    • Thanbichler, M., Wang, S. C. & Shapiro, L. The bacterial nucleoid: A highly organized and dynamic structure. J. Cell. Biochem. 96 506-521 (2005).
    • (2005) J. Cell. Biochem , vol.96 , pp. 506-521
    • Thanbichler, M.1    Wang, S.C.2    Shapiro, L.3
  • 124
    • 33750495828 scopus 로고    scopus 로고
    • Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications
    • Espeli, O. & Boccard, F. Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications. J. Struct. Biol. 156, 304-310 (2006).
    • (2006) J. Struct. Biol , vol.156 , pp. 304-310
    • Espeli, O.1    Boccard, F.2
  • 125
    • 0033082256 scopus 로고    scopus 로고
    • Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication
    • Kuzminov, A. & Stahl, F. W. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev. 13, 345-356 (1999).
    • (1999) Genes Dev , vol.13 , pp. 345-356
    • Kuzminov, A.1    Stahl, F.W.2
  • 126
    • 4644287815 scopus 로고    scopus 로고
    • Subcellular sites for bacterial protein export
    • Campo, N. et al. Subcellular sites for bacterial protein export. Mol. Microbiol. 53, 1583-1599 (2004).
    • (2004) Mol. Microbiol , vol.53 , pp. 1583-1599
    • Campo, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.