메뉴 건너뛰기




Volumn 16, Issue 10, 2012, Pages 2247-2270

Osteochondral tissue engineering: Scaffolds, stem cells and applications

Author keywords

Bilayered scaffolds; Clinical relevance; Composites; Osteochondral tissue engineering; Scaffold designs; Scaffold fabrication

Indexed keywords

BIOMATERIAL; TISSUE SCAFFOLD;

EID: 84866751885     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1582-4934.2012.01571.x     Document Type: Article
Times cited : (251)

References (146)
  • 1
    • 33749847797 scopus 로고    scopus 로고
    • Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering
    • Spalazzi JP, Doty SB, Moffat KL, et al. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 2006; 12: 12.
    • (2006) Tissue Eng , vol.12 , pp. 12
    • Spalazzi, J.P.1    Doty, S.B.2    Moffat, K.L.3
  • 2
    • 33847042303 scopus 로고    scopus 로고
    • Osteochondral tissue engineering
    • Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech. 2007; 40: 750-65.
    • (2007) J Biomech , vol.40 , pp. 750-765
    • Martin, I.1    Miot, S.2    Barbero, A.3
  • 3
    • 77954650532 scopus 로고    scopus 로고
    • Tissue engineering strategies for the regeneration of orthopedic interface
    • Lu HH, Subramony SD, Boushell MK, et al. Tissue engineering strategies for the regeneration of orthopedic interface. Ann Biomed Eng. 2010; 38: 2142-54.
    • (2010) Ann Biomed Eng , vol.38 , pp. 2142-2154
    • Lu, H.H.1    Subramony, S.D.2    Boushell, M.K.3
  • 4
    • 84866745053 scopus 로고    scopus 로고
    • Engineering orthopedic tissue interface
    • Yang PJ, Johnna S. Engineering orthopedic tissue interface. Tissue eng: Part B. 2009; 15: 2.
    • (2009) Tissue eng: Part B , vol.15 , pp. 2
    • Yang, P.J.1    Johnna, S.2
  • 5
    • 65549090503 scopus 로고    scopus 로고
    • The osteochondral junction and its repair via biphasic tissue engineering scaffolds
    • Keeney M, Pandit A. The osteochondral junction and its repair via biphasic tissue engineering scaffolds. Tissue Eng: Part B. 2009; 15: 1.
    • (2009) Tissue Eng: Part B , vol.15 , pp. 1
    • Keeney, M.1    Pandit, A.2
  • 7
    • 39749096814 scopus 로고    scopus 로고
    • Smart biomaterials for tissue engineering of cartilage
    • Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury Int J Care Injured. 2008; 39S1: 77-87.
    • (2008) Injury Int J Care Injured , vol.391 S , pp. 77-87
    • Stoop, R.1
  • 8
    • 0036083985 scopus 로고    scopus 로고
    • Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects
    • Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage. 2001; 10: 432-63.
    • (2001) Osteoarthr Cartilage , vol.10 , pp. 432-463
    • Hunziker, E.B.1
  • 9
    • 56749179723 scopus 로고    scopus 로고
    • Bilayered scaffolds for osteochondral tissue engineering
    • Timonthy MO, Xigeng M. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng: Part B. 2008; 14: 4.
    • (2008) Tissue Eng: Part B , vol.14 , pp. 4
    • Timonthy, M.O.1    Xigeng, M.2
  • 10
    • 39149084409 scopus 로고    scopus 로고
    • Osteochondral defects: present situation and tissue engineering approaches
    • Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med. 2007; 1: 261-73.
    • (2007) J Tissue Eng Regen Med. , vol.1 , pp. 261-273
    • Mano, J.F.1    Reis, R.L.2
  • 11
    • 0141426820 scopus 로고    scopus 로고
    • Current state of cartilage tissue engineering
    • Tuli R, Li WJ, Tuan RS. Current state of cartilage tissue engineering. Arthritis Res Ther. 2003; 5: 235-8.
    • (2003) Arthritis Res Ther. , vol.5 , pp. 235-238
    • Tuli, R.1    Li, W.J.2    Tuan, R.S.3
  • 12
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21: 2529-43.
    • (2000) Biomaterials , vol.21 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 13
    • 2942536383 scopus 로고    scopus 로고
    • Engineering structurally organized cartilage and bone tissues
    • Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004; 32: 148-59.
    • (2004) Ann Biomed Eng , vol.32 , pp. 148-159
    • Sharma, B.1    Elisseeff, J.H.2
  • 15
    • 77649158306 scopus 로고    scopus 로고
    • Polymeric materials for bone and cartilage repair
    • Puppi D, Chiellini F, Piras AM, et al. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010; 35: 403-40.
    • (2010) Prog Polym Sci , vol.35 , pp. 403-440
    • Puppi, D.1    Chiellini, F.2    Piras, A.M.3
  • 16
    • 37349091115 scopus 로고    scopus 로고
    • Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends
    • Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007; 4: 999-1030.
    • (2007) J R Soc Interface , vol.4 , pp. 999-1030
    • Mano, J.F.1    Silva, G.A.2    Azevedo, H.S.3
  • 18
    • 0030766904 scopus 로고    scopus 로고
    • Chondrocyte transplantation using a collagen bilayered matrix for cartilage repair
    • Frenkel SR, Toolan B, Menche D, et al. Chondrocyte transplantation using a collagen bilayered matrix for cartilage repair. J Bone Joint Surg. 1997; 79B: 831-6.
    • (1997) J Bone Joint Surg , vol.79 B , pp. 831-836
    • Frenkel, S.R.1    Toolan, B.2    Menche, D.3
  • 21
    • 0036978429 scopus 로고    scopus 로고
    • A comparison study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules
    • Patel N, Best SM, Bonfield W, et al. A comparison study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. Mater Med. 2002; 13: 1199-206.
    • (2002) Mater Med. , vol.13 , pp. 1199-1206
    • Patel, N.1    Best, S.M.2    Bonfield, W.3
  • 22
    • 29144502979 scopus 로고    scopus 로고
    • Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    • Leukers B, Lkan HLG, Irsen SH, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005; 16: 1121-4.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 1121-1124
    • Leukers, B.1    Lkan, H.L.G.2    Irsen, S.H.3
  • 23
    • 0025978275 scopus 로고
    • Bioactive glass ceramics: properties and applications
    • Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991; 12: 155.
    • (1991) Biomaterials , vol.12 , pp. 155
    • Kokubo, T.1
  • 24
    • 84866770803 scopus 로고    scopus 로고
    • Bioactive ceramics
    • Hench LL. Bioactive ceramics. Ann NY Acad Sci. 2006; 523: 1.
    • (2006) Ann NY Acad Sci. , vol.523 , pp. 1
    • Hench, L.L.1
  • 25
    • 4644363179 scopus 로고    scopus 로고
    • Functional tissue engineering of chondral and osteochondral constructs
    • Lima EG, Mauck RL, Han SH, et al. Functional tissue engineering of chondral and osteochondral constructs. Biorheology. 2004; 41: 577-90.
    • (2004) Biorheology , vol.41 , pp. 577-590
    • Lima, E.G.1    Mauck, R.L.2    Han, S.H.3
  • 27
    • 30944457520 scopus 로고    scopus 로고
    • Stem cell-coated titanium implants for the partial joint resurfacing of the knee
    • Frosch KH, Drengk A, Krause P, et al. Stem cell-coated titanium implants for the partial joint resurfacing of the knee. Biomaterials. 2006; 27: 2542-2549.
    • (2006) Biomaterials , vol.27 , pp. 2542-2549
    • Frosch, K.H.1    Drengk, A.2    Krause, P.3
  • 28
    • 73949086464 scopus 로고    scopus 로고
    • Mesenchymal Stem Cells in Regenerative Medicine: opportunities and Challenges for Articular Cartilage and Intervertebral Disc Tissue Engineering
    • Richardson SM, Hoyland JA, Mobasheri R, et al. Mesenchymal Stem Cells in Regenerative Medicine: opportunities and Challenges for Articular Cartilage and Intervertebral Disc Tissue Engineering. J Cell Physiol. 2010; 222: 23-32.
    • (2010) J Cell Physiol , vol.222 , pp. 23-32
    • Richardson, S.M.1    Hoyland, J.A.2    Mobasheri, R.3
  • 29
    • 43949115205 scopus 로고    scopus 로고
    • Functional Characterization of Hypertrophy in Chondrogenesis of Human Mesenchymal Stem Cells
    • Mueller MB, Tuan RS. Functional Characterization of Hypertrophy in Chondrogenesis of Human Mesenchymal Stem Cells. Arthritis Rheum. 2008; 58: 1377-88.
    • (2008) Arthritis Rheum , vol.58 , pp. 1377-1388
    • Mueller, M.B.1    Tuan, R.S.2
  • 30
    • 80051584370 scopus 로고    scopus 로고
    • Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells
    • Petrenko YA, Ivanov RV, Petrenko AY, et al. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. J Mater Sci: Mater Med. 2011; 22: 1529-40.
    • (2011) J Mater Sci: Mater Med. , vol.22 , pp. 1529-1540
    • Petrenko, Y.A.1    Ivanov, R.V.2    Petrenko, A.Y.3
  • 31
    • 42249107314 scopus 로고    scopus 로고
    • Evaluation of three-dimentional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxy-hexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits
    • Wang Y, Bian YZ, Wu Q, et al. Evaluation of three-dimentional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxy-hexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials. 2008; 29: 2858-68.
    • (2008) Biomaterials , vol.29 , pp. 2858-2868
    • Wang, Y.1    Bian, Y.Z.2    Wu, Q.3
  • 32
    • 75449113413 scopus 로고    scopus 로고
    • Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation
    • Alves da Silva ML, Crawford A, Mundy JM, et al. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater. 2010; 6: 1149-57.
    • (2010) Acta Biomater , vol.6 , pp. 1149-1157
    • Alves da Silva, M.L.1    Crawford, A.2    Mundy, J.M.3
  • 33
    • 29144505121 scopus 로고    scopus 로고
    • Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells
    • Malafaya PB, Pedro AJ, Peterbauer A, et al. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci-Mater Med. 2005; 16: 1077-85.
    • (2005) J Mater Sci-Mater Med. , vol.16 , pp. 1077-1085
    • Malafaya, P.B.1    Pedro, A.J.2    Peterbauer, A.3
  • 34
    • 58149116838 scopus 로고    scopus 로고
    • Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor
    • Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater. 2009; 5: 644-60.
    • (2009) Acta Biomater , vol.5 , pp. 644-660
    • Malafaya, P.B.1    Reis, R.L.2
  • 35
    • 40549115276 scopus 로고    scopus 로고
    • Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects
    • Chajra H, Rousseau CF, Cortial D, et al. Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng. 2008; 18: 33-45.
    • (2008) Biomed Mater Eng , vol.18 , pp. 33-45
    • Chajra, H.1    Rousseau, C.F.2    Cortial, D.3
  • 36
    • 4644338456 scopus 로고    scopus 로고
    • Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials
    • Galois L, Freyria AM, Grossin L, et al. Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials. Biorheology. 2004; 41: 433-43.
    • (2004) Biorheology , vol.41 , pp. 433-443
    • Galois, L.1    Freyria, A.M.2    Grossin, L.3
  • 37
    • 80054988621 scopus 로고    scopus 로고
    • Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells
    • Shafiee A, Soleimani M, Chamheidari GA, et al. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res, Part A. 2011; 99A: 467-78.
    • (2011) J Biomed Mater Res, Part A , vol.99 A , pp. 467-478
    • Shafiee, A.1    Soleimani, M.2    Chamheidari, G.A.3
  • 38
    • 34247170858 scopus 로고    scopus 로고
    • Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials
    • Huang X, Yang D, Yan W, et al. Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials. 2007; 28: 3091-100.
    • (2007) Biomaterials , vol.28 , pp. 3091-3100
    • Huang, X.1    Yang, D.2    Yan, W.3
  • 39
    • 33644798134 scopus 로고    scopus 로고
    • Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering
    • Blaker JJ, Maquet V, Jérôme R, et al. Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater. 2005; 1: 643-52.
    • (2005) Acta Biomater , vol.1 , pp. 643-652
    • Blaker, J.J.1    Maquet, V.2    Jérôme, R.3
  • 40
    • 67349198630 scopus 로고    scopus 로고
    • The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering
    • Ngiam M, Liao S, Patil AJ, et al. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone. 2009; 45: 4-16.
    • (2009) Bone , vol.45 , pp. 4-16
    • Ngiam, M.1    Liao, S.2    Patil, A.J.3
  • 41
    • 33746388939 scopus 로고    scopus 로고
    • Metallic biomaterials in skeletal repair
    • Frosch KH, Stürmer KM. Metallic biomaterials in skeletal repair. Eur J Trauma. 2006; 32: 149-59.
    • (2006) Eur J Trauma. , vol.32 , pp. 149-159
    • Frosch, K.H.1    Stürmer, K.M.2
  • 44
    • 0033623225 scopus 로고    scopus 로고
    • ® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering
    • ® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcified Tissue Int. 2000; 67: 321-9.
    • (2000) Calcified Tissue Int. , vol.67 , pp. 321-329
    • Xynos, I.D.1    M Hukkanen, V.J.2    Batten, J.J.3
  • 45
    • 79951577364 scopus 로고    scopus 로고
    • A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics
    • Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011; 32: 2757-74.
    • (2011) Biomaterials , vol.32 , pp. 2757-2774
    • Hoppe, A.1    Güldal, N.S.2    Boccaccini, A.R.3
  • 46
    • 33751537871 scopus 로고    scopus 로고
    • ®-based scaffolds: processing and characterization
    • ®-based scaffolds: processing and characterization. J Biomater Res. 2006; 77A: 3.
    • (2006) J Biomater Res. , vol.77 A , pp. 3
    • Chen, Q.Z.1    Boccaccini, A.R.2
  • 47
    • 80054744781 scopus 로고    scopus 로고
    • Bioactive Glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs
    • Jayabalan P, Tan AR, Rahaman MN, et al. Bioactive Glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs. Clin Orthop Relat Res. 2011; 469: 2754-63.
    • (2011) Clin Orthop Relat Res , vol.469 , pp. 2754-2763
    • Jayabalan, P.1    Tan, A.R.2    Rahaman, M.N.3
  • 48
    • 41549155901 scopus 로고    scopus 로고
    • Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid)
    • Miao X, Tan DM, Li J, et al. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008; 4: 638-45.
    • (2008) Acta Biomater , vol.4 , pp. 638-645
    • Miao, X.1    Tan, D.M.2    Li, J.3
  • 49
    • 44349098524 scopus 로고    scopus 로고
    • Polymer-bioceramic composites for tissue engineering scaffolds
    • Yunos DM, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci. 2008; 43: 4433-42.
    • (2008) J Mater Sci , vol.43 , pp. 4433-4442
    • Yunos, D.M.1    Bretcanu, O.2    Boccaccini, A.R.3
  • 50
    • 77958536012 scopus 로고    scopus 로고
    • Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments
    • Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, et al. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med. 2010; 14: 2561-9.
    • (2010) J Cell Mol Med , vol.14 , pp. 2561-2569
    • Pneumaticos, S.G.1    Triantafyllopoulos, G.K.2    Basdra, E.K.3
  • 51
    • 78649379248 scopus 로고    scopus 로고
    • Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs)
    • Prockop DJ, Kota DJ, Bazhanov N, et al. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010; 14: 2190-9.
    • (2010) J Cell Mol Med , vol.14 , pp. 2190-2199
    • Prockop, D.J.1    Kota, D.J.2    Bazhanov, N.3
  • 52
    • 34249938497 scopus 로고    scopus 로고
    • Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering
    • Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliver Rev. 2007; 59: 339-59.
    • (2007) Adv Drug Deliver Rev. , vol.59 , pp. 339-359
    • Lee, S.H.1    Shin, H.2
  • 53
    • 0036888666 scopus 로고    scopus 로고
    • A three-dimentional osteochondral composite scaffold for articular cartilage repair
    • 24:
    • Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimentional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002; 23: 24: 4739-51.
    • (2002) Biomaterials , vol.23 , pp. 4739-4751
    • Sherwood, J.K.1    Riley, S.L.2    Palazzolo, R.3
  • 54
    • 33846562910 scopus 로고    scopus 로고
    • Formation of biphasic constructs containing cartilage with a calcified zone interface
    • Allan KS, Pilliar RM, Wang J, et al. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 2007; 13: 1.
    • (2007) Tissue Eng , vol.13 , pp. 1
    • Allan, K.S.1    Pilliar, R.M.2    Wang, J.3
  • 55
    • 0345733804 scopus 로고    scopus 로고
    • Osteoblast and chondrocyte interactions during coculture on scaffolds
    • Spalazzi JP, Dionisio KL, Jiang J, et al. Osteoblast and chondrocyte interactions during coculture on scaffolds. IEEE Eng Med Biol Mag. 2003; 22: 27-34.
    • (2003) IEEE Eng Med Biol Mag , vol.22 , pp. 27-34
    • Spalazzi, J.P.1    Dionisio, K.L.2    Jiang, J.3
  • 56
    • 0042827798 scopus 로고    scopus 로고
    • Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling
    • Cao T, Ho KH, Teoh SH. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 2003; 9: 1.
    • (2003) Tissue Eng , vol.9 , pp. 1
    • Cao, T.1    Ho, K.H.2    Teoh, S.H.3
  • 57
    • 0031817577 scopus 로고    scopus 로고
    • In vitro chondrogenesis of bone-marrow derived mesenchymal proginetor cells
    • Johnstone B, Hering TM, Caplan A, et al. In vitro chondrogenesis of bone-marrow derived mesenchymal proginetor cells. Exp Cell Res. 1998; 10: 265-72.
    • (1998) Exp Cell Res , vol.10 , pp. 265-272
    • Johnstone, B.1    Hering, T.M.2    Caplan, A.3
  • 58
    • 0034897478 scopus 로고    scopus 로고
    • Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells
    • Gao J, Dennis JE, Solchaga LA, et al. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 2001; 7: 363.
    • (2001) Tissue Eng , vol.7 , pp. 363
    • Gao, J.1    Dennis, J.E.2    Solchaga, L.A.3
  • 59
    • 3843093777 scopus 로고    scopus 로고
    • Adult stem cell driven genesis of human-shaped articular condyle
    • Alhadlaq A, Elisseeff JH, Hong L, et al. Adult stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng. 2004; 32: 911-23.
    • (2004) Ann Biomed Eng , vol.32 , pp. 911-923
    • Alhadlaq, A.1    Elisseeff, J.H.2    Hong, L.3
  • 60
    • 0036019365 scopus 로고    scopus 로고
    • In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor b1 and the potential for in situ chondrogenesis
    • Huang Q, Goh JCH, Hutmacher DW, et al. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor b1 and the potential for in situ chondrogenesis. Tissue Eng. 2002; 8: 3.
    • (2002) Tissue Eng , vol.8 , pp. 3
    • Huang, Q.1    Goh, J.C.H.2    Hutmacher, D.W.3
  • 61
    • 78650040731 scopus 로고    scopus 로고
    • Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds
    • Abrahamsson CK, Yang F, Park H, et al. Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds. Tissue Eng: Part A. 2010; 16: 12.
    • (2010) Tissue Eng: Part A , vol.16 , pp. 12
    • Abrahamsson, C.K.1    Yang, F.2    Park, H.3
  • 62
    • 40849137427 scopus 로고    scopus 로고
    • Engineering custom-designed osteochondral tissue grafts
    • Grayson WL, Chao PHG, Marolt D, et al. Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol. 2008; 26: 181-9.
    • (2008) Trends Biotechnol , vol.26 , pp. 181-189
    • Grayson, W.L.1    Chao, P.H.G.2    Marolt, D.3
  • 63
    • 79956372005 scopus 로고    scopus 로고
    • Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients
    • Dormer NH, Busaidy K, Berkland CJ, et al. Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients. J Oral Maxillofac Surg. 2011; 69: 50-7.
    • (2011) J Oral Maxillofac Surg , vol.69 , pp. 50-57
    • Dormer, N.H.1    Busaidy, K.2    Berkland, C.J.3
  • 64
    • 31844456756 scopus 로고    scopus 로고
    • Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing
    • Wendt D, Jakob M, Martin I. Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. J Biosci Bioeng. 2005; 100: 489-94.
    • (2005) J Biosci Bioeng , vol.100 , pp. 489-494
    • Wendt, D.1    Jakob, M.2    Martin, I.3
  • 65
    • 0034672886 scopus 로고    scopus 로고
    • In vitro generation of osteochondral composites
    • Schaefer D, Martin I, Shastri P, et al. In vitro generation of osteochondral composites. Biomaterials. 2000; 20: 2599-606.
    • (2000) Biomaterials , vol.20 , pp. 2599-2606
    • Schaefer, D.1    Martin, I.2    Shastri, P.3
  • 66
    • 33746792330 scopus 로고    scopus 로고
    • Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model
    • Shao X, Goh JCH, Hutmacher DW, et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng. 2006; 12: 6.
    • (2006) Tissue Eng , vol.12 , pp. 6
    • Shao, X.1    Goh, J.C.H.2    Hutmacher, D.W.3
  • 67
    • 0030878762 scopus 로고    scopus 로고
    • Osteochondral repair using perichondrial cells: a 1-year study in rabbits
    • Chu CR, Dounchis JS, Yoshioka M, et al. Osteochondral repair using perichondrial cells: a 1-year study in rabbits. Clin Orthop. 1997; 340: 220.
    • (1997) Clin Orthop. , vol.340 , pp. 220
    • Chu, C.R.1    Dounchis, J.S.2    Yoshioka, M.3
  • 68
    • 84876067551 scopus 로고    scopus 로고
    • Tissue engineering of articular cartilage: perichondrial cells in osteochondral repair
    • Amiel D., Chu CR, Sah R.L., et al. Tissue engineering of articular cartilage: perichondrial cells in osteochondral repair. Cell Mater. 1998; 8: 161-74.
    • (1998) Cell Mater. , vol.8 , pp. 161-174
    • Amiel, D.1    Chu, C.R.2    Sah, R.L.3
  • 69
    • 74449083600 scopus 로고    scopus 로고
    • Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds
    • Scotti C, Wirz D, Wolf F, et al. Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials. 2010; 31: 2252-9.
    • (2010) Biomaterials , vol.31 , pp. 2252-2259
    • Scotti, C.1    Wirz, D.2    Wolf, F.3
  • 70
    • 79955758751 scopus 로고    scopus 로고
    • Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds
    • Chen J, Chen H, Li P, et al. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials. 2011; 32: 4793-805.
    • (2011) Biomaterials , vol.32 , pp. 4793-4805
    • Chen, J.1    Chen, H.2    Li, P.3
  • 71
    • 0036745065 scopus 로고    scopus 로고
    • Tissue-Engineered composites for the repair of large osteochondral defects
    • Schaefer D, Martin I, Jundt G, et al. Tissue-Engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 2002; 46: 2524-34.
    • (2002) Arthritis Rheum , vol.46 , pp. 2524-2534
    • Schaefer, D.1    Martin, I.2    Jundt, G.3
  • 72
    • 17144369142 scopus 로고    scopus 로고
    • Use of a biphasic graft constructed with chondrocytes overlying a β-tricalcium phosphate block in the treatment of rabbit osteochondral defects
    • Tanaka T, Komaki H, Chazono M, et al. Use of a biphasic graft constructed with chondrocytes overlying a β-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng. 2005; 11: 1/2.
    • (2005) Tissue Eng , vol.11
    • Tanaka, T.1    Komaki, H.2    Chazono, M.3
  • 73
    • 1542328774 scopus 로고    scopus 로고
    • Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study
    • Wang X, Grogan SP, Rieser F, et al. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials. 2004; 25: 3681-8.
    • (2004) Biomaterials , vol.25 , pp. 3681-3688
    • Wang, X.1    Grogan, S.P.2    Rieser, F.3
  • 74
    • 19944427718 scopus 로고    scopus 로고
    • Repair of osteochondral defects with Autologous chondrocytes seeded onto bioceramic scaffold in sheep
    • Guo X, Wang C, Duan C, et al. Repair of osteochondral defects with Autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng. 2004; 10: 11/12.
    • (2004) Tissue Eng , vol.10
    • Guo, X.1    Wang, C.2    Duan, C.3
  • 75
    • 33646072821 scopus 로고    scopus 로고
    • Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model
    • Kandel RA, Grynpas M, Pilliar R, et al. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model. Biomaterials. 2006; 27: 4120-31.
    • (2006) Biomaterials , vol.27 , pp. 4120-4131
    • Kandel, R.A.1    Grynpas, M.2    Pilliar, R.3
  • 76
    • 0036533219 scopus 로고    scopus 로고
    • Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites
    • Bleach NC, Nazhat SN, Tanner KE, et al. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials. 2002; 23: 1579-85.
    • (2002) Biomaterials , vol.23 , pp. 1579-1585
    • Bleach, N.C.1    Nazhat, S.N.2    Tanner, K.E.3
  • 77
    • 29244461424 scopus 로고    scopus 로고
    • Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering
    • Li X, Jin L, Balian G, et al. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials. 2006; 27: 2426-33.
    • (2006) Biomaterials , vol.27 , pp. 2426-2433
    • Li, X.1    Jin, L.2    Balian, G.3
  • 78
    • 54949100799 scopus 로고    scopus 로고
    • In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite
    • Kitahara S, Nakagawak K, Sah RL, et al. In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Tissue Eng: Part A. 2008; 14: 11.
    • (2008) Tissue Eng: Part A , vol.14 , pp. 11
    • Kitahara, S.1    Nakagawak, K.2    Sah, R.L.3
  • 79
    • 24744438015 scopus 로고    scopus 로고
    • Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds
    • 1
    • Holland TA, Bodde EWH, Baggett LS, et al. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res. 2005; 75A: 1: 156-67.
    • (2005) J Biomed Mater Res , vol.75 A , pp. 156-167
    • Holland, T.A.1    Bodde, E.W.H.2    Baggett, L.S.3
  • 80
    • 29144475494 scopus 로고    scopus 로고
    • Preparation of a biphasic scaffold for osteochondral tissue engineering
    • Chen G, Sato T, Tanaka J, et al. Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater Sci Eng. 2006; C 26: 118-23.
    • (2006) Mater Sci Eng. , vol.26 B , pp. 118-123
    • Chen, G.1    Sato, T.2    Tanaka, J.3
  • 81
    • 33748929635 scopus 로고    scopus 로고
    • Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering application: scaffold design and its performance when seeded with goat bone marrow stromal cells
    • Oliveira JM, Rodrigues MT, Silva SS, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering application: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006; 27: 6123-37.
    • (2006) Biomaterials , vol.27 , pp. 6123-6137
    • Oliveira, J.M.1    Rodrigues, M.T.2    Silva, S.S.3
  • 82
    • 33645004438 scopus 로고    scopus 로고
    • An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects
    • Gotterbarm T, Richter W, Jung M, et al. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials. 2006; 27: 3387-95.
    • (2006) Biomaterials , vol.27 , pp. 3387-3395
    • Gotterbarm, T.1    Richter, W.2    Jung, M.3
  • 83
    • 61349163627 scopus 로고    scopus 로고
    • A novel osteochondral scaffold of ceramic-gelatin assembly for articular cartilage repair
    • Lien SM, Chien CH, Huang TJ. A novel osteochondral scaffold of ceramic-gelatin assembly for articular cartilage repair. Mater Sci Eng. 2009; C 29: 315-21.
    • (2009) Mater Sci Eng. , vol.29 C , pp. 315-321
    • Lien, S.M.1    Chien, C.H.2    Huang, T.J.3
  • 84
    • 24644489160 scopus 로고    scopus 로고
    • Regeneration of articular cartilage Evaluation of osteochondral defect repair in the rabbit using multiphasic implants
    • Frenkel SR, Bradica G, Brekke JH, et al. Regeneration of articular cartilage Evaluation of osteochondral defect repair in the rabbit using multiphasic implants. OsteoArthr Cartilage. 2005; 13: 798-807.
    • (2005) OsteoArthr Cartilage , vol.13 , pp. 798-807
    • Frenkel, S.R.1    Bradica, G.2    Brekke, J.H.3
  • 85
    • 69449086400 scopus 로고    scopus 로고
    • Tumor necrosis factor α and RANKL blockade cannot halt bony spur formation in experimental inflammatory arthritis
    • Schett G, Stolina M, Dwyer D, et al. Tumor necrosis factor α and RANKL blockade cannot halt bony spur formation in experimental inflammatory arthritis. Arthritis Rheum. 2009; 60: 2644-54.
    • (2009) Arthritis Rheum , vol.60 , pp. 2644-2654
    • Schett, G.1    Stolina, M.2    Dwyer, D.3
  • 88
    • 77956916653 scopus 로고    scopus 로고
    • Electrospun poly(D/L-lactide-co-L-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering
    • Kluger PJ, Wyrwa R, Weisser J, et al. Electrospun poly(D/L-lactide-co-L-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering. J Mater Sci: Mater Med. 2010; 21: 2665-71.
    • (2010) J Mater Sci: Mater Med. , vol.21 , pp. 2665-2671
    • Kluger, P.J.1    Wyrwa, R.2    Weisser, J.3
  • 89
    • 33644587680 scopus 로고    scopus 로고
    • Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers
    • Park KE, Kang HK, Lee SJ, et al. Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules. 2006; 7: 635-43.
    • (2006) Biomacromolecules , vol.7 , pp. 635-643
    • Park, K.E.1    Kang, H.K.2    Lee, S.J.3
  • 90
    • 33744942905 scopus 로고    scopus 로고
    • Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications
    • Li WJ, Cooper JA, Mauck RL, et al. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006; 2: 377-85.
    • (2006) Acta Biomater , vol.2 , pp. 377-385
    • Li, W.J.1    Cooper, J.A.2    Mauck, R.L.3
  • 91
    • 77956264092 scopus 로고    scopus 로고
    • Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite
    • Ohyabu Y, Adegawa T, Yoshioka T, et al. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite. Mater Sci Eng. 2010; B 173: 204-7.
    • (2010) Mater Sci Eng. , vol.173 B , pp. 204-207
    • Ohyabu, Y.1    Adegawa, T.2    Yoshioka, T.3
  • 92
    • 79956207494 scopus 로고    scopus 로고
    • Fabrication and characterization of a biphasic scaffold for osteochondral tissue engineering
    • Bi L, Li D, Liu J, et al. Fabrication and characterization of a biphasic scaffold for osteochondral tissue engineering. Mater Lett. 2011; 65: 2079-82.
    • (2011) Mater Lett , vol.65 , pp. 2079-2082
    • Bi, L.1    Li, D.2    Liu, J.3
  • 93
    • 83455176282 scopus 로고    scopus 로고
    • A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis
    • Aydin HM. A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater. 2011; 13: 511-7.
    • (2011) Adv Eng Mater , vol.13 , pp. 511-517
    • Aydin, H.M.1
  • 94
    • 33644695119 scopus 로고    scopus 로고
    • Tissue engineering osteochondral implants for temporomandibular joint repair
    • Schek RM, Taboas JM, Hollister SJ, et al. Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod Craniofacial Res. 2005; 8: 313-9.
    • (2005) Orthod Craniofacial Res. , vol.8 , pp. 313-319
    • Schek, R.M.1    Taboas, J.M.2    Hollister, S.J.3
  • 95
    • 37449005384 scopus 로고    scopus 로고
    • Bi-layered constructs based on poly(L-lactic acid) and starch for tissue engineering of osteochondral defects
    • Ghosh S, Viana JC, Reis RL, et al. Bi-layered constructs based on poly(L-lactic acid) and starch for tissue engineering of osteochondral defects. Mater Sci Eng. 2008; C28: 80-86.
    • (2008) Mater Sci Eng. , vol.28 C , pp. 80-86
    • Ghosh, S.1    Viana, J.C.2    Reis, R.L.3
  • 96
    • 77954658858 scopus 로고    scopus 로고
    • Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair
    • Jiang J, Tang A, Ateshian GA, et al. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng. 2010; 38: 2183-96.
    • (2010) Ann Biomed Eng , vol.38 , pp. 2183-2196
    • Jiang, J.1    Tang, A.2    Ateshian, G.A.3
  • 98
    • 80051588659 scopus 로고    scopus 로고
    • A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering
    • Kinikoglu B, Rodriguez-Cabello JC, Damour O, et al. A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering. J Mater Sci: Mater Med. 2011; 22: 1541-54.
    • (2011) J Mater Sci: Mater Med. , vol.22 , pp. 1541-1554
    • Kinikoglu, B.1    Rodriguez-Cabello, J.C.2    Damour, O.3
  • 99
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006; 27: 3413-31.
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3
  • 100
    • 77950460694 scopus 로고    scopus 로고
    • Tissue engineering scaffolds from bioactive glass and composite materials
    • Chen Q, Roether JA, Boccaccini AR. Tissue engineering scaffolds from bioactive glass and composite materials. Top Tissue Eng. 2008; 4: 1-27.
    • (2008) Top Tissue Eng. , vol.4 , pp. 1-27
    • Chen, Q.1    Roether, J.A.2    Boccaccini, A.R.3
  • 101
    • 79951578643 scopus 로고    scopus 로고
    • Bioactive glass and glass-ceramic scaffolds for bone tissue engineering
    • Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010; 3: 3867-910.
    • (2010) Materials , vol.3 , pp. 3867-3910
    • Gerhardt, L.C.1    Boccaccini, A.R.2
  • 103
    • 40349089949 scopus 로고    scopus 로고
    • Porous bioceramics reinforced by coating gelatin
    • Liu B, Lin P, Shen Y, et al. Porous bioceramics reinforced by coating gelatin. J Mater Sci: Mater Med. 2008; 19: 1203-7.
    • (2008) J Mater Sci: Mater Med. , vol.19 , pp. 1203-1207
    • Liu, B.1    Lin, P.2    Shen, Y.3
  • 104
    • 66949116096 scopus 로고    scopus 로고
    • ®-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate)
    • ®-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med. 2009; 3: 139-48.
    • (2009) J Tissue Eng Regen Med. , vol.3 , pp. 139-148
    • Bretcanu, O.1    Misra, S.2    Roy, I.3
  • 105
    • 79952842441 scopus 로고    scopus 로고
    • Technological advances in electrospinning of nanofibers
    • Teo WE, Inai R, Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater. 2011; 12: 19.
    • (2011) Sci Technol Adv Mater , vol.12 , pp. 19
    • Teo, W.E.1    Inai, R.2    Ramakrishna, S.3
  • 106
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: a review
    • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006; 12: 5.
    • (2006) Tissue Eng , vol.12 , pp. 5
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 107
    • 36248959221 scopus 로고    scopus 로고
    • Functional electrospun nanofibrous scaffolds for biomedical applications
    • Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliver Rev. 2007; 59: 1392-412.
    • (2007) Adv Drug Deliver Rev. , vol.59 , pp. 1392-1412
    • Liang, D.1    Hsiao, B.S.2    Chu, B.3
  • 108
    • 8844263768 scopus 로고    scopus 로고
    • Nano-fibrous scaffolds for tissue engineering
    • Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloid Surface B. 2004; 39: 125-31.
    • (2004) Colloid Surface B , vol.39 , pp. 125-131
    • Smith, L.A.1    Ma, P.X.2
  • 110
    • 49049100913 scopus 로고    scopus 로고
    • Mold-shaped, nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor
    • Janjanin S, Li WJ, Morgan MT, et al. Mold-shaped, nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor. J Surg Res. 2008; 149: 47-56.
    • (2008) J Surg Res , vol.149 , pp. 47-56
    • Janjanin, S.1    Li, W.J.2    Morgan, M.T.3
  • 111
    • 4744366676 scopus 로고    scopus 로고
    • Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor
    • Ma Z, Gao C, Gong Y, et al. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials. 2005; 26: 1253-9.
    • (2005) Biomaterials , vol.26 , pp. 1253-1259
    • Ma, Z.1    Gao, C.2    Gong, Y.3
  • 112
    • 48849110825 scopus 로고    scopus 로고
    • Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration
    • Jeong SI, Ko EK, Yum J, et al. Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromol Biosci. 2008; 8: 328-38.
    • (2008) Macromol Biosci , vol.8 , pp. 328-338
    • Jeong, S.I.1    Ko, E.K.2    Yum, J.3
  • 113
    • 0037400540 scopus 로고    scopus 로고
    • A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
    • Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003; 24: 2077-82.
    • (2003) Biomaterials , vol.24 , pp. 2077-2082
    • Yoshimoto, H.1    Shin, Y.M.2    Terai, H.3
  • 114
    • 1042301245 scopus 로고    scopus 로고
    • In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold
    • Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 2004; 10: 33-41.
    • (2004) Tissue Eng , vol.10 , pp. 33-41
    • Shin, M.1    Yoshimoto, H.2    Vacanti, J.P.3
  • 115
    • 3342981338 scopus 로고    scopus 로고
    • A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells
    • Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005; 26: 599-609.
    • (2005) Biomaterials , vol.26 , pp. 599-609
    • Li, W.J.1    Tuli, R.2    Okafor, C.3
  • 116
    • 78649436890 scopus 로고    scopus 로고
    • Chitosan/Poly(3-caprolactone) blend scaffolds for cartilage repair
    • Neves SC, Teixeira LSM, Moroni L, et al. Chitosan/Poly(3-caprolactone) blend scaffolds for cartilage repair. Biomaterials. 2011; 32: 1068-79.
    • (2011) Biomaterials , vol.32 , pp. 1068-1079
    • Neves, S.C.1    Teixeira, L.S.M.2    Moroni, L.3
  • 117
    • 0037097175 scopus 로고    scopus 로고
    • Electrospun nanofibrous structure: a novel scaffold for tissue engineering
    • Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002; 60: 613-21.
    • (2002) J Biomed Mater Res , vol.60 , pp. 613-621
    • Li, W.J.1    Laurencin, C.T.2    Caterson, E.J.3
  • 118
    • 79952803743 scopus 로고    scopus 로고
    • Physico-chemical characterization of functional electrospun scaffolds for bone and cartilage tissue engineering
    • Mouthuy PA, Ye H, Triffitt J, et al. Physico-chemical characterization of functional electrospun scaffolds for bone and cartilage tissue engineering. Proc IMechE 224 Part H: J Eng Med. 2010; 224: 1401-14.
    • (2010) Proc IMechE 224 Part H: J Eng Med. , vol.224 , pp. 1401-1414
    • Mouthuy, P.A.1    Ye, H.2    Triffitt, J.3
  • 119
    • 44949091386 scopus 로고    scopus 로고
    • Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration
    • Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. J Mater Sci: Mater Med. 2008; 19: 2925-32.
    • (2008) J Mater Sci: Mater Med. , vol.19 , pp. 2925-2932
    • Song, J.H.1    Kim, H.E.2    Kim, H.W.3
  • 120
    • 41949105727 scopus 로고    scopus 로고
    • Electrospinning of highly porous scaffolds for cartilage regeneration
    • Thorvaldsson A, Stenhamre H, Gatenholm P, et al. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules. 2008; 9: 1044-9.
    • (2008) Biomacromolecules , vol.9 , pp. 1044-1049
    • Thorvaldsson, A.1    Stenhamre, H.2    Gatenholm, P.3
  • 121
    • 37549070763 scopus 로고    scopus 로고
    • Interaction of cells and nanofiber scaffolds in tissue engineering
    • Venugopal J, Low S, Choon AT, et al. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater. 2008; 84: 34-48.
    • (2008) J Biomed Mater Res B Appl Biomater , vol.84 , pp. 34-48
    • Venugopal, J.1    Low, S.2    Choon, A.T.3
  • 122
    • 40349103750 scopus 로고    scopus 로고
    • 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold
    • Srouji S, Kizhner T, Suss-Tobi E, et al. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci: Mater Med. 2008; 19: 1249-55.
    • (2008) J Mater Sci: Mater Med. , vol.19 , pp. 1249-1255
    • Srouji, S.1    Kizhner, T.2    Suss-Tobi, E.3
  • 123
    • 77953347621 scopus 로고    scopus 로고
    • Electrospun poly(L-lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering
    • Chuenjitkuntaworn B, Supaphol P, Pavasant P, et al. Electrospun poly(L-lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering. Polym Int. 2010; 59: 227-35.
    • (2010) Polym Int , vol.59 , pp. 227-235
    • Chuenjitkuntaworn, B.1    Supaphol, P.2    Pavasant, P.3
  • 124
    • 33750315715 scopus 로고    scopus 로고
    • Electrospun Poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration
    • Pham QP, Sharma U, Mikos AG. Electrospun Poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006; 7: 2796-805.
    • (2006) Biomacromolecules , vol.7 , pp. 2796-2805
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 125
    • 0346864790 scopus 로고    scopus 로고
    • Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment
    • Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res, Part A. 2003; 67: 531-7.
    • (2003) J Biomed Mater Res, Part A , vol.67 , pp. 531-537
    • Woo, K.M.1    Chen, V.J.2    Ma, P.X.3
  • 126
    • 79960994194 scopus 로고    scopus 로고
    • Tunning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications
    • Milleret V, Simona B, Neuenschwander P, et al. Tunning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications. Eur Cells Mater. 2011; 21: 286-303.
    • (2011) Eur Cells Mater. , vol.21 , pp. 286-303
    • Milleret, V.1    Simona, B.2    Neuenschwander, P.3
  • 127
    • 78649295027 scopus 로고    scopus 로고
    • Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering
    • Wright LD, Young RT, Andric T, et al. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering. Biomed Mater. 2010; 5: 9.
    • (2010) Biomed Mater , vol.5 , pp. 9
    • Wright, L.D.1    Young, R.T.2    Andric, T.3
  • 128
    • 79960186409 scopus 로고    scopus 로고
    • 3D nanofibrous scaffolds for tissue engineering
    • Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem. 2011; 21: 10243-51.
    • (2011) J Mater Chem , vol.21 , pp. 10243-10251
    • Holzwarth, J.M.1    Ma, P.X.2
  • 129
    • 79151471280 scopus 로고    scopus 로고
    • Electrospun nanofibrous materials for tissue engineering and drug delivery
    • Cui W, Zhou Y, Chang J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater. 2010; 11: 14108-19.
    • (2010) Sci Technol Adv Mater , vol.11 , pp. 14108-14119
    • Cui, W.1    Zhou, Y.2    Chang, J.3
  • 130
    • 80053047116 scopus 로고    scopus 로고
    • Increasing the pore size of electrospun scaffolds
    • Kovacina JR, Weiss AS. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B. 2011; 17: 365-72.
    • (2011) Tissue Eng Part B , vol.17 , pp. 365-372
    • Kovacina, J.R.1    Weiss, A.S.2
  • 131
    • 79952842441 scopus 로고    scopus 로고
    • Technological advances in electrospinning of nanofibers
    • Teo WE, Inai R, Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater. 2011; 12: 13002-21.
    • (2011) Sci Technol Adv Mater , vol.12 , pp. 13002-13021
    • Teo, W.E.1    Inai, R.2    Ramakrishna, S.3
  • 132
    • 78650059090 scopus 로고    scopus 로고
    • Enhanced biochemical and biomechanical properties of scaffolds generated by flock technology for cartilage tissue engineering
    • Steck E, Bertram H, Walther A, et al. Enhanced biochemical and biomechanical properties of scaffolds generated by flock technology for cartilage tissue engineering. Tissue Eng: Part A. 2010; 16: 12.
    • (2010) Tissue Eng: Part A , vol.16 , pp. 12
    • Steck, E.1    Bertram, H.2    Walther, A.3
  • 133
    • 84860736722 scopus 로고    scopus 로고
    • Scaffolds for intervertebral disc tissue engineering created by flock technology
    • Reiband A, Mrozik B, Hoffmann G, et al. Scaffolds for intervertebral disc tissue engineering created by flock technology. Eur Cell Mater. 2005; 10: 66.
    • (2005) Eur Cell Mater. , vol.10 , pp. 66
    • Reiband, A.1    Mrozik, B.2    Hoffmann, G.3
  • 134
    • 0033978152 scopus 로고    scopus 로고
    • Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report
    • Tanaka Y, Tsutsumi A, Crowe DM, et al. Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report. Br J Plast Surg. 2000; 53: 51-7.
    • (2000) Br J Plast Surg , vol.53 , pp. 51-57
    • Tanaka, Y.1    Tsutsumi, A.2    Crowe, D.M.3
  • 135
    • 33746745292 scopus 로고    scopus 로고
    • Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop
    • Kneser U, Polykandriotis E, Ohnolz J, et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006; 12: 1721-31.
    • (2006) Tissue Eng , vol.12 , pp. 1721-1731
    • Kneser, U.1    Polykandriotis, E.2    Ohnolz, J.3
  • 136
    • 33947320098 scopus 로고    scopus 로고
    • Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts
    • Arkudas A, Beier JP, Heidner K, et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 2007; 13: 1549-60.
    • (2007) Tissue Eng , vol.13 , pp. 1549-1560
    • Arkudas, A.1    Beier, J.P.2    Heidner, K.3
  • 137
    • 78649651514 scopus 로고    scopus 로고
    • Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct
    • Arkudas A, Beier JP, Pryymachuk G, et al. Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct. Tissue Eng Part C Methods. 2010; 16: 1503-14.
    • (2010) Tissue Eng Part C Methods , vol.16 , pp. 1503-1514
    • Arkudas, A.1    Beier, J.P.2    Pryymachuk, G.3
  • 138
    • 70349291338 scopus 로고    scopus 로고
    • Periosteum-guided prefabrication of vascularized bone of clinical shape and volume
    • Cheng MH, Brey EM, Allori AC, et al. Periosteum-guided prefabrication of vascularized bone of clinical shape and volume. Plast Reconstr Surg. 2009; 124: 787-95.
    • (2009) Plast Reconstr Surg , vol.124 , pp. 787-795
    • Cheng, M.H.1    Brey, E.M.2    Allori, A.C.3
  • 139
    • 77950630902 scopus 로고    scopus 로고
    • Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model
    • Beier JP, Horch RE, Hess A, et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med. 2010; 4: 216-23.
    • (2010) J Tissue Eng Regen Med. , vol.4 , pp. 216-223
    • Beier, J.P.1    Horch, R.E.2    Hess, A.3
  • 140
    • 79952100341 scopus 로고    scopus 로고
    • De novo generation of an axially vascularized processed bovine cancellous-bone substitute in the sheep arteriovenous-loop model
    • Beier JP, Hess A, Loew J, et al. De novo generation of an axially vascularized processed bovine cancellous-bone substitute in the sheep arteriovenous-loop model. Eur Surg Res. 2011; 46: 148-55.
    • (2011) Eur Surg Res , vol.46 , pp. 148-155
    • Beier, J.P.1    Hess, A.2    Loew, J.3
  • 141
    • 79953123826 scopus 로고    scopus 로고
    • Mandibular reconstruction using an axially vascularized tissue-engineered construct
    • Eweida AM, Nabawi AS, Marei MK, et al. Mandibular reconstruction using an axially vascularized tissue-engineered construct. Ann Surg Innov Res. 2011; 5: 2.
    • (2011) Ann Surg Innov Res. , vol.5 , pp. 2
    • Eweida, A.M.1    Nabawi, A.S.2    Marei, M.K.3
  • 142
    • 75749104674 scopus 로고    scopus 로고
    • Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces
    • Harley BA, Lynn AK, Wissner-Gross Z, et al. Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A. 2010; 92: 1078-93.
    • (2010) J Biomed Mater Res A , vol.92 , pp. 1078-1093
    • Harley, B.A.1    Lynn, A.K.2    Wissner-Gross, Z.3
  • 143
    • 15944425081 scopus 로고    scopus 로고
    • Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor
    • Fukuda A, Kato K, Hasegawa M, et al. Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. 2005; 26: 4301-8.
    • (2005) Biomaterials , vol.26 , pp. 4301-4308
    • Fukuda, A.1    Kato, K.2    Hasegawa, M.3
  • 144
    • 34249109681 scopus 로고    scopus 로고
    • Injection partially digested cartilage fragments into a biphasic scaffold to generate osteochondral composites in a nude mice model
    • Liao CJ, Lin YJ, Chiang H, et al. Injection partially digested cartilage fragments into a biphasic scaffold to generate osteochondral composites in a nude mice model. J Biomed Mater Res A. 2007; 81A: 567.
    • (2007) J Biomed Mater Res A , vol.81 A , pp. 567
    • Liao, C.J.1    Lin, Y.J.2    Chiang, H.3
  • 145
    • 80051792991 scopus 로고    scopus 로고
    • Hydroxyapatite/polyamide66 porous scaffold with an ethylene vinyl acetate surface layer used for silmultaneous substitute and repair of articular cartilage and underlying bone
    • 23
    • Luo X, Zhang L, Morsi Y, et al. Hydroxyapatite/polyamide66 porous scaffold with an ethylene vinyl acetate surface layer used for silmultaneous substitute and repair of articular cartilage and underlying bone. Appl Surf Sci. 2011; 257: 23: 9888-94.
    • (2011) Appl Surf Sci , vol.257 , pp. 9888-9894
    • Luo, X.1    Zhang, L.2    Morsi, Y.3
  • 146
    • 9344256687 scopus 로고    scopus 로고
    • Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds
    • Schek RM, Taboas JM, Segvich SJ, et al. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tisssue Eng. 2004; 10: 1376-85.
    • (2004) Tisssue Eng. , vol.10 , pp. 1376-1385
    • Schek, R.M.1    Taboas, J.M.2    Segvich, S.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.