-
1
-
-
67849124161
-
Biological performance of a polycapro-lactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery
-
Abbah, S. A., C. X. Lam, D. W. Hutmacher, J. C. Goh, and H.-K. Wong. Biological performance of a polycapro-lactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086-5093, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 5086-5093
-
-
Abbah, S.A.1
Lam, C.X.2
Hutmacher, D.W.3
Goh, J.C.4
Wong, H.-K.5
-
2
-
-
33646017698
-
Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration
-
Adachi, T., Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27:3964-3972, 2006.
-
(2006)
Biomaterials
, vol.27
, pp. 3964-3972
-
-
Adachi, T.1
Osako, Y.2
Tanaka, M.3
Hojo, M.4
Hollister, S.J.5
-
3
-
-
77955276092
-
Virtual topological optimisation of scaffolds for rapid prototyping
-
Almeida, H. A., and P. J. Bartolo. Virtual topological optimisation of scaffolds for rapid prototyping. Med. Eng. Phys. 32:775-782, 2010.
-
(2010)
Med. Eng. Phys.
, vol.32
, pp. 775-782
-
-
Almeida, H.A.1
Bartolo, P.J.2
-
4
-
-
71449126497
-
Biomanufacturing for tissue engineering: Present and future trends
-
Bartolo, P. J., C. K. Chua, H. A. Almeida, S. M. Chou, and A. S. C. Lim. Biomanufacturing for tissue engineering: present and future trends. Virtual Phys. Prototyp. 4:203-216, 2009.
-
(2009)
Virtual Phys. Prototyp.
, vol.4
, pp. 203-216
-
-
Bartolo, P.J.1
Chua, C.K.2
Almeida, H.A.3
Chou, S.M.4
Lim, A.S.C.5
-
5
-
-
67349185857
-
Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering
-
Cahill, S., S. Lohfeld, and P. E. McHugh. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J. Mater. Sci. Mater. Med. 20:1255-1262, 2009.
-
(2009)
J. Mater. Sci. Mater. Med.
, vol.20
, pp. 1255-1262
-
-
Cahill, S.1
Lohfeld, S.2
McHugh, P.E.3
-
6
-
-
2342618793
-
Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering
-
DOI 10.1089/107632704323061951
-
Cheah, C.-M., C.-K. Chua, K.-F. Leong, C.-H. Cheong, and M.-W. Naing. Automatic algorithm for generating complex polyhedral scaffolds for tissue engineering. Tissue Eng. 10:595-610, 2004. (Pubitemid 38580280)
-
(2004)
Tissue Engineering
, vol.10
, Issue.3-4
, pp. 595-610
-
-
Cheah, C.-M.1
Chua, C.-K.2
Leong, K.-F.3
Cheong, C.-H.4
Naing, M.-W.5
-
7
-
-
35348915338
-
Biomimetic modeling and three-dimension reconstruction of the artificial bone
-
DOI 10.1016/j.cmpb.2007.08.001, PII S0169260707001897
-
Chen, Z., Z. Su, S. Ma, X. Wu, and Z. Luo. Biomimetic modeling and three-dimension reconstruction of the artificial bone. Comput. Methods Programs Biomed. 88:123-130, 2007. (Pubitemid 47588444)
-
(2007)
Computer Methods and Programs in Biomedicine
, vol.88
, Issue.2
, pp. 123-130
-
-
Chen, Z.1
Su, Z.2
Ma, S.3
Wu, X.4
Luo, Z.5
-
8
-
-
0348140582
-
Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading
-
DOI 10.1016/j.medengphy.2003.10.006
-
Cheung, G., P. Zalzal, M. Bhandari, J. K. Spelt, and M. Papini. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med. Eng. Phys. 26:93-108, 2004. (Pubitemid 38022001)
-
(2004)
Medical Engineering and Physics
, vol.26
, Issue.2
, pp. 93-108
-
-
Cheung, G.1
Zalzal, P.2
Bhandari, M.3
Spelt, J.K.4
Papini, M.5
-
9
-
-
77955884686
-
Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering
-
Eshraghi, S., and S. Das. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6:2467-2476, 2010.
-
(2010)
Acta Biomater.
, vol.6
, pp. 2467-2476
-
-
Eshraghi, S.1
Das, S.2
-
12
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
DOI 10.1038/nmat1421
-
Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518-524, 2005. (Pubitemid 40952745)
-
(2005)
Nature Materials
, vol.4
, Issue.7
, pp. 518-524
-
-
Hollister, S.J.1
-
13
-
-
0035094757
-
Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
-
DOI 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
-
Hutmacher, D. W., T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55:203-216, 2001. (Pubitemid 32198503)
-
(2001)
Journal of Biomedical Materials Research
, vol.55
, Issue.2
, pp. 203-216
-
-
Hutmacher, D.W.1
Schantz, T.2
Zein, I.3
Ng, K.W.4
Teoh, S.H.5
Tan, K.C.6
-
14
-
-
3042782581
-
Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
-
DOI 10.1016/j.tibtech.2004.05.005, PII S0167779904001428
-
Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354-362, 2004. (Pubitemid 38887544)
-
(2004)
Trends in Biotechnology
, vol.22
, Issue.7
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
15
-
-
1842708954
-
Regeneration of trabecular bone using porous ceramics
-
DOI 10.1016/j.cossms.2003.09.012, PII S1359028603000767
-
Jones, J. R., and L. L. Hench. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7:301-307, 2003. (Pubitemid 38462038)
-
(2003)
Current Opinion in Solid State and Materials Science
, vol.7
, Issue.4-5
, pp. 301-307
-
-
Jones, J.R.1
Hench, L.L.2
-
16
-
-
0142059732
-
Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling
-
DOI 10.1016/S0928-4931(03)00052-3
-
Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C. 23:611-620, 2003. (Pubitemid 37261901)
-
(2003)
Materials Science and Engineering C
, vol.23
, Issue.5
, pp. 611-620
-
-
Kalita, S.J.1
Bose, S.2
Hosick, H.L.3
Bandyopadhyay, A.4
-
17
-
-
0028504004
-
Trabecular bone exhibits fully linear elastic behavior and yields at low strains
-
DOI 10.1016/0021-9290(94)90053-1
-
Keaveny, T. M., X. E. Guo, E. F. Wachtel, T. A. McMahon, and W. C. Hayes. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 27:1127-1136, 1994. (Pubitemid 24211193)
-
(1994)
Journal of Biomechanics
, vol.27
, Issue.9
, pp. 1127-1136
-
-
Keaveny, T.M.1
Guo, E.2
Wachtel, E.F.3
McMahon, T.A.4
Hayes, W.C.5
-
18
-
-
84920207932
-
The laws of bone architecture
-
Koch, J. C. The laws of bone architecture. Am. J. Anat. 21:177-298, 1917.
-
(1917)
Am. J. Anat.
, vol.21
, pp. 177-298
-
-
Koch, J.C.1
-
19
-
-
67149131699
-
Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering
-
Lacroix, D., J. A. Planell, and P. J. Prendergast. Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367:1993-2009, 2009.
-
(2009)
Philos. Trans. A Math. Phys. Eng. Sci.
, vol.367
, pp. 1993-2009
-
-
Lacroix, D.1
Planell, J.A.2
Prendergast, P.J.3
-
21
-
-
77955565285
-
Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study
-
Lee, C. H., J. L. Cook, A. Mendelson, E. K. Moioli, H. Yao, and J. J. Mao. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376:440-448, 2010.
-
(2010)
Lancet
, vol.376
, pp. 440-448
-
-
Lee, C.H.1
Cook, J.L.2
Mendelson, A.3
Moioli, E.K.4
Yao, H.5
Mao, J.J.6
-
22
-
-
1842419423
-
A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity
-
DOI 10.1016/j.jbiomech.2003.09.029, PII S0021929003003683
-
Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37:623-636, 2004. (Pubitemid 38445024)
-
(2004)
Journal of Biomechanics
, vol.37
, Issue.5
, pp. 623-636
-
-
Lin, C.Y.1
Kikuchi, N.2
Hollister, S.J.3
-
23
-
-
57849092100
-
Impact of bone geometry on effective properties of bone scaffolds
-
McIntosh, L., J. M. Cordell, and A. J. Wagoner Johnson. Impact of bone geometry on effective properties of bone scaffolds. Acta Biomater. 5:680-692, 2009.
-
(2009)
Acta Biomater.
, vol.5
, pp. 680-692
-
-
McIntosh, L.1
Cordell, J.M.2
Wagoner Johnson, A.J.3
-
24
-
-
77954382856
-
Mathematically defined tissue engineering scaffold architectures prepared by stereolithography
-
Melchels, F. P. W., K. Bertoldi, R. Gabbrielli, A. H. Velders, J. Feijen, and D. W. Grijpma. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31:6909-6916, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 6909-6916
-
-
Melchels, F.P.W.1
Bertoldi, K.2
Gabbrielli, R.3
Velders, A.H.4
Feijen, J.5
Grijpma, D.W.6
-
25
-
-
69249229501
-
Finite element study of scaffold architecture design and culture conditions for tissue engineering
-
Olivares, A. L., E. Marsal, J. A. Planell, and D. Lacroix. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30:6142-6149, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 6142-6149
-
-
Olivares, A.L.1
Marsal, E.2
Planell, J.A.3
Lacroix, D.4
-
26
-
-
77952956691
-
Locally orthotropic femur model
-
Palfi, P. Locally orthotropic femur model. J. Comput. Appl. Mech. 5:103-115, 2002.
-
(2002)
J. Comput. Appl. Mech.
, vol.5
, pp. 103-115
-
-
Palfi, P.1
-
27
-
-
70349684620
-
Reconstruction of subject-specific human femoral bone model with cortical porosity data using macro-CT
-
Pandithevan, P., and G. Saravana Kumar. Reconstruction of subject-specific human femoral bone model with cortical porosity data using macro-CT. Virtual Phys. Prototyp. 4:115-129, 2009.
-
(2009)
Virtual Phys. Prototyp.
, vol.4
, pp. 115-129
-
-
Pandithevan, P.1
Saravana Kumar, G.2
-
28
-
-
77954827802
-
Finite element analysis of a personalized femoral scaffold with designed microarchitecture
-
Pandithevan, P., and G. Saravana Kumar. Finite element analysis of a personalized femoral scaffold with designed microarchitecture. Proc. IMechE H J. Eng. Med. 224:877-889, 2010.
-
(2010)
Proc. IMechE H J. Eng. Med.
, vol.224
, pp. 877-889
-
-
Pandithevan, P.1
Saravana Kumar, G.2
-
29
-
-
34248189246
-
The biomechanics of human femurs in axial and torsional loading: Comparison of finite element analysis, human cadaveric femurs, and synthetic femurs
-
DOI 10.1115/1.2401178
-
Papini, M., R. Zdero, E. H. Schemitsch, and P. Zalzal. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J. Biomech. Eng. 129:12-19, 2007. (Pubitemid 46712831)
-
(2007)
Journal of Biomechanical Engineering
, vol.129
, Issue.1
, pp. 12-19
-
-
Papini, M.1
Zdero, R.2
Schemitsch, E.H.3
Zalzal, P.4
-
30
-
-
42449159656
-
A review of rapid prototyping techniques for tissue engineering purposes
-
DOI 10.1080/07853890701881788, PII 792339908
-
Peltola, S. M., F. P. W. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268-280, 2008. (Pubitemid 351563939)
-
(2008)
Annals of Medicine
, vol.40
, Issue.4
, pp. 268-280
-
-
Peltola, S.M.1
Melchels, F.P.W.2
Grijpma, D.W.3
Kellomaki, M.4
-
31
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
Rezwan, K., Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413-3431, 2006.
-
(2006)
Biomaterials
, vol.27
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.Z.2
Blaker, J.J.3
Boccaccini, A.R.4
-
32
-
-
40249089772
-
A finite element study of mechanical stimuli in scaffolds for bone tissue engineering
-
Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41:1005-1014, 2008.
-
(2008)
J. Biomech.
, vol.41
, pp. 1005-1014
-
-
Sandino, C.1
Planell, J.A.2
Lacroix, D.3
-
33
-
-
33746792330
-
Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model
-
DOI 10.1089/ten.2006.12.1539
-
Shao, X., J. C. Goh, D. W. Hutmacher, E. H. Lee, and G. Zigang. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesen-chymal stem cells in a rabbit model. Tissue Eng. 12:1539-1551, 2006. (Pubitemid 44174788)
-
(2006)
Tissue Engineering
, vol.12
, Issue.6
, pp. 1539-1551
-
-
Shao, X.1
Goh, J.C.H.2
Hutmacher, D.W.3
Lee, E.H.4
Zigang, G.5
-
34
-
-
67649992348
-
Design criteria for a printed tissue engineering construct: A math ematical homogenization approach
-
Shipley, R. J., G. W. Jones, R. J. Dyson, B. G. Sengers, C. L. Bailey, C. J. Catt, C. P. Please, and J. Malda. Design criteria for a printed tissue engineering construct: a math ematical homogenization approach. J. Theor. Biol. 259:489-502, 2009.
-
(2009)
J. Theor. Biol.
, vol.259
, pp. 489-502
-
-
Shipley, R.J.1
Jones, G.W.2
Dyson, R.J.3
Sengers, B.G.4
Bailey, C.L.5
Catt, C.J.6
Please, C.P.7
Malda, J.8
-
35
-
-
77956761652
-
Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering
-
Shor, L., S. Guceri, R. Chang, J. Gordon, Q. Kang, L. Hartsock, Y. An, and W. Sun. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1:015003, 2009.
-
(2009)
Biofabrication
, vol.1
, pp. 015003
-
-
Shor, L.1
Guceri, S.2
Chang, R.3
Gordon, J.4
Kang, Q.5
Hartsock, L.6
An, Y.7
Sun, W.8
-
36
-
-
37549037519
-
Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering
-
Simpson, R. L., F. E. Wiria, A. A. Amis, C. K. Chua, K. F. Leong, U. N. Hansen, M. Chandrasekaran, and M. W. Lee. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J. Biomed. Mater. Res. B Appl. Biomater. 84:17-25, 2008.
-
(2008)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.84
, pp. 17-25
-
-
Simpson, R.L.1
Wiria, F.E.2
Amis, A.A.3
Chua, C.K.4
Leong, K.F.5
Hansen, U.N.6
Chandrasekaran, M.7
Lee, M.W.8
-
37
-
-
79251617418
-
Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency
-
Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7:1009-1018, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1009-1018
-
-
Sobral, J.M.1
Caridade, S.G.2
Sousa, R.A.3
Mano, J.F.4
Reis, R.L.5
-
38
-
-
29844456396
-
Internal architecture design and freeform fabrication of tissue replacement structures
-
DOI 10.1016/j.cad.2005.08.001, PII S001044850500148X
-
Starly, B., W. Lau, T. Bradbury, and W. Sun. Internal architecture design and freeform fabrication of tissue replacement structures. Computer-Aided Des. 38:115-124, 2006. (Pubitemid 43038678)
-
(2006)
CAD Computer Aided Design
, vol.38
, Issue.2
, pp. 115-124
-
-
Starly, B.1
Lau, W.2
Bradbury, T.3
Sun, W.4
-
39
-
-
1042265021
-
Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds
-
Sun, W., B. Starly, A. Darling, and C. Gomez. Computer aided tissue engineering application to biomimetic modeling and design of tissue scaffold. Biotechnol. Appl. Biochem. 39:49-58, 2004. (Pubitemid 38200934)
-
(2004)
Biotechnology and Applied Biochemistry
, vol.39
, Issue.1
, pp. 49-58
-
-
Sun, W.1
Starly, B.2
Darling, A.3
Gomez, C.4
-
40
-
-
36248991772
-
Repair and regeneration of osteochondral defects in the articular joints
-
DOI 10.1016/j.bioeng.2007.07.014, PII S1389034407000834, Proceedings on Symposium J Surface Functionakization of Biomaterials
-
Swieszkowski, W., B. H. Tuan, K. J. Kurzydlowski, and D. W. Hutmacher. Repair and regeneration of osteochon- dral defects in the articular joints. Biomol. Eng. 24:489-495, 2007. (Pubitemid 350123179)
-
(2007)
Biomolecular Engineering
, vol.24
, Issue.5
, pp. 489-495
-
-
Swieszkowski, W.1
Tuan, B.H.S.2
Kurzydlowski, K.J.3
Hutmacher, D.W.4
-
41
-
-
37349006841
-
Trabecular scaffolds created using micro CT guided fused deposition modeling
-
DOI 10.1016/j.msec.2006.11.010, PII S0928493106003821
-
Tellis, B. C., J. A. Szivek, C. L. Bliss, D. S. Margolis, R. K. Vaidyanathan, and P. Calvert. Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng. C Mater. Biol. Appl. 28:171-178, 2009. (Pubitemid 350297869)
-
(2008)
Materials Science and Engineering C
, vol.28
, Issue.1
, pp. 171-178
-
-
Tellis, B.C.1
Szivek, J.A.2
Bliss, C.L.3
Margolis, D.S.4
Vaidyanathan, R.K.5
Calvert, P.6
-
42
-
-
0345215180
-
A comparative study on different methods of automatic mesh generation of human femurs
-
DOI 10.1016/S1350-4533(97)00049-0, PII S1350453397000490
-
Viceconti, M. A comparative study on different methods of automatic mesh generation on human femurs. Med. Eng. Phys. 20:1-10, 1998. (Pubitemid 28308159)
-
(1998)
Medical Engineering and Physics
, vol.20
, Issue.1
, pp. 1-10
-
-
Viceconti, M.1
Bellingeri, L.2
Cristofolini, L.3
Toni, A.4
-
43
-
-
14844322862
-
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
-
DOI 10.1016/j.biomaterials.2004.11.057, PII S0142961204011068
-
Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817-4827, 2005. (Pubitemid 40347312)
-
(2005)
Biomaterials
, vol.26
, Issue.23
, pp. 4817-4827
-
-
Williams, J.M.1
Adewunmi, A.2
Schek, R.M.3
Flanagan, C.L.4
Krebsbach, P.H.5
Feinberg, S.E.6
Hollister, S.J.7
Das, S.8
|