메뉴 건너뛰기




Volumn 14, Issue 11, 2007, Pages 1049-1055

Gene regulation through nuclear organization

Author keywords

[No Author keywords available]

Indexed keywords

CELL NUCLEUS; CELL NUCLEUS MEMBRANE; ENZYME ACTIVITY; EUCHROMATIN; GENE CONTROL; GENE EXPRESSION; GENE LOCATION; GENE REPRESSION; GENE SILENCING; GENETIC TRANSCRIPTION; HETEROCHROMATIN; MORPHOLOGY; NUCLEAR PORE COMPLEX; PRIORITY JOURNAL; REVIEW; TISSUE SPECIFICITY; TRANSCRIPTION REGULATION;

EID: 35848952522     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb1324     Document Type: Review
Times cited : (196)

References (89)
  • 1
    • 0029820640 scopus 로고    scopus 로고
    • The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae
    • Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349-1363 (1996).
    • (1996) J. Cell Biol , vol.134 , pp. 1349-1363
    • Gotta, M.1
  • 2
    • 0029746494 scopus 로고    scopus 로고
    • Evidence for silencing compartments within the yeast nucleus: A role for telomere proximity and Sir protein concentration in silencer-mediated repression
    • Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796-1811 (1996).
    • (1996) Genes Dev , vol.10 , pp. 1796-1811
    • Maillet, L.1
  • 3
    • 0032490917 scopus 로고    scopus 로고
    • Perinuclear localization of chromatin facilitates transcriptional silencing
    • Andrulis, E.D., Neiman, A.M., Zappulla, D.C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592-595 (1998).
    • (1998) Nature , vol.394 , pp. 592-595
    • Andrulis, E.D.1    Neiman, A.M.2    Zappulla, D.C.3    Sternglanz, R.4
  • 4
    • 10944252995 scopus 로고    scopus 로고
    • The function of nuclear architecture: A genetic approach
    • Taddei, A., Hediger, F., Neumann, F.R. & Gasser, S.M. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305-345 (2004).
    • (2004) Annu. Rev. Genet , vol.38 , pp. 305-345
    • Taddei, A.1    Hediger, F.2    Neumann, F.R.3    Gasser, S.M.4
  • 5
    • 0029969424 scopus 로고    scopus 로고
    • Specific interactions of chromatin with the nuclear envelope: Positional determination within the nucleus in Drosophila melanogaster
    • Marshall, W.F., Dernburg, A.F., Harmon, B., Agard, D.A. & Sedat, J.W. Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol. Biol. Cell 7, 825-842 (1996).
    • (1996) Mol. Biol. Cell , vol.7 , pp. 825-842
    • Marshall, W.F.1    Dernburg, A.F.2    Harmon, B.3    Agard, D.A.4    Sedat, J.W.5
  • 6
    • 33748289518 scopus 로고    scopus 로고
    • Characterization of the Drosophila melanogaster genome at the nuclear lamina
    • Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005-1014 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 1005-1014
    • Pickersgill, H.1
  • 7
    • 0030987777 scopus 로고    scopus 로고
    • Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR
    • Ye, Q., Callebaut, I., Pezhman, A., Courvalin, J.C. & Worman, H.J. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272, 14983-14989 (1997).
    • (1997) J. Biol. Chem , vol.272 , pp. 14983-14989
    • Ye, Q.1    Callebaut, I.2    Pezhman, A.3    Courvalin, J.C.4    Worman, H.J.5
  • 8
    • 10444232746 scopus 로고    scopus 로고
    • Chromatin organization in the mammalian nucleus
    • Gilbert, N., Gilchrist, S. & Bickmore, W.A. Chromatin organization in the mammalian nucleus. Int. Rev. Cytol. 242, 283-336 (2005).
    • (2005) Int. Rev. Cytol , vol.242 , pp. 283-336
    • Gilbert, N.1    Gilchrist, S.2    Bickmore, W.A.3
  • 9
    • 0033553877 scopus 로고    scopus 로고
    • Differences in the localization and morphology of chromosomes in the human nucleus
    • Croft, J.A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119-1131 (1999).
    • (1999) J. Cell Biol , vol.145 , pp. 1119-1131
    • Croft, J.A.1
  • 10
    • 0035316574 scopus 로고    scopus 로고
    • Chromosome territories, nuclear architecture and gene regulation in mammalian cells
    • Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292-301 (2001).
    • (2001) Nat. Rev. Genet , vol.2 , pp. 292-301
    • Cremer, T.1    Cremer, C.2
  • 11
    • 0037023361 scopus 로고    scopus 로고
    • Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development
    • Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158-162 (2002).
    • (2002) Science , vol.296 , pp. 158-162
    • Kosak, S.T.1
  • 12
    • 31644436473 scopus 로고    scopus 로고
    • Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus
    • Williams, R.R. et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci. 119, 132-140 (2006).
    • (2006) J. Cell Sci , vol.119 , pp. 132-140
    • Williams, R.R.1
  • 13
    • 33646021963 scopus 로고    scopus 로고
    • Long-range directional movement of an interphase chromosome site
    • Chuang, C.H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825-831 (2006).
    • (2006) Curr. Biol , vol.16 , pp. 825-831
    • Chuang, C.H.1
  • 14
    • 10944261946 scopus 로고    scopus 로고
    • Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation
    • Hewitt, S.L., High, F.A., Reiner, S.L., Fisher, A.G. & Merkenschlager, M. Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur. J. Immunol. 34, 3604-3613 (2004).
    • (2004) Eur. J. Immunol , vol.34 , pp. 3604-3613
    • Hewitt, S.L.1    High, F.A.2    Reiner, S.L.3    Fisher, A.G.4    Merkenschlager, M.5
  • 15
    • 33744779614 scopus 로고    scopus 로고
    • The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation
    • Ragoczy, T., Bender, M.A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447-1457 (2006).
    • (2006) Genes Dev , vol.20 , pp. 1447-1457
    • Ragoczy, T.1    Bender, M.A.2    Telling, A.3    Byron, R.4    Groudine, M.5
  • 16
    • 33745016642 scopus 로고    scopus 로고
    • Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging
    • Shumaker, D.K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 103, 8703-8708 (2006).
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 8703-8708
    • Shumaker, D.K.1
  • 17
    • 33847345531 scopus 로고    scopus 로고
    • Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression
    • Malhas, A., Lee, C.F., Sanders, R., Saunders, N.J. & Vaux, D.J. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J. Cell Biol. 176, 593-603 (2007).
    • (2007) J. Cell Biol , vol.176 , pp. 593-603
    • Malhas, A.1    Lee, C.F.2    Sanders, R.3    Saunders, N.J.4    Vaux, D.J.5
  • 18
    • 0022395294 scopus 로고
    • Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei
    • Hutchison, N. & Weintraub, H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell 43, 471-482 (1985).
    • (1985) Cell , vol.43 , pp. 471-482
    • Hutchison, N.1    Weintraub, H.2
  • 19
    • 14044266853 scopus 로고    scopus 로고
    • Gene recruitment of the activated INO1 locus to the nuclear membrane
    • Brickner, J.H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2, e342 (2004).
    • (2004) PLoS Biol , vol.2
    • Brickner, J.H.1    Walter, P.2
  • 20
    • 2342501365 scopus 로고    scopus 로고
    • Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization
    • Casolari, J.M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427-439 (2004).
    • (2004) Cell , vol.117 , pp. 427-439
    • Casolari, J.M.1
  • 21
    • 33744977019 scopus 로고    scopus 로고
    • Nuclear pore association confers optimal expression levels for an inducible yeast gene
    • Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774-778 (2006).
    • (2006) Nature , vol.441 , pp. 774-778
    • Taddei, A.1
  • 22
    • 33745001795 scopus 로고    scopus 로고
    • SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope
    • Cabal, G.G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770-773 (2006).
    • (2006) Nature , vol.441 , pp. 770-773
    • Cabal, G.G.1
  • 23
    • 33750320374 scopus 로고    scopus 로고
    • Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes
    • Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol. 26, 7858-7870 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 7858-7870
    • Dieppois, G.1    Iglesias, N.2    Stutz, F.3
  • 24
    • 31544471808 scopus 로고    scopus 로고
    • Nup-PI: The nucleopore-promoter interaction of genes in yeast
    • Schmid, M. et al. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21, 379-391 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 379-391
    • Schmid, M.1
  • 25
    • 34247341747 scopus 로고    scopus 로고
    • H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
    • Brickner, D.G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).
    • (2007) PLoS Biol , vol.5
    • Brickner, D.G.1
  • 26
    • 34250777112 scopus 로고    scopus 로고
    • The nuclear envelope and transcriptional control
    • Akhtar, A. & Gasser, S.M. The nuclear envelope and transcriptional control. Nat. Rev. Genet. 8, 507-517 (2007).
    • (2007) Nat. Rev. Genet , vol.8 , pp. 507-517
    • Akhtar, A.1    Gasser, S.M.2
  • 27
    • 33748097000 scopus 로고    scopus 로고
    • MSL proteins and the regulation of gene expression
    • Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. Curr. Top. Microbiol. Immunol. 310, 117-140 (2006).
    • (2006) Curr. Top. Microbiol. Immunol , vol.310 , pp. 117-140
    • Rea, S.1    Akhtar, A.2
  • 28
    • 33644870525 scopus 로고    scopus 로고
    • Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila
    • Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21, 811-823 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 811-823
    • Mendjan, S.1
  • 29
    • 33744967486 scopus 로고    scopus 로고
    • Dynamic nuclear pore complexes: Life on the edge
    • Tran, E.J. & Wente, S.R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041-1053 (2006).
    • (2006) Cell , vol.125 , pp. 1041-1053
    • Tran, E.J.1    Wente, S.R.2
  • 30
    • 33750975052 scopus 로고    scopus 로고
    • Inversion (11)(p15q22) with NUP98-DDX10 fusion gene in pediatric acute myeloid leukemia
    • Morerio, C. et al. Inversion (11)(p15q22) with NUP98-DDX10 fusion gene in pediatric acute myeloid leukemia. Cancer Genet. Cytogenet. 171, 122-125 (2006).
    • (2006) Cancer Genet. Cytogenet , vol.171 , pp. 122-125
    • Morerio, C.1
  • 31
    • 34347392874 scopus 로고    scopus 로고
    • NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis
    • Wang, G.G., Cai, L., Pasillas, M.P. & Kamps, M.P. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat. Cell Biol. 9, 804-812 (2007).
    • (2007) Nat. Cell Biol , vol.9 , pp. 804-812
    • Wang, G.G.1    Cai, L.2    Pasillas, M.P.3    Kamps, M.P.4
  • 32
    • 34147111657 scopus 로고    scopus 로고
    • Multi-tasking on chromatin with the SAGA coactivator complexes
    • Daniel, J.A. & Grant, P.A. Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat. Res. 618, 135-148 (2007).
    • (2007) Mutat. Res , vol.618 , pp. 135-148
    • Daniel, J.A.1    Grant, P.A.2
  • 33
    • 34047254106 scopus 로고    scopus 로고
    • Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex
    • Luthra, R. et al. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J. Biol. Chem. 282, 3042-3049 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 3042-3049
    • Luthra, R.1
  • 34
    • 27544486193 scopus 로고    scopus 로고
    • The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators
    • Lee, D. et al. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123, 423-436 (2005).
    • (2005) Cell , vol.123 , pp. 423-436
    • Lee, D.1
  • 35
    • 0032538881 scopus 로고    scopus 로고
    • Localization of the 26S proteasome during mitosis and meiosis in fission yeast
    • Wilkinson, C.R. et al. Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J. 17, 6465-6476 (1998).
    • (1998) EMBO J , vol.17 , pp. 6465-6476
    • Wilkinson, C.R.1
  • 36
    • 0033118427 scopus 로고    scopus 로고
    • GFP-labelling of 26S proteasomes in living yeast: Insight into proteasomal functions at the nuclear envelope/rough ER
    • Enenkel, C., Lehmann, A. & Kloetzel, P.M. GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol. Biol. Rep. 26, 131-135 (1999).
    • (1999) Mol. Biol. Rep , vol.26 , pp. 131-135
    • Enenkel, C.1    Lehmann, A.2    Kloetzel, P.M.3
  • 37
    • 33644867538 scopus 로고    scopus 로고
    • The proteasome: A utility tool for transcription?
    • Collins, G.A. & Tansey, W.P. The proteasome: a utility tool for transcription? Curr. Opin. Genet. Dev. 16, 197-202 (2006).
    • (2006) Curr. Opin. Genet. Dev , vol.16 , pp. 197-202
    • Collins, G.A.1    Tansey, W.P.2
  • 38
    • 0042818412 scopus 로고    scopus 로고
    • The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
    • Wood, A., Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739-34742 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 34739-34742
    • Wood, A.1    Schneider, J.2    Dover, J.3    Johnston, M.4    Shilatifard, A.5
  • 39
    • 0242361623 scopus 로고    scopus 로고
    • Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
    • Henry, K.W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648-2663 (2003).
    • (2003) Genes Dev , vol.17 , pp. 2648-2663
    • Henry, K.W.1
  • 40
    • 11844297340 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation is associated with elongating RNA polymerase II
    • Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637-651 (2005).
    • (2005) Mol. Cell. Biol , vol.25 , pp. 637-651
    • Xiao, T.1
  • 41
    • 1242271997 scopus 로고    scopus 로고
    • Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3
    • Ezhkova, E. & Tansey, W.P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell 13, 435-442 (2004).
    • (2004) Mol. Cell , vol.13 , pp. 435-442
    • Ezhkova, E.1    Tansey, W.P.2
  • 43
    • 33644857820 scopus 로고    scopus 로고
    • Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates
    • Auld, K.L., Brown, C.R., Casolari, J.M., Komili, S. & Silver, P.A. Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. Mol. Cell 21, 861-871 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 861-871
    • Auld, K.L.1    Brown, C.R.2    Casolari, J.M.3    Komili, S.4    Silver, P.A.5
  • 44
    • 33748753648 scopus 로고    scopus 로고
    • Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin
    • Sikder, D., Johnston, S.A. & Kodadek, T. Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin. J. Biol. Chem. 281, 27346-27355 (2006).
    • (2006) J. Biol. Chem , vol.281 , pp. 27346-27355
    • Sikder, D.1    Johnston, S.A.2    Kodadek, T.3
  • 45
    • 33748933029 scopus 로고    scopus 로고
    • 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation
    • Abruzzi, K.C., Belostotsky, D.A., Chekanova, J.A., Dower, K. & Rosbash, M. 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J. 25, 4253-4262 (2006).
    • (2006) EMBO J , vol.25 , pp. 4253-4262
    • Abruzzi, K.C.1    Belostotsky, D.A.2    Chekanova, J.A.3    Dower, K.4    Rosbash, M.5
  • 46
    • 11144296359 scopus 로고    scopus 로고
    • Sir-mediated repression can occur independently of chromosomal and subnuclear contexts
    • Gartenberg, M.R., Neumann, F.R., Laroche, T., Blaszczyk, M. & Gasser, S.M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119, 955-967 (2004).
    • (2004) Cell , vol.119 , pp. 955-967
    • Gartenberg, M.R.1    Neumann, F.R.2    Laroche, T.3    Blaszczyk, M.4    Gasser, S.M.5
  • 47
    • 0035979738 scopus 로고    scopus 로고
    • Regulation of transcriptional activation domain function by ubiquitin
    • Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. & Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651-1653 (2001).
    • (2001) Science , vol.293 , pp. 1651-1653
    • Salghetti, S.E.1    Caudy, A.A.2    Chenoweth, J.G.3    Tansey, W.P.4
  • 48
    • 0030454586 scopus 로고    scopus 로고
    • Three-dimensional reconstruction of painted human interphase chromosomes: Active and inactive X chromosome territories have similar volumes but differ in shape and surface structure
    • Eils, R. et al. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell Biol. 135, 1427-1440 (1996).
    • (1996) J. Cell Biol , vol.135 , pp. 1427-1440
    • Eils, R.1
  • 49
    • 33746069681 scopus 로고    scopus 로고
    • Dosage compensation in mammals: Fine-tuning the expression of the X chromosome
    • Heard, E. & Disteche, C.M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848-1867 (2006).
    • (2006) Genes Dev , vol.20 , pp. 1848-1867
    • Heard, E.1    Disteche, C.M.2
  • 50
    • 29444455049 scopus 로고    scopus 로고
    • Dosage compensation of the active X chromosome in mammals
    • Nguyen, D.K. & Disteche, C.M. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47-53 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 47-53
    • Nguyen, D.K.1    Disteche, C.M.2
  • 51
    • 33746076412 scopus 로고    scopus 로고
    • A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced
    • Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223-2237 (2006).
    • (2006) Genes Dev , vol.20 , pp. 2223-2237
    • Chaumeil, J.1    Le Baccon, P.2    Wutz, A.3    Heard, E.4
  • 52
    • 34249006523 scopus 로고    scopus 로고
    • Perinucleolar targeting of the inactive X during S phase: Evidence for a role in the maintenance of silencing
    • Zhang, L.F., Huynh, K.D. & Lee, J.T. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129, 693-706 (2007).
    • (2007) Cell , vol.129 , pp. 693-706
    • Zhang, L.F.1    Huynh, K.D.2    Lee, J.T.3
  • 53
    • 0036899341 scopus 로고    scopus 로고
    • An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin
    • Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32, 627-632 (2002).
    • (2002) Nat. Genet , vol.32 , pp. 627-632
    • Collins, N.1
  • 54
    • 0037387711 scopus 로고    scopus 로고
    • Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes
    • Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481-495 (2003).
    • (2003) Dev. Cell , vol.4 , pp. 481-495
    • Silva, J.1
  • 55
    • 33845799903 scopus 로고    scopus 로고
    • Polycomb silencing mechanisms and the management of genomic programmes
    • Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9-22 (2007).
    • (2007) Nat. Rev. Genet , vol.8 , pp. 9-22
    • Schwartz, Y.B.1    Pirrotta, V.2
  • 56
    • 0032550226 scopus 로고    scopus 로고
    • The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: Impact on models for silencing
    • Buchenau, P., Hodgson, J., Strutt, H. & Arndt-Jovin, D.J. The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J. Cell Biol. 141, 469-481 (1998).
    • (1998) J. Cell Biol , vol.141 , pp. 469-481
    • Buchenau, P.1    Hodgson, J.2    Strutt, H.3    Arndt-Jovin, D.J.4
  • 57
    • 0032563598 scopus 로고    scopus 로고
    • The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain
    • Saurin, A.J. et al. The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol. 142, 887-898 (1998).
    • (1998) J. Cell Biol , vol.142 , pp. 887-898
    • Saurin, A.J.1
  • 59
    • 33644770293 scopus 로고    scopus 로고
    • RNAi components are required for nuclear clustering of Polycomb group response elements
    • Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957-971 (2006).
    • (2006) Cell , vol.124 , pp. 957-971
    • Grimaud, C.1
  • 60
    • 33646882068 scopus 로고    scopus 로고
    • Polycomb complexes repress developmental regulators in murine embryonic stem cells
    • Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-353 (2006).
    • (2006) Nature , vol.441 , pp. 349-353
    • Boyer, L.A.1
  • 61
    • 33646865180 scopus 로고    scopus 로고
    • Control of developmental regulators by Polycomb in human embryonic stem cells
    • Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301-313 (2006).
    • (2006) Cell , vol.125 , pp. 301-313
    • Lee, T.I.1
  • 62
    • 33646856965 scopus 로고    scopus 로고
    • Chromosomal distribution of PcG proteins during Drosophila development
    • Negre, N. et al. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol. 4, e170 (2006).
    • (2006) PLoS Biol , vol.4
    • Negre, N.1
  • 63
    • 33745225872 scopus 로고    scopus 로고
    • Genome-wide analysis of Polycomb targets in Drosophila melanogaster
    • Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700-705 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 700-705
    • Schwartz, Y.B.1
  • 64
    • 0027487387 scopus 로고
    • bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis
    • Haupt, Y., Bath, M.L., Harris, A.W. & Adams, J.M. bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8, 3161-3164 (1993).
    • (1993) Oncogene , vol.8 , pp. 3161-3164
    • Haupt, Y.1    Bath, M.L.2    Harris, A.W.3    Adams, J.M.4
  • 65
    • 0033552813 scopus 로고    scopus 로고
    • The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus
    • Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164-168 (1999).
    • (1999) Nature , vol.397 , pp. 164-168
    • Jacobs, J.J.1    Kieboom, K.2    Marino, S.3    DePinho, R.A.4    van Lohuizen, M.5
  • 66
    • 33744905801 scopus 로고    scopus 로고
    • The role of polycomb group proteins in cell cycle regulation during development
    • Martinez, A.M. & Cavalli, G. The role of polycomb group proteins in cell cycle regulation during development. Cell Cycle 5, 1189-1197 (2006).
    • (2006) Cell Cycle , vol.5 , pp. 1189-1197
    • Martinez, A.M.1    Cavalli, G.2
  • 68
    • 0141706718 scopus 로고    scopus 로고
    • Inheritance of Polycomb-dependent chromosomal interactions in Drosophila
    • Bantignies, F., Grimaud, C., Lavrov, S., Gabut, M. & Cavalli, G. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev. 17, 2406-2420 (2003).
    • (2003) Genes Dev , vol.17 , pp. 2406-2420
    • Bantignies, F.1    Grimaud, C.2    Lavrov, S.3    Gabut, M.4    Cavalli, G.5
  • 69
    • 33745599723 scopus 로고    scopus 로고
    • The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila
    • Vazquez, J., Muller, M., Pirrotta, V. & Sedat, J.W. The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila. Mol. Biol. Cell 17, 2158-2165 (2006).
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2158-2165
    • Vazquez, J.1    Muller, M.2    Pirrotta, V.3    Sedat, J.W.4
  • 70
    • 0027499230 scopus 로고
    • Visualization of focal sites of transcription within human nuclei
    • Jackson, D.A., Hassan, A.B., Errington, R.J. & Cook, P.R. Visualization of focal sites of transcription within human nuclei. EMBO J. 12, 1059-1065 (1993).
    • (1993) EMBO J , vol.12 , pp. 1059-1065
    • Jackson, D.A.1    Hassan, A.B.2    Errington, R.J.3    Cook, P.R.4
  • 71
    • 0027305616 scopus 로고
    • Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus
    • Wansink, D.G. et al. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J. Cell Biol. 122, 283-293 (1993).
    • (1993) J. Cell Biol , vol.122 , pp. 283-293
    • Wansink, D.G.1
  • 72
    • 0029973080 scopus 로고    scopus 로고
    • Active RNA polymerases are localized within discrete transcription factories' in human nuclei
    • Iborra, F.J., Pombo, A., Jackson, D.A. & Cook, P.R. Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. J. Cell Sci. 109, 1427-1436 (1996).
    • (1996) J. Cell Sci , vol.109 , pp. 1427-1436
    • Iborra, F.J.1    Pombo, A.2    Jackson, D.A.3    Cook, P.R.4
  • 73
    • 0033561153 scopus 로고    scopus 로고
    • Regional specialization in human nuclei: Visualization of discrete sites of transcription by RNA polymerase III
    • Pombo, A. et al. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J. 18, 2241-2253 (1999).
    • (1999) EMBO J , vol.18 , pp. 2241-2253
    • Pombo, A.1
  • 74
    • 33745632115 scopus 로고    scopus 로고
    • A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value
    • Faro-Trindade, I. & Cook, P.R. A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol. Biol. Cell 17, 2910-2920 (2006).
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2910-2920
    • Faro-Trindade, I.1    Cook, P.R.2
  • 75
    • 26244456163 scopus 로고    scopus 로고
    • Polycomb group protein complexes exchange rapidly in living Drosophila
    • Ficz, G., Heintzmann, R. & Arndt-Jovin, D.J. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132, 3963-3976 (2005).
    • (2005) Development , vol.132 , pp. 3963-3976
    • Ficz, G.1    Heintzmann, R.2    Arndt-Jovin, D.J.3
  • 76
    • 3042760021 scopus 로고    scopus 로고
    • Global nature of dynamic protein-chromatin interactions in vivo: Three-dimensional genome scanning and dynamic interaction networks of chromatin proteins
    • Phair, R.D. et al. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393-6402 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 6393-6402
    • Phair, R.D.1
  • 77
    • 0037049641 scopus 로고    scopus 로고
    • The transcription cycle of RNA polymerase II in living cells
    • Kimura, H., Sugaya, K. & Cook, P.R. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159, 777-782 (2002).
    • (2002) J. Cell Biol , vol.159 , pp. 777-782
    • Kimura, H.1    Sugaya, K.2    Cook, P.R.3
  • 78
    • 0032808150 scopus 로고    scopus 로고
    • Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: Little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure
    • Kimura, H., Tao, Y., Roeder, R.G. & Cook, P.R. Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol. Cell. Biol. 19, 5383-5392 (1999).
    • (1999) Mol. Cell. Biol , vol.19 , pp. 5383-5392
    • Kimura, H.1    Tao, Y.2    Roeder, R.G.3    Cook, P.R.4
  • 79
    • 18744404520 scopus 로고    scopus 로고
    • Different populations of RNA polymerase II in living mammalian cells
    • Hieda, M., Winstanley, H., Maini, P., Iborra, F.J. & Cook, P.R. Different populations of RNA polymerase II in living mammalian cells. Chromosome Res. 13, 135-144 (2005).
    • (2005) Chromosome Res , vol.13 , pp. 135-144
    • Hieda, M.1    Winstanley, H.2    Maini, P.3    Iborra, F.J.4    Cook, P.R.5
  • 81
    • 5444243359 scopus 로고    scopus 로고
    • Active genes dynamically colocalize to shared sites of ongoing transcription
    • Osborne, C.S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065-1071 (2004).
    • (2004) Nat. Genet , vol.36 , pp. 1065-1071
    • Osborne, C.S.1
  • 83
    • 0029051646 scopus 로고
    • Transcription complex stability and chromatin dynamics in vivo
    • Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209-213 (1995).
    • (1995) Nature , vol.377 , pp. 209-213
    • Wijgerde, M.1    Grosveld, F.2    Fraser, P.3
  • 84
    • 33646591544 scopus 로고    scopus 로고
    • Transcriptional pulsing of a developmental gene
    • Chubb, J.R., Trcek, T., Shenoy, S.M. & Singer, R.H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018-1025 (2006).
    • (2006) Curr. Biol , vol.16 , pp. 1018-1025
    • Chubb, J.R.1    Trcek, T.2    Shenoy, S.M.3    Singer, R.H.4
  • 85
    • 0032567081 scopus 로고    scopus 로고
    • Dissecting the regulatory circuitry of a eukaryotic genome
    • Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728 (1998).
    • (1998) Cell , vol.95 , pp. 717-728
    • Holstege, F.C.1
  • 86
    • 34548210885 scopus 로고    scopus 로고
    • Myc dynamically and preferentially relocates to a transcription factory occupied by igh
    • Osborne, C.S. et al. Myc dynamically and preferentially relocates to a transcription factory occupied by igh. PLoS Biol. 5, e192 (2007).
    • (2007) PLoS Biol , vol.5
    • Osborne, C.S.1
  • 87
    • 33750203582 scopus 로고    scopus 로고
    • Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions
    • Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341-1347 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 1341-1347
    • Zhao, Z.1
  • 88
    • 33750212321 scopus 로고    scopus 로고
    • Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)
    • Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348-1354 (2006).
    • (2006) Nat. Genet , vol.38 , pp. 1348-1354
    • Simonis, M.1
  • 89
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306-1311 (2002).
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1    Rippe, K.2    Dekker, M.3    Kleckner, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.