메뉴 건너뛰기




Volumn 6, Issue 7, 2010, Pages 2467-2476

Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering

Author keywords

Bone tissue engineering; Mechanical properties; Polycaprolactone; Scaffolds; Selective laser sintering

Indexed keywords

BIOMECHANICS; BONE; COMPRESSIVE STRENGTH; FINITE ELEMENT METHOD; LASER HEATING; POROSITY; SCAFFOLDS (BIOLOGY); SINTERING; TENSILE STRENGTH; YIELD STRESS;

EID: 77955884686     PISSN: 17427061     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.actbio.2010.02.002     Document Type: Article
Times cited : (438)

References (83)
  • 1
    • 0042626183 scopus 로고    scopus 로고
    • Clinical applications of recombinant human BMPs: Early experience and future development
    • Einhorn TA. Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg Am 2003;85(Supp 3):82-8.
    • (2003) J. Bone Joint Surg. Am. , vol.85 , Issue.3 SUPPL. , pp. 82-88
    • Einhorn, T.A.1
  • 2
    • 0033649024 scopus 로고    scopus 로고
    • Tissue engineering
    • Langer R. Tissue engineering. Mol Ther 2000;1(1):12-5.
    • (2000) Mol. Ther. , vol.1 , Issue.1 , pp. 12-15
    • Langer, R.1
  • 3
    • 0035187077 scopus 로고    scopus 로고
    • Bone-graft substitutes: Facts, fictions, and applications
    • 2
    • Greenwald AS, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001;83(2-suppl-2): S98-103.
    • (2001) J. Bone Joint Surg. Am. , vol.83 , Issue.2 SUPPL.
    • Greenwald, A.S.1
  • 4
    • 0033302004 scopus 로고    scopus 로고
    • Tissue engineering: Orthopedic applications
    • Laurencin CT et al. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 2003;1(1):19-46.
    • (2003) Annu. Rev. Biomed. Eng. , vol.1 , Issue.1 , pp. 19-46
    • Laurencin, C.T.1
  • 5
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-26.
    • (1993) Science , vol.260 , Issue.5110 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 6
    • 18244366662 scopus 로고    scopus 로고
    • Tissue engineering-current challenges and expanding opportunities
    • Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science 2002;295(5557):1009-14.
    • (2002) Science , vol.295 , Issue.5557 , pp. 1009-1014
    • Griffith, L.G.1    Naughton, G.2
  • 7
    • 0035671158 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part I. Traditional factors
    • Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001;7(6):679-89.
    • (2001) Tissue Eng. , vol.7 , Issue.6 , pp. 679-689
    • Yang, S.1    Leong, K.F.2    Du, Z.3    Chua, C.K.4
  • 8
    • 0027909871 scopus 로고
    • Prevascularization of porous biodegradable polymers
    • Mikos AG et al. Prevascularization of porous biodegradable polymers. Biotechnol Bioeng 1993;42(6):716-23.
    • (1993) Biotechnol. Bioeng. , vol.42 , Issue.6 , pp. 716-723
    • Mikos, A.G.1
  • 9
    • 0031868140 scopus 로고    scopus 로고
    • The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects
    • Bruder SP et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80(7):985-96.
    • (1998) J. Bone Joint Surg. Am. , vol.80 , Issue.7 , pp. 985-996
    • Bruder, S.P.1
  • 10
    • 0034116509 scopus 로고    scopus 로고
    • Osteoconduction at porous hydroxyapatite with various pore configurations
    • Chang B-S et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000;21(12):1291-8.
    • (2000) Biomaterials , vol.21 , Issue.12 , pp. 1291-1298
    • Chang, B.-S.1
  • 11
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474-91.
    • (2005) Biomaterials , vol.26 , Issue.27 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 12
    • 70449088920 scopus 로고    scopus 로고
    • The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering
    • Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010;31(3):461-6.
    • (2010) Biomaterials , vol.31 , Issue.3 , pp. 461-466
    • Murphy, C.M.1    Haugh, M.G.2    O'Brien, F.J.3
  • 13
    • 33846188184 scopus 로고    scopus 로고
    • In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
    • Oh SH et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007;28(9):1664-71.
    • (2007) Biomaterials , vol.28 , Issue.9 , pp. 1664-1671
    • Oh, S.H.1
  • 14
    • 0034765279 scopus 로고    scopus 로고
    • Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition
    • Zeltinger J et al. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 2004;7(5):557-72.
    • (2004) Tissue Eng. , vol.7 , Issue.5 , pp. 557-572
    • Zeltinger, J.1
  • 15
    • 0032704301 scopus 로고    scopus 로고
    • Effect of osteoblastic culture conditions on the structure of poly (DL-lactic-co-glycolic acid) foam scaffolds
    • Goldstein AS et al. Effect of osteoblastic culture conditions on the structure of poly (DL-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 1999;5(5):421-33.
    • (1999) Tissue Eng. , vol.5 , Issue.5 , pp. 421-433
    • Goldstein, A.S.1
  • 16
    • 0028398896 scopus 로고
    • Preparation and characterization of poly (L-lactic acid) foams
    • Mikos AG et al. Preparation and characterization of poly (L-lactic acid) foams. Polymer 1994;35(5):1068-77.
    • (1994) Polymer. , vol.35 , Issue.5 , pp. 1068-1077
    • Mikos, A.G.1
  • 17
    • 0000432879 scopus 로고
    • Biodegradable polymer scaffolds to regenerate organs
    • Thomson R et al. Biodegradable polymer scaffolds to regenerate organs. Biopolymers II 1995:245-74.
    • (1995) Biopolymers II , pp. 245-274
    • Thomson, R.1
  • 18
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21(24):2529-43.
    • (2000) Biomaterials , vol.21 , Issue.24 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 19
    • 0035054981 scopus 로고    scopus 로고
    • Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives
    • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives. J Biomater Sci Polym Ed 2001;12:107-24.
    • (2001) J. Biomater. Sci. Polym. Ed. , vol.12 , pp. 107-124
    • Hutmacher, D.W.1
  • 20
    • 0036191695 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
    • Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002;8(1):1-11.
    • (2002) Tissue Eng. , vol.8 , Issue.1 , pp. 1-11
    • Yang, S.1    Leong, K.F.2    Du, Z.3    Chua, C.K.4
  • 21
    • 3242700527 scopus 로고    scopus 로고
    • Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds
    • Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;5:29-40.
    • (2003) Eur. Cell. Mater. , vol.5 , pp. 29-40
    • Sachlos, E.1    Czernuszka, J.T.2
  • 22
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
    • Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004;22(7):354-62.
    • (2004) Trends Biotechnol. , vol.22 , Issue.7 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 23
    • 1042288112 scopus 로고    scopus 로고
    • Computer-aided tissue engineering: Overview, scope and challenges
    • Sun W et al. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 2004;39(Pt 1):29-47.
    • (2004) Biotechnol. Appl. Biochem. , vol.39 , Issue.1 PART , pp. 29-47
    • Sun, W.1
  • 24
    • 1042265021 scopus 로고    scopus 로고
    • Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds
    • Sun W et al. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem 2004;39(Pt 1):49-58.
    • (2004) Biotechnol. Appl. Biochem. , vol.39 , Issue.1 PART , pp. 49-58
    • Sun, W.1
  • 25
    • 33845900678 scopus 로고    scopus 로고
    • Design and preparation of polymeric scaffolds for tissue engineering
    • Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Dev 2006;3(6):835-51.
    • (2006) Expert Rev. Med. Dev. , vol.3 , Issue.6 , pp. 835-851
    • Weigel, T.1    Schinkel, G.2    Lendlein, A.3
  • 26
    • 34250380895 scopus 로고    scopus 로고
    • 3D polymer scaffolds for tissue engineering
    • Seunarine K et al. 3D polymer scaffolds for tissue engineering. Nanomedicine 2006;1:281-96.
    • (2006) Nanomedicine , vol.1 , pp. 281-296
    • Seunarine, K.1
  • 27
    • 4544273208 scopus 로고    scopus 로고
    • Bone tissue engineering: State of the art and future trends
    • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004;4(8):743-65.
    • (2004) Macromol. Biosci. , vol.4 , Issue.8 , pp. 743-765
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 29
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003;24(13):2363-78.
    • (2003) Biomaterials , vol.24 , Issue.13 , pp. 2363-2378
    • Leong, K.F.1    Cheah, C.M.2    Chua, C.K.3
  • 30
    • 77956744098 scopus 로고
    • Selective laser sintering
    • Austin: University of Texas at Austin
    • Deckard CR. Selective laser sintering. Mechanical Engineering. Austin: University of Texas at Austin; 1988.
    • (1988) Mechanical Engineering
    • Deckard, C.R.1
  • 31
    • 21844470989 scopus 로고    scopus 로고
    • Customization of load-bearing hydroxyapatite lattice scaffolds
    • Cesarano III J, et al. Customization of load-bearing hydroxyapatite lattice scaffolds. Int J Appl Ceram Technol 2005;2(3):212-20.
    • (2005) Int. J. Appl. Ceram. Technol. , vol.2 , Issue.3 , pp. 212-220
    • Cesarano III, J.1
  • 32
    • 36849026726 scopus 로고    scopus 로고
    • Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics
    • Dyson JA et al. Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics. Tissue Eng 2007;13(12):2891-901.
    • (2007) Tissue Eng. , vol.13 , Issue.12 , pp. 2891-2901
    • Dyson, J.A.1
  • 33
    • 33846316782 scopus 로고    scopus 로고
    • Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques
    • Jiankang H, et al. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng H: J Eng Med 2006;220(8):823-30.
    • (2006) Proc. Inst. Mech. Eng. H: J. Eng. Med. , vol.220 , Issue.8 , pp. 823-830
    • Jiankang, H.1
  • 34
    • 85056040300 scopus 로고    scopus 로고
    • Finite element analysis of meniscal anatomical 3D scaffolds: Implications for tissue engineering
    • Moroni L et al. Finite element analysis of meniscal anatomical 3D scaffolds: implications for tissue engineering. Open Biomed Eng J 2007;1:23-34.
    • (2007) Open Biomed. Eng. J. , vol.1 , pp. 23-34
    • Moroni, L.1
  • 35
    • 38849145032 scopus 로고    scopus 로고
    • Laser technologies for fabricating individual implants and matrices for tissue engineering
    • Popov VK, et al. Laser technologies for fabricating individual implants and matrices for tissue engineering. J Opt Technol 2007;74(9):636-40.
    • (2007) J. Opt. Technol. , vol.74 , Issue.9 , pp. 636-640
    • Popov, V.K.1
  • 36
    • 72849133031 scopus 로고    scopus 로고
    • Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology
    • Saijo H et al. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs 2009;12(3):200-5.
    • (2009) J. Artif Organs , vol.12 , Issue.3 , pp. 200-205
    • Saijo, H.1
  • 37
    • 45749091695 scopus 로고    scopus 로고
    • Selective laser sintering technology for customized fabrication of facial prostheses
    • Wu G et al. Selective laser sintering technology for customized fabrication of facial prostheses. J Prosth Dent 2008;100(1):56-60.
    • (2008) J. Prosth Dent. , vol.100 , Issue.1 , pp. 56-60
    • Wu, G.1
  • 38
    • 0037246412 scopus 로고    scopus 로고
    • Freeform fabrication of Nylon-6 tissue engineering scaffolds
    • Das S et al. Freeform fabrication of Nylon-6 tissue engineering scaffolds. Rapid Prototyping J 2004;9(1):43-9.
    • (2004) Rapid Prototyping J. , vol.9 , Issue.1 , pp. 43-49
    • Das, S.1
  • 39
    • 0030982950 scopus 로고    scopus 로고
    • Preliminary experience with medical applications of rapid prototyping by selective laser sintering
    • Berry E et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys 1997;19(1):90-6.
    • (1997) Med. Eng. Phys. , vol.19 , Issue.1 , pp. 90-96
    • Berry, E.1
  • 40
    • 0033858122 scopus 로고    scopus 로고
    • Selective laser sintering of ultra high molecular weight polyethylene for clinical applications
    • Rimell JT, Marquis PM. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res 2000;53(4):414-20.
    • (2000) J. Biomed. Mater. Res. , vol.53 , Issue.4 , pp. 414-420
    • Rimell, J.T.1    Marquis, P.M.2
  • 41
    • 0035531715 scopus 로고    scopus 로고
    • The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions
    • Shishkovsky I et al. The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions. Tech Phys Lett 2001;27(3):211-3.
    • (2001) Tech. Phys. Lett. , vol.27 , Issue.3 , pp. 211-213
    • Shishkovsky, I.1
  • 42
    • 20544435460 scopus 로고    scopus 로고
    • Fabrication and characterization of three-dimensional poly (etherether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering
    • Tan K, et al. Fabrication and characterization of three-dimensional poly (etherether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng H: J Eng in Med 2005;219(3):183-94.
    • (2005) Proc. Inst. Mech. Eng. H: J. Eng. in Med. , vol.219 , Issue.3 , pp. 183-194
    • Tan, K.1
  • 43
    • 0041670837 scopus 로고    scopus 로고
    • Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
    • Tan KH et al. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 2003;24(18):3115-23.
    • (2003) Biomaterials , vol.24 , Issue.18 , pp. 3115-3123
    • Tan, K.H.1
  • 44
    • 0036045098 scopus 로고    scopus 로고
    • Characterization of microfeatures in selective laser sintered drug delivery devices
    • Cheah C, et al. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H: J Eng in Med 2002;216(6):369-83.
    • (2002) Proc. Inst. Mech. Eng. H: J. Eng. in Med. , vol.216 , Issue.6 , pp. 369-383
    • Cheah, C.1
  • 45
    • 0035231313 scopus 로고    scopus 로고
    • Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique
    • Leong K, et al. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H: J Eng in Med 2001;215(2):191-2.
    • (2001) Proc. Inst. Mech. Eng. H: J. Eng. in Med. , vol.215 , Issue.2 , pp. 191-192
    • Leong, K.1
  • 46
    • 0035162824 scopus 로고    scopus 로고
    • Characterization of SLS parts for drug delivery devices
    • Low KH et al. Characterization of SLS parts for drug delivery devices. Rapid Prototyping J 2001;7(5):262-7.
    • (2001) Rapid Prototyping J. , vol.7 , Issue.5 , pp. 262-267
    • Low, K.H.1
  • 47
    • 21444443609 scopus 로고    scopus 로고
    • Selective laser sintering of biocompatible polymers for applications in tissue engineering
    • Tan KH et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 2005;15(1):113-24.
    • (2005) Biomed. Mater. Eng. , vol.15 , Issue.1 , pp. 113-124
    • Tan, K.H.1
  • 48
    • 8544236267 scopus 로고    scopus 로고
    • Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects
    • Chua CK et al. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 2004;15(10):1113-21.
    • (2004) J. Mater. Sci. Mater. Med. , vol.15 , Issue.10 , pp. 1113-1121
    • Chua, C.K.1
  • 49
    • 33751346057 scopus 로고    scopus 로고
    • Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
    • Wiria FE et al. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 2007;3(1):1-12.
    • (2007) Acta Biomater. , vol.3 , Issue.1 , pp. 1-12
    • Wiria, F.E.1
  • 50
    • 67649854933 scopus 로고    scopus 로고
    • The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds
    • Zhang H, Lin C-Y, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 2009;30(25):4063-9.
    • (2009) Biomaterials , vol.30 , Issue.25 , pp. 4063-4069
    • Zhang, H.1    Lin, C.-Y.2    Hollister, S.J.3
  • 51
    • 67349185857 scopus 로고    scopus 로고
    • Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering
    • Cahill S, Lohfeld S, McHugh P. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J Mater Sci Mater Med 2009;20(6):1255-62.
    • (2009) J. Mater. Sci. Mater. Med. , vol.20 , Issue.6 , pp. 1255-1262
    • Cahill, S.1    Lohfeld, S.2    McHugh, P.3
  • 52
    • 22944455217 scopus 로고    scopus 로고
    • Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications
    • Ciardelli G et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 2005;6(4):1961-76.
    • (2005) Biomacromolecules , vol.6 , Issue.4 , pp. 1961-1976
    • Ciardelli, G.1
  • 53
    • 34447253581 scopus 로고    scopus 로고
    • Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a threedimensional interconnected flow-channel network
    • Huang H et al. Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a threedimensional interconnected flow-channel network. Biomaterials 2007;28(26):3815-23.
    • (2007) Biomaterials , vol.28 , Issue.26 , pp. 3815-3823
    • Huang, H.1
  • 54
    • 67349272081 scopus 로고    scopus 로고
    • Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds
    • Kanczler JM et al. Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 2009;5(6):2063-71.
    • (2009) Acta Biomater. , vol.5 , Issue.6 , pp. 2063-2071
    • Kanczler, J.M.1
  • 55
    • 38049171112 scopus 로고    scopus 로고
    • The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering
    • Lin L et al. The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering. Life Syst Model Simul 2007:146-52.
    • (2007) Life Syst. Model Simul , pp. 146-152
    • Lin, L.1
  • 56
    • 85030584540 scopus 로고    scopus 로고
    • Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds
    • in press
    • Eosoly S, et al. Selective laser sintering of hydroxyapatite/poly-ε- caprolactone scaffolds. Acta Biomater, in press.
    • Acta Biomater.
    • Eosoly, S.1
  • 57
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • Williams JM et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005;26(23):4817-27.
    • (2005) Biomaterials , vol.26 , Issue.23 , pp. 4817-4827
    • Williams, J.M.1
  • 60
    • 0019633006 scopus 로고
    • Aliphatic polyesters. I. The degradation of poly (ε-caprolactone) in vivo
    • Pitt CG et al. Aliphatic polyesters. I. The degradation of poly (ε-caprolactone) in vivo. J Appl Polym Sci 1981;26:3779-87.
    • (1981) J. Appl. Polym. Sci. , vol.26 , pp. 3779-3787
    • Pitt, C.G.1
  • 61
    • 0019802018 scopus 로고
    • Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (e-caprolactone), and their copolymers in vivo
    • Pitt CG, et al. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (e-caprolactone), and their copolymers in vivo. Biomaterials 1981;2(4):215-20.
    • (1981) Biomaterials , vol.2 , Issue.4 , pp. 215-220
    • Pitt, C.G.1
  • 62
    • 0019610972 scopus 로고
    • Lactic acid polymers: Strong, degradable thermoplastics
    • Wehrenberg RH. Lactic acid polymers: strong, degradable thermoplastics. Mater Eng 1981;94(3):63-6.
    • (1981) Mater. Eng. , vol.94 , Issue.3 , pp. 63-66
    • Wehrenberg, R.H.1
  • 63
    • 2742559360 scopus 로고
    • Synthesis and evaluation of biodegradable block copolymers of e-caprolactone and D, L-lactide
    • Feng X, Song C, Chen W. Synthesis and evaluation of biodegradable block copolymers of e-caprolactone and D, L-lactide. J Polym Sci Polym Lett 1983;21(8):593-600.
    • (1983) J. Polym. Sci. Polym. Lett. , vol.21 , Issue.8 , pp. 593-600
    • Feng, X.1    Song, C.2    Chen, W.3
  • 64
    • 0026059172 scopus 로고
    • Physico-mechanical properties of degradable polymers used in medical applications: A comparative study
    • Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 1991;12(3):292-304.
    • (1991) Biomaterials , vol.12 , Issue.3 , pp. 292-304
    • Engelberg, I.1    Kohn, J.2
  • 65
    • 0028824292 scopus 로고
    • Physico-mechanical properties of poly (ε-caprolactone) for the construction of rumino-reticulum devices for grazing animals
    • Vandamme TF, Legras R. Physico-mechanical properties of poly (ε-caprolactone) for the construction of rumino-reticulum devices for grazing animals. Biomaterials 1995;16(18):1395-400.
    • (1995) Biomaterials , vol.16 , Issue.18 , pp. 1395-1400
    • Vandamme, T.F.1    Legras, R.2
  • 66
    • 1442308711 scopus 로고    scopus 로고
    • Evaluation of the thermal and mechanical properties of poly (ε-caprolactone), low-density polyethylene, and their blends
    • Rosa DS et al. Evaluation of the thermal and mechanical properties of poly (ε-caprolactone), low-density polyethylene, and their blends. J Appl Polym Sci. 2004;91(6):3909-14.
    • (2004) J. Appl. Polym. Sci. , vol.91 , Issue.6 , pp. 3909-3914
    • Rosa, D.S.1
  • 67
    • 23444456131 scopus 로고    scopus 로고
    • Properties of melt processed chitosan and aliphatic polyester blends
    • Correlo VM et al. Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng A 2005;403:57-68.
    • (2005) Mater. Sci. Eng. A , vol.403 , pp. 57-68
    • Correlo, V.M.1
  • 68
    • 55849118074 scopus 로고    scopus 로고
    • Structure and mechanical properties of blends of poly (ε-caprolactone) with a poly (amino ether)
    • Granado A, Eguiazábal JI, Nazábal J. Structure and mechanical properties of blends of poly (ε-caprolactone) with a poly (amino ether). J Appl Polym Sci 2008;109(6):3892-9.
    • (2008) J. Appl. Polym. Sci. , vol.109 , Issue.6 , pp. 3892-3899
    • Granado, A.1    Eguiazábal, J.I.2    Nazábal, J.3
  • 69
    • 0037082740 scopus 로고    scopus 로고
    • Fused deposition modeling of novel scaffold architectures for tissue engineering applications
    • Zein I et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23(4):1169-85.
    • (2002) Biomaterials , vol.23 , Issue.4 , pp. 1169-1185
    • Zein, I.1
  • 70
    • 78650261355 scopus 로고    scopus 로고
    • Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using multi-head deposition system
    • Kim J et al. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using multi-head deposition system. Biofabrication 2009;1(1):5002.
    • (2009) Biofabrication , vol.1 , Issue.1 , pp. 5002
    • Kim, J.1
  • 71
    • 0023515099 scopus 로고
    • The mechanical properties of trabecular bone: Dependence on anatomic location and function
    • Goldstein SA. The mechanical properties of trabecular bone: Dependence on anatomic location and function. J Biomech 1987;20(11-12): 1055-61.
    • (1987) J. Biomech. , vol.20 , Issue.11-12 , pp. 1055-1061
    • Goldstein, S.A.1
  • 72
    • 0028416797 scopus 로고
    • The relationship between the structural and orthogonal compressive properties of trabecular bone
    • 379-89
    • Goulet RW, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 1994;27(4):375-77, 379-89.
    • (1994) J. Biomech. , vol.27 , Issue.4 , pp. 375-377
    • Goulet, R.W.1
  • 73
    • 0024206469 scopus 로고
    • Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography
    • Lang S et al. Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography. J Bone Joint Surg Am 1988;70(10):1531-8.
    • (1988) J. Bone Joint Surg. Am. , vol.70 , Issue.10 , pp. 1531-1538
    • Lang, S.1
  • 74
    • 0025012729 scopus 로고
    • Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study
    • Lotz JC, Gerhart TN, Hayes WC. Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 1990;14(1):107-14.
    • (1990) J. Comput. Assist. Tomogr. , vol.14 , Issue.1 , pp. 107-114
    • Lotz, J.C.1    Gerhart, T.N.2    Hayes, W.C.3
  • 76
    • 0031252236 scopus 로고    scopus 로고
    • Biomechanical characteristics of human trabecular bone
    • Ouyang J et al. Biomechanical characteristics of human trabecular bone. Clin Biomech 1997;12(7-8): 522-4.
    • (1997) Clin. Biomech. , vol.12 , Issue.7-8 , pp. 522-524
    • Ouyang, J.1
  • 77
    • 0034210813 scopus 로고    scopus 로고
    • Mechanical properties of a biodegradable bone regeneration scaffold
    • Porter BD et al. Mechanical properties of a biodegradable bone regeneration scaffold. J Biomech Eng 2000;122(3):286-8.
    • (2000) J. Biomech. Eng. , vol.122 , Issue.3 , pp. 286-288
    • Porter, B.D.1
  • 79
    • 0035094757 scopus 로고    scopus 로고
    • Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
    • Hutmacher DW et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55(2):203-16.
    • (2001) J. Biomed. Mater. Res. , vol.55 , Issue.2 , pp. 203-216
    • Hutmacher, D.W.1
  • 80
    • 34249084589 scopus 로고    scopus 로고
    • Comparison of the degradation of polycaprolactone and polycaprolactone-(β-tricalcium phosphate) scaffolds in alkaline medium
    • Lam CXF, Teoh SH, Hutmacher DW. Comparison of the degradation of polycaprolactone and polycaprolactone-(β-tricalcium phosphate) scaffolds in alkaline medium. Polym Int 2007;56(6):718-28.
    • (2007) Polym. Int. , vol.56 , Issue.6 , pp. 718-728
    • Lam, C.X.F.1    Teoh, S.H.2    Hutmacher, D.W.3
  • 81
    • 33846962101 scopus 로고    scopus 로고
    • In vitro bone engineering based on polycaprolactone and polycaprolactone-tricalcium phosphate composites
    • Zhou Y et al. In vitro bone engineering based on polycaprolactone and polycaprolactone-tricalcium phosphate composites. Polym Int 2007;56(3):333-42.
    • (2007) Polym. Int. , vol.56 , Issue.3 , pp. 333-342
    • Zhou, Y.1
  • 82
    • 1142277581 scopus 로고    scopus 로고
    • Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds
    • Wang F et al. Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds. Rapid Prototyping J 2004;10(1):42-9.
    • (2004) Rapid Prototyping J. , vol.10 , Issue.1 , pp. 42-49
    • Wang, F.1
  • 83
    • 77956761652 scopus 로고    scopus 로고
    • Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
    • Shor L et al. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 2009;1(1):5003.
    • (2009) Biofabrication , vol.1 , Issue.1 , pp. 5003
    • Shor, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.