메뉴 건너뛰기




Volumn 4, Issue 3, 2009, Pages 165-180

Personalised bone tissue engineering scaffold with controlled architecture using fractal tool paths in layered manufacturing

Author keywords

Biomimetic design; Bone replacement; Layered manufacturing; Porous scaffold; Tissue engineering

Indexed keywords

BIOMIMETIC DESIGN; BONE REPLACEMENT; BONE TISSUE ENGINEERING; CONTROLLED ARCHITECTURE; CONTROLLED POROSITY; CORRELATION MODELS; CORTICAL BONE; EXTERNAL SHAPE; FRACTAL CURVES; FUNCTIONAL REQUIREMENT; HUMAN FEMORA; NOVEL METHODS; POROUS BONE SCAFFOLD; POROUS OBJECT; POROUS SCAFFOLD; PROCESSABLE; SITE-SPECIFIC; SPACE-FILLING; STRESS SHIELDING; TOOLPATHS;

EID: 70349675474     PISSN: 17452759     EISSN: 17452767     Source Type: Journal    
DOI: 10.1080/17452750903055512     Document Type: Article
Times cited : (24)

References (59)
  • 3
    • 0030034976 scopus 로고    scopus 로고
    • Role of material surfaces in regulating bone and cartilage cell response
    • Boyan, B.D., et al., 1996. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 17, 137-146.
    • (1996) Biomaterials , vol.17 , pp. 137-146
    • Boyan, B.D.1
  • 4
    • 0034116509 scopus 로고    scopus 로고
    • Osteoconduction at porous hydroxyapatite with various pore configurations
    • Chang, B.S., et al., 2000. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 21 (12), 1291-1298.
    • (2000) Biomaterials , vol.21 , Issue.12 , pp. 1291-1298
    • Chang, B.S.1
  • 5
    • 0036498046 scopus 로고    scopus 로고
    • Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures
    • Chu, T.M.G., et al., 2002. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials, 23, 1283-1293.
    • (2002) Biomaterials , vol.23 , pp. 1283-1293
    • Chu, T.M.G.1
  • 6
    • 8544236267 scopus 로고    scopus 로고
    • Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joints defects
    • Chua, C.K., et al., 2004. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joints defects. Journal of Materials Science: Materials in Medicine, 15, 1113-1121.
    • (2004) Journal of Materials Science: Materials in Medicine , vol.15 , pp. 1113-1121
    • Chua, C.K.1
  • 9
    • 2442438189 scopus 로고    scopus 로고
    • Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity
    • Cooper, D.M.L., et al., 2004. Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcified Tissue International, 74, 437-447.
    • (2004) Calcified Tissue International , vol.74 , pp. 437-447
    • Cooper, D.M.L.1
  • 10
    • 33947153119 scopus 로고    scopus 로고
    • Effect of voxel size on 3D micro-CT analysis of cortical bone porosity
    • Cooper, D.M.L., et al., 2007. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcified Tissue International, 80, 211-219.
    • (2007) Calcified Tissue International , vol.80 , pp. 211-219
    • Cooper, D.M.L.1
  • 11
    • 1542405780 scopus 로고    scopus 로고
    • The longitudinal Young's modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data
    • Cuppone, M., et al., 2004. The longitudinal Young's modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data. Calcified Tissue International, 74, 302-309.
    • (2004) Calcified Tissue International , vol.74 , pp. 302-309
    • Cuppone, M.1
  • 12
    • 2942724172 scopus 로고    scopus 로고
    • The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity
    • Dong, X.N. and Guo, X.E., 2004. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. Journal of Biomechanics, 37 (8), 1281-1287.
    • (2004) Journal of Biomechanics , vol.37 , Issue.8 , pp. 1281-1287
    • Dong, X.N.1    Guo, X.E.2
  • 13
    • 15344341328 scopus 로고    scopus 로고
    • Macroporous biphasic calcium phosphate ceramics: Influence of macropore diameter and macroporosity percentage on bone ingrowth
    • Gauthier, O., et al., 1998. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, 19 (1-3), 133-139.
    • (1998) Biomaterials , vol.19 , Issue.1-3 , pp. 133-139
    • Gauthier, O.1
  • 14
    • 41549124861 scopus 로고    scopus 로고
    • Mechanical behaviour of porous hydroxyapatite
    • He, L.H., et al., 2008. Mechanical behaviour of porous hydroxyapatite. Acta Biomaterialia, 4, 577-586.
    • (2008) Acta Biomaterialia , vol.4 , pp. 577-586
    • He, L.H.1
  • 15
    • 0035988665 scopus 로고    scopus 로고
    • Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
    • Hollister, S.J., Maddox, R.D. and Taboas, J.M., 2002. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials, 23, 4095-4103.
    • (2002) Biomaterials , vol.23 , pp. 4095-4103
    • Hollister, S.J.1    Maddox, R.D.2    Taboas, J.M.3
  • 16
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher, D.W, 2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529-2543.
    • (2000) Biomaterials , vol.21 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 17
    • 62649089618 scopus 로고    scopus 로고
    • Development of an indirect solid freeform fabrication process based on microstereolithography for 3D porous scaffolds
    • Kang, H.W, Seol, YJ. and Cho, D.W., 2009. Development of an indirect solid freeform fabrication process based on microstereolithography for 3D porous scaffolds. Journal of Micromechanics and Microengineering, 19, 15011-15018.
    • (2009) Journal of Micromechanics and Microengineering , vol.19 , pp. 15011-15018
    • Kang, H.W.1    Seol, Y.J.2    Cho, D.W.3
  • 19
    • 42949135423 scopus 로고    scopus 로고
    • Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering
    • Kim, J.Y, et al., 2008. Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering. Journal of Micromechanics and Microengineering, 18, 55027-55033.
    • (2008) Journal of Micromechanics and Microengineering , vol.18 , pp. 55027-55033
    • Kim, J.Y.1
  • 21
    • 0032007689 scopus 로고    scopus 로고
    • BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis
    • Kuboki, Y., et al., 1998. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. Journal of Biomedical Materials Research, 39 (2), 190-199.
    • (1998) Journal of Biomedical Materials Research , vol.39 , Issue.2 , pp. 190-199
    • Kuboki, Y.1
  • 22
    • 34347363206 scopus 로고    scopus 로고
    • Characterization of a poly-s-caprolactone polymer drug delivery device built by selective laser sintering
    • Leong, K.F, et al., 2007. Characterization of a poly-s-caprolactone polymer drug delivery device built by selective laser sintering. Bio-Medical Materials and Engineering, 17 (3), 147-157.
    • (2007) Bio-Medical Materials and Engineering , vol.17 , Issue.3 , pp. 147-157
    • Leong, K.F.1
  • 23
    • 33644676866 scopus 로고    scopus 로고
    • Dynamic Young's modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method
    • Li, C. and Zhu, Z., 2006. Dynamic Young's modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method. Journal of Porous Materials, 1321-1326.
    • (2006) Journal of Porous Materials , pp. 1321-1326
    • Li, C.1    Zhu, Z.2
  • 24
    • 70349674523 scopus 로고    scopus 로고
    • Effect of microstructure on the mechanical properties and biology performance of bone tissue scaffolds using selective laser sintering
    • In, Beijing, China
    • Lin, L., et al., 2008. Effect of microstructure on the mechanical properties and biology performance of bone tissue scaffolds using selective laser sintering. In: the Proceedings of IFMBE, Beijing, China, 19, 84-87.
    • (2008) The Proceedings of IFMBE , vol.19 , pp. 84-87
    • Lin, L.1
  • 25
    • 0036161914 scopus 로고    scopus 로고
    • Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications
    • Lorenzo, L.M.R., et al., 2002. Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. Journal of Biomaterials, 60 (1), 159-156.
    • (2002) Journal of Biomaterials , vol.60 , Issue.1 , pp. 159-156
    • Lorenzo, L.M.R.1
  • 27
    • 0345490149 scopus 로고    scopus 로고
    • Materialise, Leuven, Belgium
    • Materialise, 2002. MIMICS user manual. Leuven, Belgium.
    • (2002) MIMICS User Manual
  • 28
    • 0027170485 scopus 로고
    • Age-related changes in the tensile properties of cortical bone: The relative importance of changes in porosity, mineralization, and microstructure
    • McCalden, R.W., et al., 1993. Age-related changes in the tensile properties of cortical bone: the relative importance of changes in porosity, mineralization, and microstructure. Journal of Bone and Joint Surgery-American, 75A (8), 1193-1205.
    • (1993) Journal of Bone and Joint Surgery-American , vol.75 A , Issue.8 , pp. 1193-1205
    • McCalden, R.W.1
  • 29
    • 0038673390 scopus 로고    scopus 로고
    • Trabecular bone modulus-density relationships depend on anatomic site
    • Morgan, E.F, Bayraktar, H.H. and Keaveny, T.M., 2003. Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics, 36, 897-904.
    • (2003) Journal of Biomechanics , vol.36 , pp. 897-904
    • Morgan, E.F.1    Bayraktar, H.H.2    Keaveny, T.M.3
  • 30
    • 70349684620 scopus 로고    scopus 로고
    • Reconstruction of subject specific human femoral bone model with cortical porosity data using macro-CT
    • Pandithevan, P. and Saravana Kumar, G., 2009. Reconstruction of subject specific human femoral bone model with cortical porosity data using macro-CT. Virtual and Physical Prototyping, 4 (3), 115-129.
    • (2009) Virtual and Physical Prototyping , vol.4 , Issue.3 , pp. 115-129
    • Pandithevan, P.1    Saravana Kumar, G.2
  • 31
    • 0343586539 scopus 로고    scopus 로고
    • Spatial organization of the haversian bone in man
    • Petrtyl, M., Hert, J. and Fiala, P., 1996. Spatial organization of the haversian bone in man. Journal of Biomechanics, 29 (2), 161-169.
    • (1996) Journal of Biomechanics , vol.29 , Issue.2 , pp. 161-169
    • Petrtyl, M.1    Hert, J.2    Fiala, P.3
  • 32
    • 0029329134 scopus 로고
    • Relations of mechanical properties to density and CT numbers in human bone
    • Rho, J.Y, Hobatho, M.C. and Ashman, R.B., 1995. Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering and Physics, 17, 347-55.
    • (1995) Medical Engineering and Physics , vol.17 , pp. 347-55
    • Rho, J.Y.1    Hobatho, M.C.2    Ashman, R.B.3
  • 33
    • 0023868463 scopus 로고
    • On the dependence of the elasticity and strength of cancellous bone on apparent density
    • Rice, J.C, Cowin, S.C. and Bowman, J.A., 1988. On the dependence of the elasticity and strength of cancellous bone on apparent density. Journal of Biomechanics, 21, 155-168.
    • (1988) Journal of Biomechanics , vol.21 , pp. 155-168
    • Rice, J.C.1    Cowin, S.C.2    Bowman, J.A.3
  • 35
    • 0023901292 scopus 로고
    • Stiffness of compact bone: Effects of porosity and density
    • Schaffler, M.B. and Burr, D.B., 1988. Stiffness of compact bone: effects of porosity and density. Journal of Biomechanics, 21 (1), 13-16.
    • (1988) Journal of Biomechanics , vol.21 , Issue.1 , pp. 13-16
    • Schaffler, M.B.1    Burr, D.B.2
  • 36
    • 6444226909 scopus 로고    scopus 로고
    • Computer-aided design of porous artefacts
    • Schroeder, C, et al., 2005. Computer-aided design of porous artefacts. Computer-Aided Design, 37, 339-353.
    • (2005) Computer-Aided Design , vol.37 , pp. 339-353
    • Schroeder, C.1
  • 37
    • 37549037519 scopus 로고    scopus 로고
    • Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxyapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering
    • Simpson, R.L., et al., 2007. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxyapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B (1), 17-25.
    • (2007) Journal of Biomedical Materials Research Part B: Applied Biomaterials , vol.84 B , Issue.1 , pp. 17-25
    • Simpson, R.L.1
  • 38
    • 0026154992 scopus 로고
    • Estimation of mechanical properties of cortical bone by computed tomography
    • Snyder, S.M. and Schneider, E., 1991. Estimation of mechanical properties of cortical bone by computed tomography. Journal of Orthopaedic Research, 9 (3), 422-431.
    • (1991) Journal of Orthopaedic Research , vol.9 , Issue.3 , pp. 422-431
    • Snyder, S.M.1    Schneider, E.2
  • 39
    • 0027714980 scopus 로고
    • Holding power of the 4.5 mm AO/ASIF cortex screw in cortical bone in relation to bone mineral
    • Stromsoe, K., et al., 1993. Holding power of the 4.5 mm AO/ASIF cortex screw in cortical bone in relation to bone mineral. Injury, 24 (10), 656-659.
    • (1993) Injury , vol.24 , Issue.10 , pp. 656-659
    • Stromsoe, K.1
  • 40
    • 1042288112 scopus 로고    scopus 로고
    • A computer aided tissue engineering: Overview, scope and challenges
    • Sun, W., et al., 2004a. A computer aided tissue engineering: overview, scope and challenges. Biotechnology and Applied Biochemistry, 39 (1), 29-47.
    • (2004) Biotechnology and Applied Biochemistry , vol.39 , Issue.1 , pp. 29-47
    • Sun, W.1
  • 41
    • 1042265021 scopus 로고    scopus 로고
    • Computer aided tissue engineering: Biomimetic modeling and design of tissue scaffold
    • Sun, W., et al., 2004b. Computer aided tissue engineering: biomimetic modeling and design of tissue scaffold. Biotechnology and Applied Biochemistry, 39 (1), 49-58.
    • (2004) Biotechnology and Applied Biochemistry , vol.39 , Issue.1 , pp. 49-58
    • Sun, W.1
  • 42
    • 19044368357 scopus 로고    scopus 로고
    • Bio-CAD modeling and its applications in computer-aided tissue engineering
    • Sun, W., Starly, B. and Darling, A., 2005. Bio-CAD modeling and its applications in computer-aided tissue engineering. Computer-Aided Design, 37, 1097-1114.
    • (2005) Computer-Aided Design , vol.37 , pp. 1097-1114
    • Sun, W.1    Starly, B.2    Darling, A.3
  • 43
    • 0037210053 scopus 로고    scopus 로고
    • Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds
    • Taboas, J.M., et al., 2003. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials, 24, 181-194.
    • (2003) Biomaterials , vol.24 , pp. 181-194
    • Taboas, J.M.1
  • 44
    • 21444443609 scopus 로고    scopus 로고
    • Selective laser sintering of biocompatible polymers applications in tissue engineering
    • Tan, K.H., et al., 2005. Selective laser sintering of biocompatible polymers applications in tissue engineering. Bio-Medical Materials and Engineering, 15, 113-124.
    • (2005) Bio-Medical Materials and Engineering , vol.15 , pp. 113-124
    • Tan, K.H.1
  • 45
    • 0034284970 scopus 로고    scopus 로고
    • Bone resorption by osteoclasts
    • Teitelbaum, S.L., 2000. Bone resorption by osteoclasts. Science, 289 (5484), 1504-1508.
    • (2000) Science , vol.289 , Issue.5484 , pp. 1504-1508
    • Teitelbaum, S.L.1
  • 46
    • 0031045696 scopus 로고    scopus 로고
    • Pore size of porous hydroxyapatiteas the cell-substratumcontrols BMP-induced osteogenesis
    • Tsuruga, E., et al., 1997. Pore size of porous hydroxyapatiteas the cell-substratumcontrols BMP-induced osteogenesis. Journal of Biochemistry, 121, 317-324.
    • (1997) Journal of Biochemistry , vol.121 , pp. 317-324
    • Tsuruga, E.1
  • 47
    • 0031839491 scopus 로고    scopus 로고
    • Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis
    • Vuola, J., et al., 1998. Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis. Biomaterials, 19, 223-227.
    • (1998) Biomaterials , vol.19 , pp. 223-227
    • Vuola, J.1
  • 48
    • 0036313522 scopus 로고    scopus 로고
    • Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro
    • Wachter, N.J., et al., 2002. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone, 31 (1), 91-95.
    • (2002) Bone , vol.31 , Issue.1 , pp. 91-95
    • Wachter, N.J.1
  • 49
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • Williams, M., et al., 2005. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 26, 4817-4827.
    • (2005) Biomaterials , vol.26 , pp. 4817-4827
    • Williams, M.1
  • 50
    • 33751346057 scopus 로고    scopus 로고
    • Poly-s-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
    • Wiria, F.E., et al., 2007. Poly-s-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, 3, 1-12.
    • (2007) Acta Biomaterialia , vol.3 , pp. 1-12
    • Wiria, F.E.1
  • 51
    • 40349106262 scopus 로고    scopus 로고
    • Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering
    • Wiria, F.E., et al., 2008. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. Journal of Materials science: Materials in Medicine, 19, 989-996.
    • (2008) Journal of Materials Science: Materials in Medicine , vol.19 , pp. 989-996
    • Wiria, F.E.1
  • 52
    • 70349683640 scopus 로고    scopus 로고
    • Rapid prototyping to produce porous scaffold with controlled with controlled architecture for possible use in bone tissue engineering
    • In, Berlin: Springer
    • Woesz, A., 2008. Rapid prototyping to produce porous scaffold with controlled with controlled architecture for possible use in bone tissue engineering. In: Virtual Prototyping & Bio Manufacturing in Medical Applications. Berlin: Springer, 171-176.
    • (2008) Virtual Prototyping & Bio Manufacturing in Medical Applications , pp. 171-176
    • Woesz, A.1
  • 53
    • 2142715523 scopus 로고    scopus 로고
    • Cellular solids beyond the apparent density - An experimental assessment of mechanical properties
    • Woesz, A., Stampfl, J. and Fratzl, P., 2004. Cellular solids beyond the apparent density - an experimental assessment of mechanical properties. Advanced Engineering Materials, 6 (3), 134-138.
    • (2004) Advanced Engineering Materials , vol.6 , Issue.3 , pp. 134-138
    • Woesz, A.1    Stampfl, J.2    Fratzl, P.3
  • 54
    • 0035840815 scopus 로고    scopus 로고
    • Fabrication of porous poly(L-lactic-acid) scaffolds for bone tissue engineering via precise extrusion
    • Xiong, Z., et al., 2001. Fabrication of porous poly(L-lactic-acid) scaffolds for bone tissue engineering via precise extrusion. Scripta Materialia, 45, 773-779.
    • (2001) Scripta Materialia , vol.45 , pp. 773-779
    • Xiong, Z.1
  • 55
    • 0037545705 scopus 로고    scopus 로고
    • Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition
    • Yan, Y, et al., 2003. Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Materials Letters, 57, 2623-2628.
    • (2003) Materials Letters , vol.57 , pp. 2623-2628
    • Yan, Y.1
  • 56
    • 0035671158 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering: Part 1-Traditional factors
    • Yang, S.F, et al., 2001. The design of scaffolds for use in tissue engineering: Part 1-Traditional factors. Tissue Engineering, 7 (6), 679-690.
    • (2001) Tissue Engineering , vol.7 , Issue.6 , pp. 679-690
    • Yang, S.F.1
  • 57
    • 58049163304 scopus 로고    scopus 로고
    • Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function
    • Yildirim, E.D., et al., 2008. Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function. Virtual and Physical Prototyping, 3 (4), 199-207.
    • (2008) Virtual and Physical Prototyping , vol.3 , Issue.4 , pp. 199-207
    • Yildirim, E.D.1
  • 58
    • 0034765279 scopus 로고    scopus 로고
    • Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition
    • Zeltinger, J., et al., 2001. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Engineering, 7 (5), 557-572.
    • (2001) Tissue Engineering , vol.7 , Issue.5 , pp. 557-572
    • Zeltinger, J.1
  • 59
    • 0035999776 scopus 로고    scopus 로고
    • Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds
    • Zhao, F, et al., 2002. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials, 23, 3227-3234.
    • (2002) Biomaterials , vol.23 , pp. 3227-3234
    • Zhao, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.