-
1
-
-
37249050005
-
Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development
-
Lie-Venema H, van den Akker NMS, Bax NAM, et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci World J. 2007; 7: 1777-98.
-
(2007)
Sci World J
, vol.7
, pp. 1777-1798
-
-
Lie-Venema, H.1
van den Akker, N.M.S.2
Bax, N.A.M.3
-
2
-
-
34548126504
-
Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart
-
Winter EM, Grauss RW, Hogers B, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007; 116: 917-27.
-
(2007)
Circulation
, vol.116
, pp. 917-927
-
-
Winter, E.M.1
Grauss, R.W.2
Hogers, B.3
-
3
-
-
0345516018
-
Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions
-
Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Mentink MMT, et al. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998; 82: 1043-52.
-
(1998)
Circ Res
, vol.82
, pp. 1043-1052
-
-
Gittenberger-de Groot, A.C.1
Vrancken Peeters, M.-P.2
Mentink, M.M.T.3
-
4
-
-
0032518298
-
Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart
-
Dettman RW, Denetclaw W, Ordahl CP, et al. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998; 193: 169-81.
-
(1998)
Dev Biol
, vol.193
, pp. 169-181
-
-
Dettman, R.W.1
Denetclaw, W.2
Ordahl, C.P.3
-
5
-
-
0033020504
-
Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium
-
Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, et al. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol. 1999; 199: 367-78.
-
(1999)
Anat Embryol
, vol.199
, pp. 367-378
-
-
Vrancken Peeters, M.-P.1
Gittenberger-de Groot, A.C.2
Mentink, M.M.T.3
-
6
-
-
16244393364
-
Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas ligand associated apoptosis patterns
-
Eralp I, Lie-Venema H, DeRuiter MC, et al. Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas ligand associated apoptosis patterns. Circ Res. 2005; 96: 526-34.
-
(2005)
Circ Res
, vol.96
, pp. 526-534
-
-
Eralp, I.1
Lie-Venema, H.2
DeRuiter, M.C.3
-
7
-
-
0034711517
-
Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation
-
Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Bergwerff M, et al. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000; 87: 969-71.
-
(2000)
Circ Res
, vol.87
, pp. 969-971
-
-
Gittenberger-de Groot, A.C.1
Vrancken Peeters, M.-P.2
Bergwerff, M.3
-
8
-
-
37549032743
-
Transcription Factor Sp3 knockout mice display serious cardiac malformations
-
Van Loo PF, Mahtab EAF, Wisse LJ, et al. Transcription Factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol. 2007; 27: 8571-82.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 8571-8582
-
-
Van Loo, P.F.1
Mahtab, E.A.F.2
Wisse, L.J.3
-
9
-
-
40849088002
-
Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development
-
Mahtab EAF, Wijffels MCEF, van den Akker NMS, et al. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn. 2008; 237: 847-57.
-
(2008)
Dev Dyn
, vol.237
, pp. 847-857
-
-
Mahtab, E.A.F.1
Wijffels, M.C.E.F.2
van den Akker, N.M.S.3
-
10
-
-
33845455495
-
Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart
-
Eralp I, Lie-Venema H, Bax NAM, et al. Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat Rec. 2006; 288A: 1272-80.
-
(2006)
Anat Rec
, vol.288 A
, pp. 1272-1280
-
-
Eralp, I.1
Lie-Venema, H.2
Bax, N.A.M.3
-
11
-
-
0026633108
-
Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture
-
Eid H, Larson DM, Springhorn JP, et al. Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res. 1992; 71: 40-50.
-
(1992)
Circ Res
, vol.71
, pp. 40-50
-
-
Eid, H.1
Larson, D.M.2
Springhorn, J.P.3
-
12
-
-
33846918187
-
Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cellsin vitro
-
van Tuyn J, Atsma DE, Winter EM, et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cellsin vitro. Stem Cells. 2007; 25: 271-8.
-
(2007)
Stem Cells
, vol.25
, pp. 271-278
-
-
van Tuyn, J.1
Atsma, D.E.2
Winter, E.M.3
-
13
-
-
34548126504
-
Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart
-
Winter EM, Grauss RW, Hogers B, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007; 116: 917-27.
-
(2007)
Circulation
, vol.116
, pp. 917-927
-
-
Winter, E.M.1
Grauss, R.W.2
Hogers, B.3
-
14
-
-
38849197532
-
Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish
-
Wills AA, Holdway JE, Major RJ, et al. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development. 2008; 135: 183-92.
-
(2008)
Development
, vol.135
, pp. 183-192
-
-
Wills, A.A.1
Holdway, J.E.2
Major, R.J.3
-
15
-
-
77954729235
-
Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia
-
Gittenberger-de Groot AC. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010; 14: 1056-60.
-
(2010)
J Cell Mol Med
, vol.14
, pp. 1056-1060
-
-
Gittenberger-de Groot, A.C.1
-
16
-
-
33846243239
-
Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization
-
Smart N, Risebro CA, Melville AA, et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007; 445: 177-82.
-
(2007)
Nature
, vol.445
, pp. 177-182
-
-
Smart, N.1
Risebro, C.A.2
Melville, A.A.3
-
17
-
-
77953665601
-
A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells
-
Winter EM, Van Oorschot AA, Hogers B, et al. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail. 2009; 2: 643-53.
-
(2009)
Circ Heart Fail
, vol.2
, pp. 643-653
-
-
Winter, E.M.1
Van Oorschot, A.A.2
Hogers, B.3
-
18
-
-
0037934446
-
Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host
-
Leobon B, Garcin I, Menasche P, et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA. 2003; 100: 7808-11.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 7808-7811
-
-
Leobon, B.1
Garcin, I.2
Menasche, P.3
-
19
-
-
0042232510
-
Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin
-
Gaudesius G, Miragoli M, Thomas SP, et al. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res. 2003; 93: 421-8.
-
(2003)
Circ Res
, vol.93
, pp. 421-428
-
-
Gaudesius, G.1
Miragoli, M.2
Thomas, S.P.3
-
20
-
-
33749452234
-
Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling
-
Pijnappels DA, Schalij MJ, van Tuyn J, et al. Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovasc Res. 2006; 72: 282-91.
-
(2006)
Cardiovasc Res
, vol.72
, pp. 282-291
-
-
Pijnappels, D.A.1
Schalij, M.J.2
van Tuyn, J.3
-
21
-
-
35648974723
-
Resynchronization of separated rat cardiomyocyte fields with genetically modified human ventricular scar fibroblasts
-
Pijnappels DA, van Tuyn J, de Vries AA, et al. Resynchronization of separated rat cardiomyocyte fields with genetically modified human ventricular scar fibroblasts. Circulation. 2007; 116: 2018-28.
-
(2007)
Circulation
, vol.116
, pp. 2018-2028
-
-
Pijnappels, D.A.1
van Tuyn, J.2
de Vries, A.A.3
-
22
-
-
48849114571
-
Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures
-
Pijnappels DA, Schalij MJ, Ramkisoensing AA, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res. 2008; 103: 167-76.
-
(2008)
Circ Res
, vol.103
, pp. 167-176
-
-
Pijnappels, D.A.1
Schalij, M.J.2
Ramkisoensing, A.A.3
-
23
-
-
33947538193
-
Cardiovascular development: towards biomedical applicability: epicardium-derived cells in cardiogenesis and cardiac regeneration
-
Winter EM, Gittenberger-de Groot AC. Cardiovascular development: towards biomedical applicability: epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007; 64: 692-703.
-
(2007)
Cell Mol Life Sci
, vol.64
, pp. 692-703
-
-
Winter, E.M.1
Gittenberger-de Groot, A.C.2
-
24
-
-
33646582608
-
Extracardiac tissues and the epigenetic control of myocardial development in vertebrate embryos
-
Manner J. Extracardiac tissues and the epigenetic control of myocardial development in vertebrate embryos. Ann Anat. 2006; 188: 199-212.
-
(2006)
Ann Anat
, vol.188
, pp. 199-212
-
-
Manner, J.1
-
26
-
-
42249090522
-
Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis
-
Jongbloed MR, Mahtab EAF, Blom NA, et al. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J. 2008; 8:239-69.
-
(2008)
Sci World J.
, vol.8
, pp. 239-269
-
-
Jongbloed, M.R.1
Mahtab, E.A.F.2
Blom, N.A.3
-
27
-
-
0032499732
-
Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers
-
Gourdie RG, Wei Y, Kim D, et al. Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA. 1998; 95: 6815-8.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 6815-6818
-
-
Gourdie, R.G.1
Wei, Y.2
Kim, D.3
-
28
-
-
0033539506
-
Induction of purkinje fiber differentiation by coronary arterialization
-
Hyer J, Johansen M, Prasad A, et al. Induction of purkinje fiber differentiation by coronary arterialization. Proc Natl Acad Sci USA. 1999; 96: 13214-8.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 13214-13218
-
-
Hyer, J.1
Johansen, M.2
Prasad, A.3
-
29
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 109-13.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
Ma, Q.2
Rajagopal, S.3
-
30
-
-
11144346203
-
Structural and functional characterisation of cardiac fibroblasts
-
Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005; 65: 40-51.
-
(2005)
Cardiovasc Res
, vol.65
, pp. 40-51
-
-
Camelliti, P.1
Borg, T.K.2
Kohl, P.3
-
31
-
-
34250695906
-
Multiple transforming growth factor β isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart
-
Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor β isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007; 185: 146-56.
-
(2007)
Cells Tissues Organs
, vol.185
, pp. 146-156
-
-
Mercado-Pimentel, M.E.1
Runyan, R.B.2
-
32
-
-
0034780381
-
Regulation of the epithelial-mesenchymal transformation through gap junction channels in heart development
-
Nishii K, Kumai M, Shibata Y. Regulation of the epithelial-mesenchymal transformation through gap junction channels in heart development. Trends Cardiovasc Med. 2001; 11: 213-8.
-
(2001)
Trends Cardiovasc Med
, vol.11
, pp. 213-218
-
-
Nishii, K.1
Kumai, M.2
Shibata, Y.3
-
33
-
-
0037371343
-
Role of catenins in the development of gap junctions in rat cardiomyocytes
-
Wu JC, Tsai RY, Chung TH. Role of catenins in the development of gap junctions in rat cardiomyocytes. J Cell Biochem. 2003; 88: 823-35.
-
(2003)
J Cell Biochem
, vol.88
, pp. 823-835
-
-
Wu, J.C.1
Tsai, R.Y.2
Chung, T.H.3
-
34
-
-
33750404816
-
N-cadherin is required for neural crest remodeling of the cardiac outflow tract
-
Luo Y, High FA, Epstein JA, et al. N-cadherin is required for neural crest remodeling of the cardiac outflow tract. Dev Biol. 2006; 299: 517-28.
-
(2006)
Dev Biol
, vol.299
, pp. 517-528
-
-
Luo, Y.1
High, F.A.2
Epstein, J.A.3
-
35
-
-
0033958486
-
Wnt-1 regulation of connexin43 in cardiac myocytes
-
Ai Z, Fischer A, Spray DC, et al. Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest. 2000; 105: 161-71.
-
(2000)
J Clin Invest
, vol.105
, pp. 161-171
-
-
Ai, Z.1
Fischer, A.2
Spray, D.C.3
-
36
-
-
24744444972
-
Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis
-
Li J, Patel VV, Kostetskii I, et al. Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res. 2005; 97: 474-81.
-
(2005)
Circ Res
, vol.97
, pp. 474-481
-
-
Li, J.1
Patel, V.V.2
Kostetskii, I.3
-
37
-
-
33947254557
-
Connexin43 repression following epithelium-to-mesenchyme transition in embryonal carcinoma cells requires Snail1 transcription factor
-
de Boer TP, van Veen TA, Bierhuizen MF, et al. Connexin43 repression following epithelium-to-mesenchyme transition in embryonal carcinoma cells requires Snail1 transcription factor. Differentiation. 2007; 75: 208-18.
-
(2007)
Differentiation
, vol.75
, pp. 208-218
-
-
de Boer, T.P.1
van Veen, T.A.2
Bierhuizen, M.F.3
-
38
-
-
0032425020
-
Gap junctions in vascular smooth muscle
-
Brink PR. Gap junctions in vascular smooth muscle. Acta Physiol Scand. 1998; 164: 349-56.
-
(1998)
Acta Physiol Scand
, vol.164
, pp. 349-356
-
-
Brink, P.R.1
-
39
-
-
77954088998
-
Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides
-
Dhein S, Hagen A, Jozwiak J, et al. Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides. Naunyn Schmiedebergs Arch Pharmacol. 2010; 381: 221-34.
-
(2010)
Naunyn Schmiedebergs Arch Pharmacol
, vol.381
, pp. 221-234
-
-
Dhein, S.1
Hagen, A.2
Jozwiak, J.3
-
40
-
-
0032498522
-
Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart
-
Coppen SR, Dupont E, Rothery S, et al. Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart. Circ Res. 1998; 82: 232-43.
-
(1998)
Circ Res
, vol.82
, pp. 232-243
-
-
Coppen, S.R.1
Dupont, E.2
Rothery, S.3
-
41
-
-
0033856620
-
Metanephrogenic mesenchyme-to-epithelium transition induces profound expression changes of ion channels
-
Huber SM, Braun GS, Segerer S, et al. Metanephrogenic mesenchyme-to-epithelium transition induces profound expression changes of ion channels. Am J Physiol Renal Physiol. 2000; 279: F65-76.
-
(2000)
Am J Physiol Renal Physiol.
, vol.279
-
-
Huber, S.M.1
Braun, G.S.2
Segerer, S.3
-
42
-
-
33644975212
-
Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells
-
Compton LA, Potash DA, Mundell NA, et al. Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev Dyn. 2006; 235: 82-93.
-
(2006)
Dev Dyn
, vol.235
, pp. 82-93
-
-
Compton, L.A.1
Potash, D.A.2
Mundell, N.A.3
-
43
-
-
33846188153
-
Transforming growth factor-beta1 decreases cardiac muscle L-type Ca2+ current and charge movement by acting on the Cav1.2 mRNA
-
Avila G, Medina IM, Jimenez E, et al. Transforming growth factor-beta1 decreases cardiac muscle L-type Ca2+ current and charge movement by acting on the Cav1.2 mRNA. Am J Physiol Heart Circ Physiol. 2007; 292: H622-31.
-
(2007)
Am J Physiol Heart Circ Physiol.
, vol.292
-
-
Avila, G.1
Medina, I.M.2
Jimenez, E.3
-
44
-
-
42949113689
-
Transforming growth factor-beta1 decreases epithelial sodium channel functionality in renal collecting duct cellsviaa Smad4-dependent pathway
-
Chang CT, Hung CC, Chen YC, et al. Transforming growth factor-beta1 decreases epithelial sodium channel functionality in renal collecting duct cellsviaa Smad4-dependent pathway. Nephrol Dial Transplant. 2008; 23: 1126-34.
-
(2008)
Nephrol Dial Transplant
, vol.23
, pp. 1126-1134
-
-
Chang, C.T.1
Hung, C.C.2
Chen, Y.C.3
|