-
1
-
-
0042626183
-
Clinical applications of recombinant human BMPs: Early experience and future development
-
Einhorn TA. Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg Am 2003;85(Supp 3):82-8.
-
(2003)
J. Bone Joint Surg. Am.
, vol.85
, Issue.3 SUPPL.
, pp. 82-88
-
-
Einhorn, T.A.1
-
2
-
-
0033649024
-
Tissue engineering
-
Langer R. Tissue engineering. Mol Ther 2000;1(1):12-5.
-
(2000)
Mol. Ther.
, vol.1
, Issue.1
, pp. 12-15
-
-
Langer, R.1
-
3
-
-
0035187077
-
Bone-graft substitutes: Facts, fictions, and applications
-
2
-
Greenwald AS, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001;83(2-suppl-2): S98-103.
-
(2001)
J. Bone Joint Surg. Am.
, vol.83
, Issue.2 SUPPL.
-
-
Greenwald, A.S.1
-
4
-
-
0033302004
-
Tissue engineering: Orthopedic applications
-
Laurencin CT et al. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 2003;1(1):19-46.
-
(2003)
Annu. Rev. Biomed. Eng.
, vol.1
, Issue.1
, pp. 19-46
-
-
Laurencin, C.T.1
-
5
-
-
0027595948
-
Tissue engineering
-
Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-26.
-
(1993)
Science
, vol.260
, Issue.5110
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
6
-
-
18244366662
-
Tissue engineering-current challenges and expanding opportunities
-
Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science 2002;295(5557):1009-14.
-
(2002)
Science
, vol.295
, Issue.5557
, pp. 1009-1014
-
-
Griffith, L.G.1
Naughton, G.2
-
7
-
-
0035671158
-
The design of scaffolds for use in tissue engineering. Part I. Traditional factors
-
Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001;7(6):679-89.
-
(2001)
Tissue Eng.
, vol.7
, Issue.6
, pp. 679-689
-
-
Yang, S.1
Leong, K.F.2
Du, Z.3
Chua, C.K.4
-
8
-
-
0027909871
-
Prevascularization of porous biodegradable polymers
-
Mikos AG et al. Prevascularization of porous biodegradable polymers. Biotechnol Bioeng 1993;42(6):716-23.
-
(1993)
Biotechnol. Bioeng.
, vol.42
, Issue.6
, pp. 716-723
-
-
Mikos, A.G.1
-
9
-
-
0031868140
-
The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects
-
Bruder SP et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80(7):985-96.
-
(1998)
J. Bone Joint Surg. Am.
, vol.80
, Issue.7
, pp. 985-996
-
-
Bruder, S.P.1
-
10
-
-
0034116509
-
Osteoconduction at porous hydroxyapatite with various pore configurations
-
Chang B-S et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000;21(12):1291-8.
-
(2000)
Biomaterials
, vol.21
, Issue.12
, pp. 1291-1298
-
-
Chang, B.-S.1
-
11
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474-91.
-
(2005)
Biomaterials
, vol.26
, Issue.27
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
12
-
-
70449088920
-
The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering
-
Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010;31(3):461-6.
-
(2010)
Biomaterials
, vol.31
, Issue.3
, pp. 461-466
-
-
Murphy, C.M.1
Haugh, M.G.2
O'Brien, F.J.3
-
13
-
-
33846188184
-
In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
-
Oh SH et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007;28(9):1664-71.
-
(2007)
Biomaterials
, vol.28
, Issue.9
, pp. 1664-1671
-
-
Oh, S.H.1
-
14
-
-
0034765279
-
Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition
-
Zeltinger J et al. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 2004;7(5):557-72.
-
(2004)
Tissue Eng.
, vol.7
, Issue.5
, pp. 557-572
-
-
Zeltinger, J.1
-
15
-
-
0032704301
-
Effect of osteoblastic culture conditions on the structure of poly (DL-lactic-co-glycolic acid) foam scaffolds
-
Goldstein AS et al. Effect of osteoblastic culture conditions on the structure of poly (DL-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 1999;5(5):421-33.
-
(1999)
Tissue Eng.
, vol.5
, Issue.5
, pp. 421-433
-
-
Goldstein, A.S.1
-
16
-
-
0028398896
-
Preparation and characterization of poly (L-lactic acid) foams
-
Mikos AG et al. Preparation and characterization of poly (L-lactic acid) foams. Polymer 1994;35(5):1068-77.
-
(1994)
Polymer.
, vol.35
, Issue.5
, pp. 1068-1077
-
-
Mikos, A.G.1
-
17
-
-
0000432879
-
Biodegradable polymer scaffolds to regenerate organs
-
Thomson R et al. Biodegradable polymer scaffolds to regenerate organs. Biopolymers II 1995:245-74.
-
(1995)
Biopolymers II
, pp. 245-274
-
-
Thomson, R.1
-
18
-
-
0034672872
-
Scaffolds in tissue engineering bone and cartilage
-
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21(24):2529-43.
-
(2000)
Biomaterials
, vol.21
, Issue.24
, pp. 2529-2543
-
-
Hutmacher, D.W.1
-
19
-
-
0035054981
-
Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives
-
Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives. J Biomater Sci Polym Ed 2001;12:107-24.
-
(2001)
J. Biomater. Sci. Polym. Ed.
, vol.12
, pp. 107-124
-
-
Hutmacher, D.W.1
-
20
-
-
0036191695
-
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002;8(1):1-11.
-
(2002)
Tissue Eng.
, vol.8
, Issue.1
, pp. 1-11
-
-
Yang, S.1
Leong, K.F.2
Du, Z.3
Chua, C.K.4
-
21
-
-
3242700527
-
Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds
-
Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;5:29-40.
-
(2003)
Eur. Cell. Mater.
, vol.5
, pp. 29-40
-
-
Sachlos, E.1
Czernuszka, J.T.2
-
22
-
-
3042782581
-
Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
-
Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004;22(7):354-62.
-
(2004)
Trends Biotechnol.
, vol.22
, Issue.7
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
23
-
-
1042288112
-
Computer-aided tissue engineering: Overview, scope and challenges
-
Sun W et al. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 2004;39(Pt 1):29-47.
-
(2004)
Biotechnol. Appl. Biochem.
, vol.39
, Issue.1 PART
, pp. 29-47
-
-
Sun, W.1
-
24
-
-
1042265021
-
Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds
-
Sun W et al. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem 2004;39(Pt 1):49-58.
-
(2004)
Biotechnol. Appl. Biochem.
, vol.39
, Issue.1 PART
, pp. 49-58
-
-
Sun, W.1
-
25
-
-
33845900678
-
Design and preparation of polymeric scaffolds for tissue engineering
-
Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Dev 2006;3(6):835-51.
-
(2006)
Expert Rev. Med. Dev.
, vol.3
, Issue.6
, pp. 835-851
-
-
Weigel, T.1
Schinkel, G.2
Lendlein, A.3
-
26
-
-
34250380895
-
3D polymer scaffolds for tissue engineering
-
Seunarine K et al. 3D polymer scaffolds for tissue engineering. Nanomedicine 2006;1:281-96.
-
(2006)
Nanomedicine
, vol.1
, pp. 281-296
-
-
Seunarine, K.1
-
27
-
-
4544273208
-
Bone tissue engineering: State of the art and future trends
-
Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004;4(8):743-65.
-
(2004)
Macromol. Biosci.
, vol.4
, Issue.8
, pp. 743-765
-
-
Salgado, A.J.1
Coutinho, O.P.2
Reis, R.L.3
-
29
-
-
0037409864
-
Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
-
Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003;24(13):2363-78.
-
(2003)
Biomaterials
, vol.24
, Issue.13
, pp. 2363-2378
-
-
Leong, K.F.1
Cheah, C.M.2
Chua, C.K.3
-
30
-
-
77956744098
-
Selective laser sintering
-
Austin: University of Texas at Austin
-
Deckard CR. Selective laser sintering. Mechanical Engineering. Austin: University of Texas at Austin; 1988.
-
(1988)
Mechanical Engineering
-
-
Deckard, C.R.1
-
31
-
-
21844470989
-
Customization of load-bearing hydroxyapatite lattice scaffolds
-
Cesarano III J, et al. Customization of load-bearing hydroxyapatite lattice scaffolds. Int J Appl Ceram Technol 2005;2(3):212-20.
-
(2005)
Int. J. Appl. Ceram. Technol.
, vol.2
, Issue.3
, pp. 212-220
-
-
Cesarano III, J.1
-
32
-
-
36849026726
-
Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics
-
Dyson JA et al. Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics. Tissue Eng 2007;13(12):2891-901.
-
(2007)
Tissue Eng.
, vol.13
, Issue.12
, pp. 2891-2901
-
-
Dyson, J.A.1
-
33
-
-
33846316782
-
Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques
-
Jiankang H, et al. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng H: J Eng Med 2006;220(8):823-30.
-
(2006)
Proc. Inst. Mech. Eng. H: J. Eng. Med.
, vol.220
, Issue.8
, pp. 823-830
-
-
Jiankang, H.1
-
34
-
-
85056040300
-
Finite element analysis of meniscal anatomical 3D scaffolds: Implications for tissue engineering
-
Moroni L et al. Finite element analysis of meniscal anatomical 3D scaffolds: implications for tissue engineering. Open Biomed Eng J 2007;1:23-34.
-
(2007)
Open Biomed. Eng. J.
, vol.1
, pp. 23-34
-
-
Moroni, L.1
-
35
-
-
38849145032
-
Laser technologies for fabricating individual implants and matrices for tissue engineering
-
Popov VK, et al. Laser technologies for fabricating individual implants and matrices for tissue engineering. J Opt Technol 2007;74(9):636-40.
-
(2007)
J. Opt. Technol.
, vol.74
, Issue.9
, pp. 636-640
-
-
Popov, V.K.1
-
36
-
-
72849133031
-
Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology
-
Saijo H et al. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs 2009;12(3):200-5.
-
(2009)
J. Artif Organs
, vol.12
, Issue.3
, pp. 200-205
-
-
Saijo, H.1
-
37
-
-
45749091695
-
Selective laser sintering technology for customized fabrication of facial prostheses
-
Wu G et al. Selective laser sintering technology for customized fabrication of facial prostheses. J Prosth Dent 2008;100(1):56-60.
-
(2008)
J. Prosth Dent.
, vol.100
, Issue.1
, pp. 56-60
-
-
Wu, G.1
-
38
-
-
0037246412
-
Freeform fabrication of Nylon-6 tissue engineering scaffolds
-
Das S et al. Freeform fabrication of Nylon-6 tissue engineering scaffolds. Rapid Prototyping J 2004;9(1):43-9.
-
(2004)
Rapid Prototyping J.
, vol.9
, Issue.1
, pp. 43-49
-
-
Das, S.1
-
39
-
-
0030982950
-
Preliminary experience with medical applications of rapid prototyping by selective laser sintering
-
Berry E et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys 1997;19(1):90-6.
-
(1997)
Med. Eng. Phys.
, vol.19
, Issue.1
, pp. 90-96
-
-
Berry, E.1
-
40
-
-
0033858122
-
Selective laser sintering of ultra high molecular weight polyethylene for clinical applications
-
Rimell JT, Marquis PM. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res 2000;53(4):414-20.
-
(2000)
J. Biomed. Mater. Res.
, vol.53
, Issue.4
, pp. 414-420
-
-
Rimell, J.T.1
Marquis, P.M.2
-
41
-
-
0035531715
-
The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions
-
Shishkovsky I et al. The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions. Tech Phys Lett 2001;27(3):211-3.
-
(2001)
Tech. Phys. Lett.
, vol.27
, Issue.3
, pp. 211-213
-
-
Shishkovsky, I.1
-
42
-
-
20544435460
-
Fabrication and characterization of three-dimensional poly (etherether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering
-
Tan K, et al. Fabrication and characterization of three-dimensional poly (etherether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng H: J Eng in Med 2005;219(3):183-94.
-
(2005)
Proc. Inst. Mech. Eng. H: J. Eng. in Med.
, vol.219
, Issue.3
, pp. 183-194
-
-
Tan, K.1
-
43
-
-
0041670837
-
Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
-
Tan KH et al. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 2003;24(18):3115-23.
-
(2003)
Biomaterials
, vol.24
, Issue.18
, pp. 3115-3123
-
-
Tan, K.H.1
-
44
-
-
0036045098
-
Characterization of microfeatures in selective laser sintered drug delivery devices
-
Cheah C, et al. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H: J Eng in Med 2002;216(6):369-83.
-
(2002)
Proc. Inst. Mech. Eng. H: J. Eng. in Med.
, vol.216
, Issue.6
, pp. 369-383
-
-
Cheah, C.1
-
45
-
-
0035231313
-
Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique
-
Leong K, et al. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H: J Eng in Med 2001;215(2):191-2.
-
(2001)
Proc. Inst. Mech. Eng. H: J. Eng. in Med.
, vol.215
, Issue.2
, pp. 191-192
-
-
Leong, K.1
-
46
-
-
0035162824
-
Characterization of SLS parts for drug delivery devices
-
Low KH et al. Characterization of SLS parts for drug delivery devices. Rapid Prototyping J 2001;7(5):262-7.
-
(2001)
Rapid Prototyping J.
, vol.7
, Issue.5
, pp. 262-267
-
-
Low, K.H.1
-
47
-
-
21444443609
-
Selective laser sintering of biocompatible polymers for applications in tissue engineering
-
Tan KH et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 2005;15(1):113-24.
-
(2005)
Biomed. Mater. Eng.
, vol.15
, Issue.1
, pp. 113-124
-
-
Tan, K.H.1
-
48
-
-
8544236267
-
Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects
-
Chua CK et al. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 2004;15(10):1113-21.
-
(2004)
J. Mater. Sci. Mater. Med.
, vol.15
, Issue.10
, pp. 1113-1121
-
-
Chua, C.K.1
-
49
-
-
33751346057
-
Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
-
Wiria FE et al. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 2007;3(1):1-12.
-
(2007)
Acta Biomater.
, vol.3
, Issue.1
, pp. 1-12
-
-
Wiria, F.E.1
-
50
-
-
67649854933
-
The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds
-
Zhang H, Lin C-Y, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 2009;30(25):4063-9.
-
(2009)
Biomaterials
, vol.30
, Issue.25
, pp. 4063-4069
-
-
Zhang, H.1
Lin, C.-Y.2
Hollister, S.J.3
-
51
-
-
67349185857
-
Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering
-
Cahill S, Lohfeld S, McHugh P. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J Mater Sci Mater Med 2009;20(6):1255-62.
-
(2009)
J. Mater. Sci. Mater. Med.
, vol.20
, Issue.6
, pp. 1255-1262
-
-
Cahill, S.1
Lohfeld, S.2
McHugh, P.3
-
52
-
-
22944455217
-
Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications
-
Ciardelli G et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 2005;6(4):1961-76.
-
(2005)
Biomacromolecules
, vol.6
, Issue.4
, pp. 1961-1976
-
-
Ciardelli, G.1
-
53
-
-
34447253581
-
Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a threedimensional interconnected flow-channel network
-
Huang H et al. Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a threedimensional interconnected flow-channel network. Biomaterials 2007;28(26):3815-23.
-
(2007)
Biomaterials
, vol.28
, Issue.26
, pp. 3815-3823
-
-
Huang, H.1
-
54
-
-
67349272081
-
Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds
-
Kanczler JM et al. Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 2009;5(6):2063-71.
-
(2009)
Acta Biomater.
, vol.5
, Issue.6
, pp. 2063-2071
-
-
Kanczler, J.M.1
-
55
-
-
38049171112
-
The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering
-
Lin L et al. The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering. Life Syst Model Simul 2007:146-52.
-
(2007)
Life Syst. Model Simul
, pp. 146-152
-
-
Lin, L.1
-
56
-
-
85030584540
-
Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds
-
in press
-
Eosoly S, et al. Selective laser sintering of hydroxyapatite/poly-ε- caprolactone scaffolds. Acta Biomater, in press.
-
Acta Biomater.
-
-
Eosoly, S.1
-
57
-
-
14844322862
-
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
-
Williams JM et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005;26(23):4817-27.
-
(2005)
Biomaterials
, vol.26
, Issue.23
, pp. 4817-4827
-
-
Williams, J.M.1
-
60
-
-
0019633006
-
Aliphatic polyesters. I. The degradation of poly (ε-caprolactone) in vivo
-
Pitt CG et al. Aliphatic polyesters. I. The degradation of poly (ε-caprolactone) in vivo. J Appl Polym Sci 1981;26:3779-87.
-
(1981)
J. Appl. Polym. Sci.
, vol.26
, pp. 3779-3787
-
-
Pitt, C.G.1
-
61
-
-
0019802018
-
Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (e-caprolactone), and their copolymers in vivo
-
Pitt CG, et al. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (e-caprolactone), and their copolymers in vivo. Biomaterials 1981;2(4):215-20.
-
(1981)
Biomaterials
, vol.2
, Issue.4
, pp. 215-220
-
-
Pitt, C.G.1
-
62
-
-
0019610972
-
Lactic acid polymers: Strong, degradable thermoplastics
-
Wehrenberg RH. Lactic acid polymers: strong, degradable thermoplastics. Mater Eng 1981;94(3):63-6.
-
(1981)
Mater. Eng.
, vol.94
, Issue.3
, pp. 63-66
-
-
Wehrenberg, R.H.1
-
63
-
-
2742559360
-
Synthesis and evaluation of biodegradable block copolymers of e-caprolactone and D, L-lactide
-
Feng X, Song C, Chen W. Synthesis and evaluation of biodegradable block copolymers of e-caprolactone and D, L-lactide. J Polym Sci Polym Lett 1983;21(8):593-600.
-
(1983)
J. Polym. Sci. Polym. Lett.
, vol.21
, Issue.8
, pp. 593-600
-
-
Feng, X.1
Song, C.2
Chen, W.3
-
64
-
-
0026059172
-
Physico-mechanical properties of degradable polymers used in medical applications: A comparative study
-
Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 1991;12(3):292-304.
-
(1991)
Biomaterials
, vol.12
, Issue.3
, pp. 292-304
-
-
Engelberg, I.1
Kohn, J.2
-
65
-
-
0028824292
-
Physico-mechanical properties of poly (ε-caprolactone) for the construction of rumino-reticulum devices for grazing animals
-
Vandamme TF, Legras R. Physico-mechanical properties of poly (ε-caprolactone) for the construction of rumino-reticulum devices for grazing animals. Biomaterials 1995;16(18):1395-400.
-
(1995)
Biomaterials
, vol.16
, Issue.18
, pp. 1395-1400
-
-
Vandamme, T.F.1
Legras, R.2
-
66
-
-
1442308711
-
Evaluation of the thermal and mechanical properties of poly (ε-caprolactone), low-density polyethylene, and their blends
-
Rosa DS et al. Evaluation of the thermal and mechanical properties of poly (ε-caprolactone), low-density polyethylene, and their blends. J Appl Polym Sci. 2004;91(6):3909-14.
-
(2004)
J. Appl. Polym. Sci.
, vol.91
, Issue.6
, pp. 3909-3914
-
-
Rosa, D.S.1
-
67
-
-
23444456131
-
Properties of melt processed chitosan and aliphatic polyester blends
-
Correlo VM et al. Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng A 2005;403:57-68.
-
(2005)
Mater. Sci. Eng. A
, vol.403
, pp. 57-68
-
-
Correlo, V.M.1
-
68
-
-
55849118074
-
Structure and mechanical properties of blends of poly (ε-caprolactone) with a poly (amino ether)
-
Granado A, Eguiazábal JI, Nazábal J. Structure and mechanical properties of blends of poly (ε-caprolactone) with a poly (amino ether). J Appl Polym Sci 2008;109(6):3892-9.
-
(2008)
J. Appl. Polym. Sci.
, vol.109
, Issue.6
, pp. 3892-3899
-
-
Granado, A.1
Eguiazábal, J.I.2
Nazábal, J.3
-
69
-
-
0037082740
-
Fused deposition modeling of novel scaffold architectures for tissue engineering applications
-
Zein I et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23(4):1169-85.
-
(2002)
Biomaterials
, vol.23
, Issue.4
, pp. 1169-1185
-
-
Zein, I.1
-
70
-
-
78650261355
-
Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using multi-head deposition system
-
Kim J et al. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using multi-head deposition system. Biofabrication 2009;1(1):5002.
-
(2009)
Biofabrication
, vol.1
, Issue.1
, pp. 5002
-
-
Kim, J.1
-
71
-
-
0023515099
-
The mechanical properties of trabecular bone: Dependence on anatomic location and function
-
Goldstein SA. The mechanical properties of trabecular bone: Dependence on anatomic location and function. J Biomech 1987;20(11-12): 1055-61.
-
(1987)
J. Biomech.
, vol.20
, Issue.11-12
, pp. 1055-1061
-
-
Goldstein, S.A.1
-
72
-
-
0028416797
-
The relationship between the structural and orthogonal compressive properties of trabecular bone
-
379-89
-
Goulet RW, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 1994;27(4):375-77, 379-89.
-
(1994)
J. Biomech.
, vol.27
, Issue.4
, pp. 375-377
-
-
Goulet, R.W.1
-
73
-
-
0024206469
-
Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography
-
Lang S et al. Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography. J Bone Joint Surg Am 1988;70(10):1531-8.
-
(1988)
J. Bone Joint Surg. Am.
, vol.70
, Issue.10
, pp. 1531-1538
-
-
Lang, S.1
-
74
-
-
0025012729
-
Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study
-
Lotz JC, Gerhart TN, Hayes WC. Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 1990;14(1):107-14.
-
(1990)
J. Comput. Assist. Tomogr.
, vol.14
, Issue.1
, pp. 107-114
-
-
Lotz, J.C.1
Gerhart, T.N.2
Hayes, W.C.3
-
76
-
-
0031252236
-
Biomechanical characteristics of human trabecular bone
-
Ouyang J et al. Biomechanical characteristics of human trabecular bone. Clin Biomech 1997;12(7-8): 522-4.
-
(1997)
Clin. Biomech.
, vol.12
, Issue.7-8
, pp. 522-524
-
-
Ouyang, J.1
-
77
-
-
0034210813
-
Mechanical properties of a biodegradable bone regeneration scaffold
-
Porter BD et al. Mechanical properties of a biodegradable bone regeneration scaffold. J Biomech Eng 2000;122(3):286-8.
-
(2000)
J. Biomech. Eng.
, vol.122
, Issue.3
, pp. 286-288
-
-
Porter, B.D.1
-
78
-
-
29844458890
-
Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications
-
Correlo VM, Luciano F. Boesel, Mrinal Bhattacharya, Joao F. Mano, Nuno M. Neves, Ruis L. Reis. Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromol Mater Eng 2005;290(12):1157-65.
-
(2005)
Macromol. Mater. Eng.
, vol.290
, Issue.12
, pp. 1157-1165
-
-
Correlo, V.M.1
Boesel, L.F.2
Bhattacharya, M.3
Mano, J.F.4
Neves, N.M.5
Reis, R.L.6
-
79
-
-
0035094757
-
Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
-
Hutmacher DW et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55(2):203-16.
-
(2001)
J. Biomed. Mater. Res.
, vol.55
, Issue.2
, pp. 203-216
-
-
Hutmacher, D.W.1
-
80
-
-
34249084589
-
Comparison of the degradation of polycaprolactone and polycaprolactone-(β-tricalcium phosphate) scaffolds in alkaline medium
-
Lam CXF, Teoh SH, Hutmacher DW. Comparison of the degradation of polycaprolactone and polycaprolactone-(β-tricalcium phosphate) scaffolds in alkaline medium. Polym Int 2007;56(6):718-28.
-
(2007)
Polym. Int.
, vol.56
, Issue.6
, pp. 718-728
-
-
Lam, C.X.F.1
Teoh, S.H.2
Hutmacher, D.W.3
-
81
-
-
33846962101
-
In vitro bone engineering based on polycaprolactone and polycaprolactone-tricalcium phosphate composites
-
Zhou Y et al. In vitro bone engineering based on polycaprolactone and polycaprolactone-tricalcium phosphate composites. Polym Int 2007;56(3):333-42.
-
(2007)
Polym. Int.
, vol.56
, Issue.3
, pp. 333-342
-
-
Zhou, Y.1
-
82
-
-
1142277581
-
Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds
-
Wang F et al. Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds. Rapid Prototyping J 2004;10(1):42-9.
-
(2004)
Rapid Prototyping J.
, vol.10
, Issue.1
, pp. 42-49
-
-
Wang, F.1
-
83
-
-
77956761652
-
Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
-
Shor L et al. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 2009;1(1):5003.
-
(2009)
Biofabrication
, vol.1
, Issue.1
, pp. 5003
-
-
Shor, L.1
|