메뉴 건너뛰기




Volumn 10, Issue 2, 2014, Pages 580-594

Current trends in the design of scaffolds for computer-aided tissue engineering

Author keywords

Additive manufacturing; Computer aided tissue engineering (CATE); Scaffolds; Topological optimization

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; MICROSTRUCTURAL EVOLUTION; SCAFFOLDS (BIOLOGY); TISSUE; TOPOLOGY;

EID: 84896548221     PISSN: 17427061     EISSN: 18787568     Source Type: Journal    
DOI: 10.1016/j.actbio.2013.10.024     Document Type: Review
Times cited : (390)

References (160)
  • 3
    • 67650494384 scopus 로고    scopus 로고
    • Rapid prototyping and manufacturing for tissue engineering scaffolds
    • P.J.S. Bártolo, H. Almeida, and T. Laoui Rapid prototyping and manufacturing for tissue engineering scaffolds Int J Comput Appl 36 2009 1 9
    • (2009) Int J Comput Appl , vol.36 , pp. 1-9
    • Bártolo, P.J.S.1    Almeida, H.2    Laoui, T.3
  • 4
    • 42449159656 scopus 로고    scopus 로고
    • A review of rapid prototyping techniques for tissue engineering purposes
    • S.M. Peltola, F.P.W. Melchels, D.W. Grijpma, and M. Kellomäki A review of rapid prototyping techniques for tissue engineering purposes Ann Med 40 2008 268 280
    • (2008) Ann Med , vol.40 , pp. 268-280
    • Peltola, S.M.1    Melchels, F.P.W.2    Grijpma, D.W.3    Kellomäki, M.4
  • 5
    • 84856721133 scopus 로고    scopus 로고
    • Solid freeform fabrication technology applied to tissue engineering with various biomaterials
    • Y.-J. Seol, T.-Y. Kang, and D.-W. Cho Solid freeform fabrication technology applied to tissue engineering with various biomaterials Soft Matter 8 2012 1730 1735
    • (2012) Soft Matter , vol.8 , pp. 1730-1735
    • Seol, Y.-J.1    Kang, T.-Y.2    Cho, D.-W.3
  • 6
    • 84862869528 scopus 로고    scopus 로고
    • A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
    • T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering Biomaterials 33 2012 6020 6041
    • (2012) Biomaterials , vol.33 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    Van Vlierberghe, S.4    Dubruel, P.5
  • 7
    • 1042288112 scopus 로고    scopus 로고
    • Computer-aided tissue engineering: Overview, scope and challenges
    • W. Sun, A. Darling, B. Starly, and J. Nam Computer-aided tissue engineering: overview, scope and challenges Biotechnol Appl Biochem 39 2004 29 47
    • (2004) Biotechnol Appl Biochem , vol.39 , pp. 29-47
    • Sun, W.1    Darling, A.2    Starly, B.3    Nam, J.4
  • 8
    • 78650722339 scopus 로고    scopus 로고
    • Commentary: Deciphering the link between architecture and biological response of a bone graft substitute
    • M. Bohner, Y. Loosli, G. Baroud, and D. Lacroix Commentary: deciphering the link between architecture and biological response of a bone graft substitute Acta Biomater 7 2011 478 484
    • (2011) Acta Biomater , vol.7 , pp. 478-484
    • Bohner, M.1    Loosli, Y.2    Baroud, G.3    Lacroix, D.4
  • 9
    • 84865630684 scopus 로고    scopus 로고
    • Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimension fiber deposition method
    • Y. Sun, A. Finne-Wistrand, A. Finne-Wistrand, P.D.A. Albertsson, Z. Xing, K. Mustafa, and W.J. Hendrikson et al. Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimension fiber deposition method J Biomed Mater Res A 100A 2012 2739 2749
    • (2012) J Biomed Mater Res A , vol.100 A , pp. 2739-2749
    • Sun, Y.1    Finne-Wistrand, A.2    Finne-Wistrand, A.3    Albertsson, P.D.A.4    Xing, Z.5    Mustafa, K.6    Hendrikson, W.J.7
  • 11
    • 77950046590 scopus 로고    scopus 로고
    • Enhanced cell ingrowth and proliferation through three-dimensional nanocomposite scaffolds with controlled pore structures
    • K.-W. Lee, S. Wang, M. Dadsetan, M.J. Yaszemski, and L. Lu Enhanced cell ingrowth and proliferation through three-dimensional nanocomposite scaffolds with controlled pore structures Biomacromolecules 11 2010 682 689
    • (2010) Biomacromolecules , vol.11 , pp. 682-689
    • Lee, K.-W.1    Wang, S.2    Dadsetan, M.3    Yaszemski, M.J.4    Lu, L.5
  • 12
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
    • D.W. Hutmacher, M. Sittinger, and M.V. Risbud Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems Trends Biotechnol 22 2004 354 362
    • (2004) Trends Biotechnol , vol.22 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 14
    • 0036142463 scopus 로고    scopus 로고
    • Recent development on computer aided tissue engineering - A review
    • W. Sun, and P. Lal Recent development on computer aided tissue engineering - a review Comput Methods Programs Biomed 67 2002 85 103
    • (2002) Comput Methods Programs Biomed , vol.67 , pp. 85-103
    • Sun, W.1    Lal, P.2
  • 15
    • 1042265021 scopus 로고    scopus 로고
    • Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds
    • W. Sun, B. Starly, A. Darling, and C. Gomez Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds Biotechnol Appl Biochem 39 2004 49 58
    • (2004) Biotechnol Appl Biochem , vol.39 , pp. 49-58
    • Sun, W.1    Starly, B.2    Darling, A.3    Gomez, C.4
  • 16
    • 67149131699 scopus 로고    scopus 로고
    • Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering
    • D. Lacroix, J.A. Planell, and P.J. Prendergast Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering Phil Trans R Soc A 367 2009 1993 2009
    • (2009) Phil Trans R Soc A , vol.367 , pp. 1993-2009
    • Lacroix, D.1    Planell, J.A.2    Prendergast, P.J.3
  • 17
    • 79952483103 scopus 로고    scopus 로고
    • Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering
    • A. Boccaccio, A. Ballini, C. Pappalettere, D. Tullo, S. Cantore, and A. Desiate Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering Int J Biol Sci 7 2011 112 132
    • (2011) Int J Biol Sci , vol.7 , pp. 112-132
    • Boccaccio, A.1    Ballini, A.2    Pappalettere, C.3    Tullo, D.4    Cantore, S.5    Desiate, A.6
  • 18
    • 0036568023 scopus 로고    scopus 로고
    • Reasoning Boolean operation based modeling for heterogeneous objects
    • W. Sun, and X. Hu Reasoning Boolean operation based modeling for heterogeneous objects Comput Aided Des 34 2002 481 488
    • (2002) Comput Aided des , vol.34 , pp. 481-488
    • Sun, W.1    Hu, X.2
  • 19
    • 38149064519 scopus 로고    scopus 로고
    • Development of modelling methods for materials to be used as bone substitutes
    • R. Gabbrielli, I.G. Turner, and C.R. Bowen Development of modelling methods for materials to be used as bone substitutes Key Eng Mat 361-363 II 2008 901 906
    • (2008) Key Eng Mat , vol.361-363 , Issue.2 , pp. 901-906
    • Gabbrielli, R.1    Turner, I.G.2    Bowen, C.R.3
  • 20
    • 33746660738 scopus 로고    scopus 로고
    • Toolpath generation for layer manufacturing of fractal objects
    • W.K. Chiu, Y.C. Yeung, and K.M. Yu Toolpath generation for layer manufacturing of fractal objects Rapid Prototyping J 12 2006 214 221
    • (2006) Rapid Prototyping J , vol.12 , pp. 214-221
    • Chiu, W.K.1    Yeung, Y.C.2    Yu, K.M.3
  • 21
    • 79958287550 scopus 로고    scopus 로고
    • Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering
    • B. Duan, W.L. Cheung, and M. Wang Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering Biofabrication 3 2011 015001
    • (2011) Biofabrication , vol.3 , pp. 015001
    • Duan, B.1    Cheung, W.L.2    Wang, M.3
  • 24
    • 0037275050 scopus 로고    scopus 로고
    • Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification
    • C.K. Chua, K.F. Leong, C.M. Cheah, and S.W. Chua Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification Int J Adv Manuf Tech 21 2003 291 301
    • (2003) Int J Adv Manuf Tech , vol.21 , pp. 291-301
    • Chua, C.K.1    Leong, K.F.2    Cheah, C.M.3    Chua, S.W.4
  • 25
    • 0037274766 scopus 로고    scopus 로고
    • Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: Parametric library and assembly program
    • C.M. Cheah, C.K. Chua, K.F. Leong, and S.W. Chua Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: Parametric library and assembly program Int J Adv Manuf Tech 21 2003 302 312
    • (2003) Int J Adv Manuf Tech , vol.21 , pp. 302-312
    • Cheah, C.M.1    Chua, C.K.2    Leong, K.F.3    Chua, S.W.4
  • 26
    • 2342618793 scopus 로고    scopus 로고
    • Automatic algorithm for generating complex polyhedral scaffolds for tissue engineering
    • C.M. Cheah, C.K. Chua, K.F. Leong, C.H. Cheong, and M.W. Naing Automatic algorithm for generating complex polyhedral scaffolds for tissue engineering Tissue Eng 10 2004 595 610
    • (2004) Tissue Eng , vol.10 , pp. 595-610
    • Cheah, C.M.1    Chua, C.K.2    Leong, K.F.3    Cheong, C.H.4    Naing, M.W.5
  • 27
    • 23744499612 scopus 로고    scopus 로고
    • Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques
    • M.W. Naing, C.K. Chua, K.F. Leong, and Y. Wang Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques Rapid Prototyping J 11 2005 249 259
    • (2005) Rapid Prototyping J , vol.11 , pp. 249-259
    • Naing, M.W.1    Chua, C.K.2    Leong, K.F.3    Wang, Y.4
  • 28
    • 78650720318 scopus 로고    scopus 로고
    • Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds
    • N. Sudarmadji, J.Y. Tan, K.F. Leong, C.K. Chua, and Y.T. Loh Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds Acta Biomater 7 2011 530 537
    • (2011) Acta Biomater , vol.7 , pp. 530-537
    • Sudarmadji, N.1    Tan, J.Y.2    Leong, K.F.3    Chua, C.K.4    Loh, Y.T.5
  • 29
    • 19044368357 scopus 로고    scopus 로고
    • Bio-CAD modeling and its applications in computer-aided tissue engineering
    • W. Sun, B. Starly, J. Nam, and A. Darling Bio-CAD modeling and its applications in computer-aided tissue engineering Comput Aided Design 37 2005 1097 1114
    • (2005) Comput Aided Design , vol.37 , pp. 1097-1114
    • Sun, W.1    Starly, B.2    Nam, J.3    Darling, A.4
  • 30
    • 40749150702 scopus 로고    scopus 로고
    • Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering
    • B.S. Bucklen, W.A. Wettergreen, E. Yuksel, and M.A.K. Liebschner Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering Virtual Phys Prototyp 3 2008 13 23
    • (2008) Virtual Phys Prototyp , vol.3 , pp. 13-23
    • Bucklen, B.S.1    Wettergreen, W.A.2    Yuksel, E.3    Liebschner, M.A.K.4
  • 31
    • 29844441152 scopus 로고    scopus 로고
    • Computer aided tissue engineering for modeling and design of novel tissue scaffolds
    • J. Nam, B. Starly, A. Darling, and W. Sun Computer aided tissue engineering for modeling and design of novel tissue scaffolds Computer-Aided Design & Applications 1 2004 633 640
    • (2004) Computer-Aided Design & Applications , vol.1 , pp. 633-640
    • Nam, J.1    Starly, B.2    Darling, A.3    Sun, W.4
  • 35
    • 0035988665 scopus 로고    scopus 로고
    • Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
    • S.J. Hollister, R.D. Maddox, and J.M. Taboas Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints Biomaterials 23 2002 4095 4103
    • (2002) Biomaterials , vol.23 , pp. 4095-4103
    • Hollister, S.J.1    Maddox, R.D.2    Taboas, J.M.3
  • 36
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • S.J. Hollister Porous scaffold design for tissue engineering Nat Mater 4 2005 518 524
    • (2005) Nat Mater , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 39
    • 33748622593 scopus 로고    scopus 로고
    • Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds
    • S. Rajagopalan, and R.A. Robb Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds Med Image Anal 10 2006 693 712
    • (2006) Med Image Anal , vol.10 , pp. 693-712
    • Rajagopalan, S.1    Robb, R.A.2
  • 40
    • 78649529363 scopus 로고    scopus 로고
    • Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d, l-lactide)-based resins
    • T.M. Seck, F.P.W. Melchels, J. Feijen, and D.W. Grijpma Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d, l-lactide)-based resins J Control Release 148 2010 34 41
    • (2010) J Control Release , vol.148 , pp. 34-41
    • Seck, T.M.1    Melchels, F.P.W.2    Feijen, J.3    Grijpma, D.W.4
  • 41
    • 67349157548 scopus 로고    scopus 로고
    • A poly(d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography
    • F.P.W. Melchels, J. Feijen, and D.W. Grijpma A poly(d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography Biomaterials 30 2009 3801 3809
    • (2009) Biomaterials , vol.30 , pp. 3801-3809
    • Melchels, F.P.W.1    Feijen, J.2    Grijpma, D.W.3
  • 42
    • 80053576730 scopus 로고    scopus 로고
    • Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography
    • L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D.W. Grijpma, and J.V. Seppälä Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography Acta Biomater 7 2011 3850 3856
    • (2011) Acta Biomater , vol.7 , pp. 3850-3856
    • Elomaa, L.1    Teixeira, S.2    Hakala, R.3    Korhonen, H.4    Grijpma, D.W.5    Seppälä, J.V.6
  • 43
  • 44
    • 69249229501 scopus 로고    scopus 로고
    • Finite element study of scaffold architecture design and culture conditions for tissue engineering
    • A.L. Olivares, E. Marsal, J.A. Planell, and D. Lacroix Finite element study of scaffold architecture design and culture conditions for tissue engineering Biomaterials 30 2009 6142 6149
    • (2009) Biomaterials , vol.30 , pp. 6142-6149
    • Olivares, A.L.1    Marsal, E.2    Planell, J.A.3    Lacroix, D.4
  • 45
    • 79751513917 scopus 로고    scopus 로고
    • Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces
    • D.-J. Yoo Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces Int J Precis Eng Man 12 2011 61 71
    • (2011) Int J Precis Eng Man , vol.12 , pp. 61-71
    • Yoo, D.-J.1
  • 46
    • 80051814481 scopus 로고    scopus 로고
    • Porous scaffold design using the distance field and triply periodic minimal surface models
    • D.-J. Yoo Porous scaffold design using the distance field and triply periodic minimal surface models Biomaterials 32 2011 7741 7754
    • (2011) Biomaterials , vol.32 , pp. 7741-7754
    • Yoo, D.-J.1
  • 47
    • 82355185866 scopus 로고    scopus 로고
    • Extrusion based rapid prototyping technique: An advanced platform for tissue engineering scaffold fabrication
    • M.E. Hoque, Y.L. Chuan, and I. Pashby Extrusion based rapid prototyping technique: An advanced platform for tissue engineering scaffold fabrication Biopolymers 97 2012 83 93
    • (2012) Biopolymers , vol.97 , pp. 83-93
    • Hoque, M.E.1    Chuan, Y.L.2    Pashby, I.3
  • 48
    • 0037082740 scopus 로고    scopus 로고
    • Fused deposition modeling of novel scaffold architectures for tissue engineering applications
    • I. Zein, D.W. Hutmacher, K.C. Tan, and S.H. Teoh Fused deposition modeling of novel scaffold architectures for tissue engineering applications Biomaterials 23 2002 1169 1185
    • (2002) Biomaterials , vol.23 , pp. 1169-1185
    • Zein, I.1    Hutmacher, D.W.2    Tan, K.C.3    Teoh, S.H.4
  • 49
    • 67651065002 scopus 로고    scopus 로고
    • Combinatorial approaches to controlling cell behaviour and tissue formation in 3D via rapid-prototyping and smart scaffold design
    • T.B.F. Woodfield, L. Moroni, and J. Malda Combinatorial approaches to controlling cell behaviour and tissue formation in 3D via rapid-prototyping and smart scaffold design Comb Chem High T Scr 12 2009 562 579
    • (2009) Comb Chem High T Scr , vol.12 , pp. 562-579
    • Woodfield, T.B.F.1    Moroni, L.2    Malda, J.3
  • 50
    • 73549106813 scopus 로고    scopus 로고
    • The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants
    • J.P. Li, J.R. de Wijn, C.A. van Blitterswijk, and K. de Groot The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants J Biomed Mater Res A 92A 2010 33 42
    • (2010) J Biomed Mater Res A , vol.92 A , pp. 33-42
    • Li, J.P.1    De Wijn, J.R.2    Van Blitterswijk, C.A.3    De Groot, K.4
  • 51
    • 1642319363 scopus 로고    scopus 로고
    • Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
    • T.B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, and C.A. van Blitterswijk Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique Biomaterials 25 2004 4149 4161
    • (2004) Biomaterials , vol.25 , pp. 4149-4161
    • Woodfield, T.B.F.1    Malda, J.2    De Wijn, J.3    Péters, F.4    Riesle, J.5    Van Blitterswijk, C.A.6
  • 52
    • 27644568924 scopus 로고    scopus 로고
    • 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties
    • L. Moroni, J.R. de Wijn, and C.A. van Blitterswijk 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties Biomaterials 27 2006 974 985
    • (2006) Biomaterials , vol.27 , pp. 974-985
    • Moroni, L.1    De Wijn, J.R.2    Van Blitterswijk, C.A.3
  • 53
    • 0035094757 scopus 로고    scopus 로고
    • Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
    • D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, and K.C. Tan Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling J Biomed Mater Res 55 2001 203 216
    • (2001) J Biomed Mater Res , vol.55 , pp. 203-216
    • Hutmacher, D.W.1    Schantz, T.2    Zein, I.3    Ng, K.W.4    Teoh, S.H.5    Tan, K.C.6
  • 55
    • 84861575621 scopus 로고    scopus 로고
    • Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering
    • J.S. Lee, H.D. Cha, J.H. Shim, J.W. Jung, J.Y. Kim, and D.W. Cho Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering J Biomed Mater Res A 100 2012 1846 1853
    • (2012) J Biomed Mater Res A , vol.100 , pp. 1846-1853
    • Lee, J.S.1    Cha, H.D.2    Shim, J.H.3    Jung, J.W.4    Kim, J.Y.5    Cho, D.W.6
  • 56
    • 84863906559 scopus 로고    scopus 로고
    • A new hybrid scaffold constructed of solid freeform-fabricated PCL struts and collagen struts for bone tissue regeneration: Fabrication, mechanical properties, and cellular activity
    • S. Ahn, Y. Kim, H. Lee, and G. Kim A new hybrid scaffold constructed of solid freeform-fabricated PCL struts and collagen struts for bone tissue regeneration: fabrication, mechanical properties, and cellular activity J Mater Chem 22 2012 15901 15909
    • (2012) J Mater Chem , vol.22 , pp. 15901-15909
    • Ahn, S.1    Kim, Y.2    Lee, H.3    Kim, G.4
  • 58
    • 0041325135 scopus 로고    scopus 로고
    • Repair of calvarial defects with customised tissue-engineered bone grafts - II. Evaluation of cellular efficiency and efficacy in vivo
    • J.-T. Schantz, D.W. Hutmacher, C.X.F. Lam, M. Brinkmann, K.M. Wong, and T.C. Lim et al. Repair of calvarial defects with customised tissue-engineered bone grafts - II. Evaluation of cellular efficiency and efficacy in vivo Tissue Eng 9 2003 127 139
    • (2003) Tissue Eng , vol.9 , pp. 127-139
    • Schantz, J.-T.1    Hutmacher, D.W.2    Lam, C.X.F.3    Brinkmann, M.4    Wong, K.M.5    Lim, T.C.6
  • 59
    • 77956761652 scopus 로고    scopus 로고
    • Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
    • L. Shor Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering Biofabrication 1 2009 015003
    • (2009) Biofabrication , vol.1 , pp. 015003
    • Shor, L.1
  • 60
    • 60849085973 scopus 로고    scopus 로고
    • The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2
    • A.A. Sawyer, S.J. Song, E. Susanto, P. Chuan, C.X.F. Lam, and M.A. Woodruff et al. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2 Biomaterials 30 2009 2479 2488
    • (2009) Biomaterials , vol.30 , pp. 2479-2488
    • Sawyer, A.A.1    Song, S.J.2    Susanto, E.3    Chuan, P.4    Lam, C.X.F.5    Woodruff, M.A.6
  • 61
    • 77955565285 scopus 로고    scopus 로고
    • J. Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study
    • C.H. Lee, J.L. Cook, A. Mendelson, E.K. Moioli, and H. Yao J Mao J. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study Lancet 376 2010 440 448
    • (2010) Lancet , vol.376 , pp. 440-448
    • Lee, C.H.1    Cook, J.L.2    Mendelson, A.3    Moioli, E.K.4    Yao, H.5    Mao, J.6
  • 62
    • 33746792330 scopus 로고    scopus 로고
    • Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model
    • X. Shao, J.C. Goh, D.W. Hutmacher, E.H. Lee, and G. Zigang Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model Tissue Eng 12 2006 1539 1551
    • (2006) Tissue Eng , vol.12 , pp. 1539-1551
    • Shao, X.1    Goh, J.C.2    Hutmacher, D.W.3    Lee, E.H.4    Zigang, G.5
  • 63
    • 67849124161 scopus 로고    scopus 로고
    • Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery
    • S.A. Abbah, C.X.F. Lam, D.W. Hutmacher, J.C. Goh, and H.K. Wong Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery Biomaterials 30 2009 5086 5093
    • (2009) Biomaterials , vol.30 , pp. 5086-5093
    • Abbah, S.A.1    Lam, C.X.F.2    Hutmacher, D.W.3    Goh, J.C.4    Wong, H.K.5
  • 64
    • 78651295388 scopus 로고    scopus 로고
    • Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology
    • J.W. Lee, G. Ahn, J.Y. Kim, and D.-W. Cho Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology J Mater Sci-Mater M 21 2010 3195 3205
    • (2010) J Mater Sci-Mater M , vol.21 , pp. 3195-3205
    • Lee, J.W.1    Ahn, G.2    Kim, J.Y.3    Cho, D.-W.4
  • 65
    • 79251617418 scopus 로고    scopus 로고
    • Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency
    • J.M. Sobral, S.G. Caridade, R.A. Sousa, J.F. Mano, and R.L. Reis Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency Acta Biomater 7 2011 1009 1018
    • (2011) Acta Biomater , vol.7 , pp. 1009-1018
    • Sobral, J.M.1    Caridade, S.G.2    Sousa, R.A.3    Mano, J.F.4    Reis, R.L.5
  • 67
    • 34250736034 scopus 로고    scopus 로고
    • Internal scaffold architecture designs using lindenmayer systems
    • B. Starly, and W. Sun Internal scaffold architecture designs using lindenmayer systems Computer-Aided Design and Applications 4 2007 395 403
    • (2007) Computer-Aided Design and Applications , vol.4 , pp. 395-403
    • Starly, B.1    Sun, W.2
  • 68
    • 68649119053 scopus 로고    scopus 로고
    • Fractal raster tool paths for layered manufacturing of porous objects
    • G.S. Kumar, P. Pandithevan, and A.R. Ambatti Fractal raster tool paths for layered manufacturing of porous objects Virtual Phys Prototyp 4 2009 91 104
    • (2009) Virtual Phys Prototyp , vol.4 , pp. 91-104
    • Kumar, G.S.1    Pandithevan, P.2    Ambatti, A.R.3
  • 69
    • 77955564217 scopus 로고    scopus 로고
    • A simple and effective geometric representation for irregular porous structure modeling
    • X.Y. Kou, and S.T. Tan A simple and effective geometric representation for irregular porous structure modeling Computer Aided Design 42 2010 930 941
    • (2010) Computer Aided Design , vol.42 , pp. 930-941
    • Kou, X.Y.1    Tan, S.T.2
  • 70
    • 79952377434 scopus 로고    scopus 로고
    • Computer-aided design and fabrication of bio-mimetic materials and scaffold micro-structures
    • Y. Chen, J. Cadman, S. Zhou, and Q. Li Computer-aided design and fabrication of bio-mimetic materials and scaffold micro-structures Adv Mater Res 213 2011 628 632
    • (2011) Adv Mater Res , vol.213 , pp. 628-632
    • Chen, Y.1    Cadman, J.2    Zhou, S.3    Li, Q.4
  • 71
    • 35348915338 scopus 로고    scopus 로고
    • Biomimetic modeling and three-dimension reconstruction of the artificial bone
    • Z. Chen, Z. Su, S. Ma, X. Wu, and Z. Luo Biomimetic modeling and three-dimension reconstruction of the artificial bone Comput meth prog bio 88 2007 123 130
    • (2007) Comput Meth Prog Bio , vol.88 , pp. 123-130
    • Chen, Z.1    Su, Z.2    Ma, S.3    Wu, X.4    Luo, Z.5
  • 72
  • 73
    • 0142059732 scopus 로고    scopus 로고
    • Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling
    • S.J. Kalita Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling Mat Sci and Eng C 23 2003 611 620
    • (2003) Mat Sci and Eng C , vol.23 , pp. 611-620
    • Kalita, S.J.1
  • 74
    • 78650325718 scopus 로고    scopus 로고
    • Engineered tissue scaffolds with variational porous architecture
    • A.K.M.B. Khoda, I.T. Ozbolat, and B. Koc Engineered tissue scaffolds with variational porous architecture J Biomech Eng 133 2011 011001
    • (2011) J Biomech Eng , vol.133 , pp. 011001
    • Khoda, A.K.M.B.1    Ozbolat, I.T.2    Koc, B.3
  • 75
    • 82055190168 scopus 로고    scopus 로고
    • A functionally gradient variational porosity architecture for hollowed scaffolds fabrication
    • A.K.M.B. Khoda, I.T. Ozbolat, and B. Koc A functionally gradient variational porosity architecture for hollowed scaffolds fabrication Biofabrication 3 2011 034106
    • (2011) Biofabrication , vol.3 , pp. 034106
    • Khoda, A.K.M.B.1    Ozbolat, I.T.2    Koc, B.3
  • 76
    • 79961084083 scopus 로고    scopus 로고
    • A Continuous multi-material toolpath planning for tissue scaffolds with hollowed features
    • I.T. Ozbolat, and B. Koc A Continuous multi-material toolpath planning for tissue scaffolds with hollowed features Computer-Aided Design & Applications 8 2011 237 247
    • (2011) Computer-Aided Design & Applications , vol.8 , pp. 237-247
    • Ozbolat, I.T.1    Koc, B.2
  • 77
    • 79959562183 scopus 로고    scopus 로고
    • Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing
    • I.T. Ozbolat, and B. Koc Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing Computer-Aided Design & Applications 8 2011 43 57
    • (2011) Computer-Aided Design & Applications , vol.8 , pp. 43-57
    • Ozbolat, I.T.1    Koc, B.2
  • 78
    • 70349675474 scopus 로고    scopus 로고
    • Personalised bone tissue engineering scaffold with controlled architecture using fractal tool paths in layered manufacturing
    • P. Pandithevan, and G. Saravana Kumar Personalised bone tissue engineering scaffold with controlled architecture using fractal tool paths in layered manufacturing Virtual Phys Prototyp 4 2009 165 180
    • (2009) Virtual Phys Prototyp , vol.4 , pp. 165-180
    • Pandithevan, P.1    Saravana Kumar, G.2
  • 80
    • 27344448900 scopus 로고    scopus 로고
    • Computer-aided tissue engineering of a human vertebral body
    • M. Wettergreen, B. Bucklen, W. Sun, and M. Liebschner Computer-aided tissue engineering of a human vertebral body Ann Biomed Eng 33 2005 1333 1343
    • (2005) Ann Biomed Eng , vol.33 , pp. 1333-1343
    • Wettergreen, M.1    Bucklen, B.2    Sun, W.3    Liebschner, M.4
  • 81
    • 79952114502 scopus 로고    scopus 로고
    • Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique
    • H. Kai, X. Wang, K.S. Madhukar, L. Qin, Y. Yan, and R. Zhang Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique Biofabrication 1 2009 025003
    • (2009) Biofabrication , vol.1 , pp. 025003
    • Kai, H.1    Wang, X.2    Madhukar, K.S.3    Qin, L.4    Yan, Y.5    Zhang, R.6
  • 82
    • 84857811511 scopus 로고    scopus 로고
    • Unit cell-based computer-aided manufacturing system for tissue engineering
    • H.W. Kang, J.H. Park, T.Y. Kang, Y.J. Seol, and D.W. Cho Unit cell-based computer-aided manufacturing system for tissue engineering Biofabrication 4 2012 015005
    • (2012) Biofabrication , vol.4 , pp. 015005
    • Kang, H.W.1    Park, J.H.2    Kang, T.Y.3    Seol, Y.J.4    Cho, D.W.5
  • 83
    • 84861221444 scopus 로고    scopus 로고
    • A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex
    • C. Vaquette, W. Fan, Y. Xiao, S. Hamlet, D.W. Hutmacher, and S. Ivanovski A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex Biomaterials 33 2012 5560 5573
    • (2012) Biomaterials , vol.33 , pp. 5560-5573
    • Vaquette, C.1    Fan, W.2    Xiao, Y.3    Hamlet, S.4    Hutmacher, D.W.5    Ivanovski, S.6
  • 84
    • 57349173536 scopus 로고    scopus 로고
    • Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds
    • L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang, and L. Jin Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds J Biomed Mater Res B 88B 2009 254 263
    • (2009) J Biomed Mater Res B , vol.88 B , pp. 254-263
    • Liu, L.1    Xiong, Z.2    Yan, Y.3    Zhang, R.4    Wang, X.5    Jin, L.6
  • 86
    • 34250791180 scopus 로고    scopus 로고
    • Stochastic modeling of tissue engineering scaffolds with varying porosity levels
    • S. Sogutlu, and B. Koc Stochastic modeling of tissue engineering scaffolds with varying porosity levels Computer-Aided Design & Applications 4 2007 661 670
    • (2007) Computer-Aided Design & Applications , vol.4 , pp. 661-670
    • Sogutlu, S.1    Koc, B.2
  • 87
    • 1442284707 scopus 로고    scopus 로고
    • Computer modeling approach for microsphere-packed bone scaffold
    • P. Lal, and W. Sun Computer modeling approach for microsphere-packed bone scaffold Comput Aided Design 36 2004 487 497
    • (2004) Comput Aided Design , vol.36 , pp. 487-497
    • Lal, P.1    Sun, W.2
  • 88
    • 4244033413 scopus 로고
    • Structure of random porous materials: Silica aerogel
    • D.W. Schaefer, and K.D. Keefer Structure of random porous materials: silica aerogel Phys Rev Lett 56 1986 2199 2202
    • (1986) Phys Rev Lett , vol.56 , pp. 2199-2202
    • Schaefer, D.W.1    Keefer, K.D.2
  • 89
    • 84856321830 scopus 로고    scopus 로고
    • Microstructural modelling of functionally graded materials using stochastic Voronoi diagram and B-Spline representations
    • X.Y. Kou, and S.T. Tan Microstructural modelling of functionally graded materials using stochastic Voronoi diagram and B-Spline representations Int J Comput Integ M 25 2011 177 188
    • (2011) Int J Comput Integ M , vol.25 , pp. 177-188
    • Kou, X.Y.1    Tan, S.T.2
  • 90
    • 56649115860 scopus 로고    scopus 로고
    • A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement
    • S. Cai, and J. Xi A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement Comput Aided Design 40 2008 1040 1050
    • (2008) Comput Aided Design , vol.40 , pp. 1040-1050
    • Cai, S.1    Xi, J.2
  • 92
    • 67349185857 scopus 로고    scopus 로고
    • Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering
    • S. Cahill, S. Lohfeld, and P.E. McHugh Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering J Mater Sci: Mater Med 20 2009 1255 1262
    • (2009) J Mater Sci: Mater Med , vol.20 , pp. 1255-1262
    • Cahill, S.1    Lohfeld, S.2    McHugh, P.E.3
  • 93
    • 67749122649 scopus 로고    scopus 로고
    • Analysis of the mechanical behavior of a titanium scaffold with a repeating unit-cell substructure
    • G. Ryan, P. McGarry, A. Pandit, and D. Apatsidis Analysis of the mechanical behavior of a titanium scaffold with a repeating unit-cell substructure J Biomed Mater Res B 90B 2009 894 906
    • (2009) J Biomed Mater Res B , vol.90 B , pp. 894-906
    • Ryan, G.1    McGarry, P.2    Pandit, A.3    Apatsidis, D.4
  • 94
    • 77952836095 scopus 로고    scopus 로고
    • Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications
    • E. Saito, H. Kang, J. Taboas, A. Diggs, C. Flanagan, and S. Hollister Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications J Mater Sci-Mater M 21 2010 2371 2383
    • (2010) J Mater Sci-Mater M , vol.21 , pp. 2371-2383
    • Saito, E.1    Kang, H.2    Taboas, J.3    Diggs, A.4    Flanagan, C.5    Hollister, S.6
  • 95
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbacha, and S.E. Feinberg et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering Biomaterials 26 2005 4817 4827
    • (2005) Biomaterials , vol.26 , pp. 4817-4827
    • Williams, J.M.1    Adewunmi, A.2    Schek, R.M.3    Flanagan, C.L.4    Krebsbacha, P.H.5    Feinberg, S.E.6
  • 96
    • 77955884686 scopus 로고    scopus 로고
    • Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering
    • S. Eshraghi, and S. Das Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering Acta Biomater 6 2010 2467 2476
    • (2010) Acta Biomater , vol.6 , pp. 2467-2476
    • Eshraghi, S.1    Das, S.2
  • 97
    • 84863214443 scopus 로고    scopus 로고
    • Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering
    • S. Eshraghi, and S. Das Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering Acta Biomater 8 2012 3138 3143
    • (2012) Acta Biomater , vol.8 , pp. 3138-3143
    • Eshraghi, S.1    Das, S.2
  • 98
    • 84868337548 scopus 로고    scopus 로고
    • Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores
    • S. Amirkhani, R. Bagheri, and A. Zehtab Yazdi Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores J Biomech 45 2012 2866 2875
    • (2012) J Biomech , vol.45 , pp. 2866-2875
    • Amirkhani, S.1    Bagheri, R.2    Zehtab Yazdi, A.3
  • 100
    • 70249131841 scopus 로고    scopus 로고
    • Scaffold design and manufacturing: From concept to clinic
    • S.J. Hollister Scaffold design and manufacturing: from concept to clinic Adv Mater 21 2009 3330 3342
    • (2009) Adv Mater , vol.21 , pp. 3330-3342
    • Hollister, S.J.1
  • 101
    • 84880880164 scopus 로고    scopus 로고
    • Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation
    • J. Woo Jung, H.-G. Yi, T.-Y. Kang, W.-J. Yong, S. Jin, and W.-S. Yun et al. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation J Biomech Eng 135 2013 084501
    • (2013) J Biomech Eng , vol.135 , pp. 084501
    • Woo Jung, J.1    Yi, H.-G.2    Kang, T.-Y.3    Yong, W.-J.4    Jin, S.5    Yun, W.-S.6
  • 102
    • 2442434546 scopus 로고    scopus 로고
    • The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs
    • J. Malda, T.B. Woodfield, F. Van Der Vloodt, F. Kooy, D.E. Martens, and J. Tramper et al. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs Biomaterials 25 2004 5773 5780
    • (2004) Biomaterials , vol.25 , pp. 5773-5780
    • Malda, J.1    Woodfield, T.B.2    Van Der Vloodt, F.3    Kooy, F.4    Martens, D.E.5    Tramper, J.6
  • 103
    • 78649859752 scopus 로고    scopus 로고
    • Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: A review
    • R.J. McCoy, and F.J. O'Brien Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review Tissue Engineering Part B 16 2010 587 601
    • (2010) Tissue Engineering Part B , vol.16 , pp. 587-601
    • McCoy, R.J.1    O'Brien, F.J.2
  • 104
    • 84857783703 scopus 로고    scopus 로고
    • Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study
    • S. Truscello, G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study Acta Biomater 8 2012 1648 1658
    • (2012) Acta Biomater , vol.8 , pp. 1648-1658
    • Truscello, S.1    Kerckhofs, G.2    Van Bael, S.3    Pyka, G.4    Schrooten, J.5    Van Oosterwyck, H.6
  • 105
    • 24044513265 scopus 로고    scopus 로고
    • Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation
    • H. Singh, S.-H. Teoh, H.T. Low, and D.W. Hutmacher Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation J Biotechnol 119 2005 181 196
    • (2005) J Biotechnol , vol.119 , pp. 181-196
    • Singh, H.1    Teoh, S.-H.2    Low, H.T.3    Hutmacher, D.W.4
  • 106
    • 40849112959 scopus 로고    scopus 로고
    • Computational fluid dynamics for improved bioreactor design and 3D culture
    • D.W. Hutmacher, and H. Singh Computational fluid dynamics for improved bioreactor design and 3D culture Trends Biotechnol 26 2008 166 172
    • (2008) Trends Biotechnol , vol.26 , pp. 166-172
    • Hutmacher, D.W.1    Singh, H.2
  • 107
    • 84896545583 scopus 로고    scopus 로고
    • Modeling of the flow within scaffolds in perfusion bioreactors
    • X. Yan, X. Chen, and D. Bergstrom Modeling of the flow within scaffolds in perfusion bioreactors Am J Biomed Eng 1 2011 72 77
    • (2011) Am J Biomed Eng , vol.1 , pp. 72-77
    • Yan, X.1    Chen, X.2    Bergstrom, D.3
  • 108
    • 80053283475 scopus 로고    scopus 로고
    • The influence of pore structure on internal flow field shear stress within scaffold
    • Y. Yao, W.D. Chen, and W.Y. Jin The influence of pore structure on internal flow field shear stress within scaffold Adv Mat Res 308 2011 771 775
    • (2011) Adv Mat Res , vol.308 , pp. 771-775
    • Yao, Y.1    Chen, W.D.2    Jin, W.Y.3
  • 109
    • 79951576277 scopus 로고    scopus 로고
    • The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding
    • F.P.W. Melchels, B. Tonnarelli, A.L. Olivares, I. Martin, D. Lacroix, and J. Feijen et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding Biomaterials 32 2011 2878 2884
    • (2011) Biomaterials , vol.32 , pp. 2878-2884
    • Melchels, F.P.W.1    Tonnarelli, B.2    Olivares, A.L.3    Martin, I.4    Lacroix, D.5    Feijen, J.6
  • 111
    • 1842419423 scopus 로고    scopus 로고
    • A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity
    • C.Y. Lin A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity J Biomech 37 2004 623 636
    • (2004) J Biomech , vol.37 , pp. 623-636
    • Lin, C.Y.1
  • 112
    • 78649842390 scopus 로고    scopus 로고
    • Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication
    • V.J. Challis, A.P. Roberts, J.F. Grotowski, L.-C. Zhang, and T.B. Sercombe Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication Adv Eng Mater 12 2010 1106 1110
    • (2010) Adv Eng Mater , vol.12 , pp. 1106-1110
    • Challis, V.J.1    Roberts, A.P.2    Grotowski, J.F.3    Zhang, L.-C.4    Sercombe, T.B.5
  • 113
    • 77955276092 scopus 로고    scopus 로고
    • Virtual topological optimisation of scaffolds for rapid prototyping
    • H.D. Almeida, and P.J.D.S. Bártolo Virtual topological optimisation of scaffolds for rapid prototyping Med Eng Phys 32 2010 775 782
    • (2010) Med Eng Phys , vol.32 , pp. 775-782
    • Almeida, H.D.1    Bártolo, P.J.D.S.2
  • 114
    • 84862154611 scopus 로고    scopus 로고
    • Load-adaptive scaffold architecturing: A bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties
    • A. Rainer, S.M. Giannitelli, D. Accoto, S. De Porcellinis, E. Guglielmelli, and M. Trombetta Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties Ann Biomed Eng 40 2012 966 975
    • (2012) Ann Biomed Eng , vol.40 , pp. 966-975
    • Rainer, A.1    Giannitelli, S.M.2    Accoto, D.3    De Porcellinis, S.4    Guglielmelli, E.5    Trombetta, M.6
  • 115
    • 52649150222 scopus 로고    scopus 로고
    • Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: Accelerated versus simulated physiological conditions
    • C.X.F. Lam, M.M. Savalani, S.H. Teoh, and D.W. Hutmacher Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions Biomed Mater 3 2008 034108
    • (2008) Biomed Mater , vol.3 , pp. 034108
    • Lam, C.X.F.1    Savalani, M.M.2    Teoh, S.H.3    Hutmacher, D.W.4
  • 116
    • 84861625759 scopus 로고    scopus 로고
    • Strut size and surface area effects on long-term in vivo degradation in computer designed poly(l-lactic acid) three-dimensional porous scaffolds
    • E. Saito, Y. Liu, F. Migneco, and S.J. Hollister Strut size and surface area effects on long-term in vivo degradation in computer designed poly(l-lactic acid) three-dimensional porous scaffolds Acta Biomater 8 2012 2568 2577
    • (2012) Acta Biomater , vol.8 , pp. 2568-2577
    • Saito, E.1    Liu, Y.2    Migneco, F.3    Hollister, S.J.4
  • 118
    • 33646017698 scopus 로고    scopus 로고
    • Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration
    • T. Adachi Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration Biomaterials 27 2006 3964 3972
    • (2006) Biomaterials , vol.27 , pp. 3964-3972
    • Adachi, T.1
  • 120
    • 35348975035 scopus 로고    scopus 로고
    • Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: Application of mechanobiological models in tissue engineering
    • D.P. Byrne, D. Lacroix, J.A. Planell, D.J. Kelly, and P.J. Prendergast Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering Biomaterials 28 2007 5544 5554
    • (2007) Biomaterials , vol.28 , pp. 5544-5554
    • Byrne, D.P.1    Lacroix, D.2    Planell, J.A.3    Kelly, D.J.4    Prendergast, P.J.5
  • 121
    • 57349105663 scopus 로고    scopus 로고
    • A mechanobiological model for tissue differentiation that includes angiogenesis: A lattice-based modeling approach
    • S. Checa, and P. Prendergast A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach Ann Biomed Eng 37 2009 129 145
    • (2009) Ann Biomed Eng , vol.37 , pp. 129-145
    • Checa, S.1    Prendergast, P.2
  • 122
    • 79956106147 scopus 로고    scopus 로고
    • Microstructure design of biodegradable scaffold and its effect on tissue regeneration
    • Y. Chen, S. Zhou, and Q. Li Microstructure design of biodegradable scaffold and its effect on tissue regeneration Biomaterials 32 2011 5003 5014
    • (2011) Biomaterials , vol.32 , pp. 5003-5014
    • Chen, Y.1    Zhou, S.2    Li, Q.3
  • 124
    • 12344282814 scopus 로고    scopus 로고
    • Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing
    • T.S. Karande, J.L. Ong, and C.M. Agrawal Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing Ann Biomed Eng 32 2004 1728 1743
    • (2004) Ann Biomed Eng , vol.32 , pp. 1728-1743
    • Karande, T.S.1    Ong, J.L.2    Agrawal, C.M.3
  • 126
  • 127
    • 33847354673 scopus 로고    scopus 로고
    • Investigation of fibroblast and keratinocyte cell-scaffold interactions using a novel 3D cell culture system
    • T. Sun, D. Norton, A. Ryan, S. MacNeil, and J. Haycock Investigation of fibroblast and keratinocyte cell-scaffold interactions using a novel 3D cell culture system J Mater Sci Mater Med 18 2007 321 328
    • (2007) J Mater Sci Mater Med , vol.18 , pp. 321-328
    • Sun, T.1    Norton, D.2    Ryan, A.3    MacNeil, S.4    Haycock, J.5
  • 128
    • 55049135569 scopus 로고    scopus 로고
    • Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination
    • G. Forte, F. Carotenuto, F. Pagliari, S. Pagliari, P. Cossa, and R. Fiaccavento et al. Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination Stem Cells 26 2008 2093 2103
    • (2008) Stem Cells , vol.26 , pp. 2093-2103
    • Forte, G.1    Carotenuto, F.2    Pagliari, F.3    Pagliari, S.4    Cossa, P.5    Fiaccavento, R.6
  • 129
    • 77957309354 scopus 로고    scopus 로고
    • Stereolithographic bone scaffold design parameters: Osteogenic differentiation and signal expression
    • K. Kim, A. Yeatts, D. Dean, and J.P. Fisher Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression Tissue Eng 16 2010 523 539
    • (2010) Tissue Eng , vol.16 , pp. 523-539
    • Kim, K.1    Yeatts, A.2    Dean, D.3    Fisher, J.P.4
  • 130
    • 0036498046 scopus 로고    scopus 로고
    • Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures
    • T.-M.G. Chu, D.G. Orton, S.J. Hollister, S.E. Feinberg, and J.W. Halloran Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures Biomaterials 23 2002 1283 1293
    • (2002) Biomaterials , vol.23 , pp. 1283-1293
    • Chu, T.-M.G.1    Orton, D.G.2    Hollister, S.J.3    Feinberg, S.E.4    Halloran, J.W.5
  • 132
    • 67649433434 scopus 로고    scopus 로고
    • Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine
    • S. Sundelacruz, and D.L. Kaplan Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine Semin Cell Dev Biol 20 2009 646 655
    • (2009) Semin Cell Dev Biol , vol.20 , pp. 646-655
    • Sundelacruz, S.1    Kaplan, D.L.2
  • 134
    • 44949166671 scopus 로고    scopus 로고
    • Three-dimensional cell culture matrices: State of the art
    • J. Lee, M.J. Cuddihy, and N.A. Kotov Three-dimensional cell culture matrices: state of the art Tissue Eng 14 2008 61 86
    • (2008) Tissue Eng , vol.14 , pp. 61-86
    • Lee, J.1    Cuddihy, M.J.2    Kotov, N.A.3
  • 135
    • 33644612205 scopus 로고    scopus 로고
    • Cranioplasty after trephination using a novel biodegradable burr hole cover: Technical case report
    • ONS-E176
    • J.-T. Schantz, T.-C. Lim, C. Ning, S.H. Teoh, K.C. Tan, and S.C. Wang et al. Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report Neurosurgery 58 2006 ONS-E176
    • (2006) Neurosurgery , vol.58
    • Schantz, J.-T.1    Lim, T.-C.2    Ning, C.3    Teoh, S.H.4    Tan, K.C.5    Wang, S.C.6
  • 136
    • 34548260849 scopus 로고    scopus 로고
    • Concepts of scaffold-based tissue engineering - The rationale to use solid free-form fabrication techniques
    • D.W. Hutmacher, and S. Cool Concepts of scaffold-based tissue engineering - the rationale to use solid free-form fabrication techniques J Cell Mol Med 11 2007 654 669
    • (2007) J Cell Mol Med , vol.11 , pp. 654-669
    • Hutmacher, D.W.1    Cool, S.2
  • 138
    • 79957713859 scopus 로고    scopus 로고
    • Vascularization is the key challenge in tissue engineering
    • E.C. Novosel, C. Kleinhans, and P.J. Kluger Vascularization is the key challenge in tissue engineering Adv Drug Deliver Rev 63 2011 300 311
    • (2011) Adv Drug Deliver Rev , vol.63 , pp. 300-311
    • Novosel, E.C.1    Kleinhans, C.2    Kluger, P.J.3
  • 139
    • 82055196936 scopus 로고    scopus 로고
    • Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network
    • T. Niino, D. Hamajima, K. Montagne, S. Oizumi, H. Naruke, and H. Huang et al. Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network Biofabrication 3 2011 034104
    • (2011) Biofabrication , vol.3 , pp. 034104
    • Niino, T.1    Hamajima, D.2    Montagne, K.3    Oizumi, S.4    Naruke, H.5    Huang, H.6
  • 140
    • 38149053069 scopus 로고    scopus 로고
    • Three-dimensional mesoporous-giantporous inorganic/organic composite scaffolds for tissue engineering
    • Yun. H-s, Kim. S-e, Hyun. Y-t, Heo. S-j, and Shin. J-w Three-dimensional mesoporous-giantporous inorganic/organic composite scaffolds for tissue engineering Chem Mater 19 2007 6363 6366
    • (2007) Chem Mater , vol.19 , pp. 6363-6366
    • Yun, H.-S.1    Kim, S.-E.2    Hyun, Y.-T.3    Heo, S.-J.4    Shin, J.-W.5
  • 142
    • 0037210053 scopus 로고    scopus 로고
    • Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds
    • J. Taboas, R. Maddox, P. Krebsbach, and S. Hollister Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds Biomaterials 24 2003 181 194
    • (2003) Biomaterials , vol.24 , pp. 181-194
    • Taboas, J.1    Maddox, R.2    Krebsbach, P.3    Hollister, S.4
  • 143
    • 77149150605 scopus 로고    scopus 로고
    • An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature
    • J. Peña, J. Román, M. Victoria Cabañas, and M. Vallet-Regí An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature Acta Biomater 6 2010 1288 1296
    • (2010) Acta Biomater , vol.6 , pp. 1288-1296
    • Peña, J.1    Román, J.2    Victoria Cabañas, M.3    Vallet-Regí, M.4
  • 144
    • 84896544298 scopus 로고    scopus 로고
    • Strategic design and fabrication of engineered scaffolds for articular cartilage repair
    • Z. Izadifar, X. Chen, and W. Kulyk Strategic design and fabrication of engineered scaffolds for articular cartilage repair J Funct Biomater 3 2012 799 838
    • (2012) J Funct Biomater , vol.3 , pp. 799-838
    • Izadifar, Z.1    Chen, X.2    Kulyk, W.3
  • 145
    • 27744606356 scopus 로고    scopus 로고
    • Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs
    • T. Woodfield, C.V. Blitterswijk, J.D. Wijn, T. Sims, A. Hollander, and J. Riesle Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs Tissue Eng 11 2005 1297 1311
    • (2005) Tissue Eng , vol.11 , pp. 1297-1311
    • Woodfield, T.1    Blitterswijk, C.V.2    Wijn, J.D.3    Sims, T.4    Hollander, A.5    Riesle, J.6
  • 146
    • 78650067789 scopus 로고    scopus 로고
    • Mechanical and biochemical assessments of three-dimensional poly (1, 8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes
    • C.G. Jeong, and S.J. Hollister Mechanical and biochemical assessments of three-dimensional poly (1, 8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes Tissue Eng 16 2010 3759 3768
    • (2010) Tissue Eng , vol.16 , pp. 3759-3768
    • Jeong, C.G.1    Hollister, S.J.2
  • 147
    • 84859430216 scopus 로고    scopus 로고
    • Tissue engineering of functional articular cartilage: The current status
    • L. Kock, C.C. van Donkelaar, and K. Ito Tissue engineering of functional articular cartilage: the current status Cell Tissue Res 347 2012 613 627
    • (2012) Cell Tissue Res , vol.347 , pp. 613-627
    • Kock, L.1    Van Donkelaar, C.C.2    Ito, K.3
  • 148
    • 0042827798 scopus 로고    scopus 로고
    • Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling
    • T. Cao, K.-H. Ho, and S.-H. Teoh Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling Tissue Eng 9 2003 103 112
    • (2003) Tissue Eng , vol.9 , pp. 103-112
    • Cao, T.1    Ho, K.-H.2    Teoh, S.-H.3
  • 149
    • 84866751885 scopus 로고    scopus 로고
    • Osteochondral tissue engineering: Scaffolds, stem cells and applications
    • P. Nooeaid, V. Salih, J.P. Beier, and A.R. Boccaccini Osteochondral tissue engineering: scaffolds, stem cells and applications J Cell Mol Med 16 2012 2247 2270
    • (2012) J Cell Mol Med , vol.16 , pp. 2247-2270
    • Nooeaid, P.1    Salih, V.2    Beier, J.P.3    Boccaccini, A.R.4
  • 150
    • 9344256687 scopus 로고    scopus 로고
    • Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds
    • R.M. Schek, J.M. Taboas, S.J. Segvich, S.J. Hollister, and P.H. Krebsbach Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds Tissue Eng 10 2004 1376 1385
    • (2004) Tissue Eng , vol.10 , pp. 1376-1385
    • Schek, R.M.1    Taboas, J.M.2    Segvich, S.J.3    Hollister, S.J.4    Krebsbach, P.H.5
  • 151
    • 84862965917 scopus 로고    scopus 로고
    • Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering
    • W. Bian, D. Li, Q. Lian, X. Li, W. Zhang, and K. Wang et al. Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering Rapid Prototyping J 18 2012 68 80
    • (2012) Rapid Prototyping J , vol.18 , pp. 68-80
    • Bian, W.1    Li, D.2    Lian, Q.3    Li, X.4    Zhang, W.5    Wang, K.6
  • 152
    • 84855396802 scopus 로고    scopus 로고
    • Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
    • N.E. Fedorovich, W. Schuurman, H.M. Wijnberg, H.-J. Prins, P.R. van Weeren, and J. Malda et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds Tissue Eng 18 2011 33 44
    • (2011) Tissue Eng , vol.18 , pp. 33-44
    • Fedorovich, N.E.1    Schuurman, W.2    Wijnberg, H.M.3    Prins, H.-J.4    Van Weeren, P.R.5    Malda, J.6
  • 154
    • 77956633477 scopus 로고    scopus 로고
    • Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering
    • W. Yeong, N. Sudarmadji, H. Yu, C. Chua, K. Leong, and S. Venkatraman et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering Acta Biomater 6 2010 2028 2034
    • (2010) Acta Biomater , vol.6 , pp. 2028-2034
    • Yeong, W.1    Sudarmadji, N.2    Yu, H.3    Chua, C.4    Leong, K.5    Venkatraman, S.6
  • 155
    • 77954812289 scopus 로고    scopus 로고
    • Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft
    • M. Centola, A. Rainer, S. De Porcellinis, J.A. Genovese, and M. Trombetta Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft Biofabrication 2 2010 014102
    • (2010) Biofabrication , vol.2 , pp. 014102
    • Centola, M.1    Rainer, A.2    De Porcellinis, S.3    Genovese, J.A.4    Trombetta, M.5
  • 156
    • 78650989142 scopus 로고    scopus 로고
    • The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs
    • H. Park, B.L. Larson, M.D. Guillemette, S.R. Jain, C. Hua, and G.C. Engelmayr Jr. The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs Biomaterials 32 2011 1856 1864
    • (2011) Biomaterials , vol.32 , pp. 1856-1864
    • Park, H.1    Larson, B.L.2    Guillemette, M.D.3    Jain, S.R.4    Hua, C.5    Engelmayr Jr., G.C.6
  • 157
    • 84866055893 scopus 로고    scopus 로고
    • Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
    • L. Hockaday, K. Kang, N. Colangelo, P. Cheung, B. Duan, and E. Malone et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds Biofabrication 4 2012 035005
    • (2012) Biofabrication , vol.4 , pp. 035005
    • Hockaday, L.1    Kang, K.2    Colangelo, N.3    Cheung, P.4    Duan, B.5    Malone, E.6
  • 158
    • 84868578023 scopus 로고    scopus 로고
    • Intelligent freeform manufacturing of complex organs
    • X. Wang Intelligent freeform manufacturing of complex organs Artif Organs 36 2012 951 961
    • (2012) Artif Organs , vol.36 , pp. 951-961
    • Wang, X.1
  • 159
    • 58249093214 scopus 로고    scopus 로고
    • Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
    • W. Lee, J.C. Debasitis, V.K. Lee, J.-H. Lee, K. Fischer, and K. Edminster et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication Biomaterials 30 2009 1587 1595
    • (2009) Biomaterials , vol.30 , pp. 1587-1595
    • Lee, W.1    Debasitis, J.C.2    Lee, V.K.3    Lee, J.-H.4    Fischer, K.5    Edminster, K.6
  • 160
    • 84875943184 scopus 로고    scopus 로고
    • Advanced biofabrication strategies for skin regeneration and repair
    • R.F. Pereira, C.C. Barrias, P.L. Granja, and P.J.S. Bartolo Advanced biofabrication strategies for skin regeneration and repair Nanomedicine 8 2013 603 621
    • (2013) Nanomedicine , vol.8 , pp. 603-621
    • Pereira, R.F.1    Barrias, C.C.2    Granja, P.L.3    Bartolo, P.J.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.