메뉴 건너뛰기




Volumn 19, Issue 38, 2013, Pages 6823-6838

Acetylome regulation by sirtuins in the brain: From normal physiology to aging and pathology

Author keywords

Acetylome; Aging; Brain; Calorie restriction; Lysine acetyltransferases; Lysine deace tylases; Neurodegeneration; Reversible lysine acetylation; SIRT1; Sirtuins

Indexed keywords

NONHISTONE PROTEIN; SIRTUIN; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; LYSINE; PROTEOME;

EID: 84881537665     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/1381612811319380014     Document Type: Article
Times cited : (13)

References (178)
  • 1
    • 28044431588 scopus 로고    scopus 로고
    • Protein variety and functional diversity: Swiss-Prot annotation in its biological context
    • [1] Boeckmann B, Blatter MC, Famiglietti L, et al. Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C R Biol 2005; 328: 882-99.
    • (2005) C R Biol , vol.328 , pp. 882-899
    • Boeckmann, B.1    Blatter, M.C.2    Famiglietti, L.3
  • 2
    • 84858726212 scopus 로고    scopus 로고
    • Proteomic databases and tools to decipher post-translational modifications
    • [2] Kamath KS, Vasavada MS, Srivastava S. Proteomic databases and tools to decipher post-translational modifications. J Proteomics 2011; 75: 127-44.
    • (2011) J Proteomics , vol.75 , pp. 127-144
    • Kamath, K.S.1    Vasavada, M.S.2    Srivastava, S.3
  • 3
    • 35848970747 scopus 로고    scopus 로고
    • Mapping protein post-translational modifications with mass spectrometry
    • [3] Witze ES, Old WM, Resing KA and Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Meth 2007; 4: 798-806.
    • (2007) Nat Meth , vol.4 , pp. 798-806
    • Witze, E.S.1    Old, W.M.2    Resing, K.A.3    Ahn, N.G.4
  • 4
    • 84859490749 scopus 로고    scopus 로고
    • Protein N-terminal ace- tyltransferases: When the start matters
    • [4] Starheim, KK, Gevaert K and Arnesen T. Protein N-terminal ace- tyltransferases: when the start matters. Trends Biochem Sci 2012; 37: 152-61.
    • (2012) Trends Biochem Sci , vol.37 , pp. 152-161
    • Starheim, K.K.1    Gevaert, K.2    Arnesen, T.3
  • 5
    • 0007852927 scopus 로고
    • The presence of acetyl groups of histones
    • [5] Phillips D, The presence of acetyl groups of histones. Biochem J 1963; 87: 258-63.
    • (1963) Biochem J , vol.87 , pp. 258-263
    • Phillips, D.1
  • 6
    • 78651162036 scopus 로고
    • Acetylation and methyla- tion of histones and their possible role in the regulation of RNA synthesis
    • [6] Allfrey VG, Faulkner R and Mirsky A. Acetylation and methyla- tion of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 1964; 51: 786-94.
    • (1964) Proc Natl Acad Sci USA , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.3
  • 7
    • 0021812747 scopus 로고
    • Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum. Disappearance of these proteins at metaphase and reappearance at anaphase
    • [7] Mueller R, Yasuda H, Hatch C, et al. Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum. Disappearance of these proteins at metaphase and reappearance at anaphase. J Biol Chem 1985; 260: 5147-53.
    • (1985) J Biol Chem , vol.260 , pp. 5147-5153
    • Mueller, R.1    Yasuda, H.2    Hatch, C.3
  • 8
    • 0014691193 scopus 로고
    • Action of adenosine 3’,5'-monophosphate-dependent histone kinase in vivo
    • [8] Langan T. Action of adenosine 3’,5'-monophosphate-dependent histone kinase in vivo. J Biol Chem 1969; 244: 5763-65.
    • (1969) J Biol Chem , vol.244 , pp. 5763-5765
    • Langan, T.1
  • 9
    • 84864684030 scopus 로고    scopus 로고
    • Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events
    • [9] Liokatis S, Stützer A, Elsässer SJ, et al. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nat Struct Mol Biol 2012; 19: 819-23.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 819-823
    • Liokatis, S.1    Stützer, A.2    Elsässer, S.J.3
  • 10
    • 0015184511 scopus 로고
    • Histones: Structure and function
    • DeLange R.and Smith E
    • [10] DeLange R.and Smith E., Histones: structure and function. Annu Rev Biochem 1971; 40: 279-314.
    • (1971) Annu Rev Biochem , vol.40 , pp. 279-314
  • 11
    • 0017743724 scopus 로고
    • The modification of nuclear proteins by ADP-ribosylation
    • [11] Rickwood D, MacGillivray A and Whish W. The modification of nuclear proteins by ADP-ribosylation. Eur J Biochem 1977; 79: 589-98.
    • (1977) Eur J Biochem , vol.79 , pp. 589-598
    • Rickwood, D.1    Macgillivray, A.2    Whish, W.3
  • 12
    • 0344824404 scopus 로고    scopus 로고
    • Histone sumoylation is associated with transcriptional repression
    • [12] Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 2003; 100: 13225-30.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 13225-13230
    • Shiio, Y.1    Eisenman, R.N.2
  • 13
    • 0036295234 scopus 로고    scopus 로고
    • Deimination of argin-ine residues in nucleophosmin/B23 and histones in HL-60 granulo-cytes
    • [13] Hagiwara T, Nakashima K, Hirano H, et al. Deimination of argin-ine residues in nucleophosmin/B23 and histones in HL-60 granulo-cytes. Biochem Biophys Res Commun 2002; 290: 979-83.
    • (2002) Biochem Biophys Res Commun , vol.290 , pp. 979-983
    • Hagiwara, T.1    Nakashima, K.2    Hirano, H.3
  • 14
    • 4444372638 scopus 로고    scopus 로고
    • Histone deimination antagonizes arginine methylation
    • [14] Cuthbert GL, Daujat S, Snowden A.W, et al. Histone deimination antagonizes arginine methylation. Cell 2004; 118: 545-53.
    • (2004) Cell , vol.118 , pp. 545-553
    • Cuthbert, G.L.1    Daujat, S.2    Snowden, A.W.3
  • 15
    • 78650447665 scopus 로고    scopus 로고
    • Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code
    • [15] Sakabe K, Wang Z and Hart GW. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA 2010; 107 19915-20.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 19915-19920
    • Sakabe, K.1    Wang, Z.2    Hart, G.W.3
  • 16
    • 69449102464 scopus 로고    scopus 로고
    • Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes
    • [16] Wang Z, Zang C, Cui K, Schones DE, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009; 138: 1019-31.
    • (2009) Cell , vol.138 , pp. 1019-1031
    • Wang, Z.1    Zang, C.2    Cui, K.3    Schones, D.E.4
  • 17
    • 0018801554 scopus 로고
    • Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1
    • [17] Sterner R, Vidali G and Allfrey VG. Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1. J Biol Chem 1979; 254: 11577-83.
    • (1979) J Biol Chem , vol.254 , pp. 11577-11583
    • Sterner, R.1    Vidali, G.2    Allfrey, V.G.3
  • 18
    • 68949212379 scopus 로고    scopus 로고
    • Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions
    • [18] Choudhary C, Kumar C, Gna F, et al. Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science 2009; 325: 834-40.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gna, F.3
  • 19
    • 82555170600 scopus 로고    scopus 로고
    • Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation
    • [19] Lu Z, Cheng Z, Zhao Y, Volchenboum SL. Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation. PloS one 2011; 6: e28228.
    • (2011) Plos One , vol.6
    • Lu, Z.1    Cheng, Z.2    Zhao, Y.3    Volchenboum, S.L.4
  • 20
    • 84860848452 scopus 로고    scopus 로고
    • Exploring the yeast acetylome using functional genomics
    • [20] Kaluarachchi Duffy S, Friesen H, Baryshnikova A, et al. Exploring the yeast acetylome using functional genomics. Cell 2012; 149: 936-48.
    • (2012) Cell , vol.149 , pp. 936-948
    • Kaluarachchi Duffy, S.1    Friesen, H.2    Baryshnikova, A.3
  • 21
    • 78651279978 scopus 로고    scopus 로고
    • CPLA 1.0: An integrated database of protein lysine acetylation
    • [21] Liu Z, Cao J, Gao X, et al. CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res 2011; 39: D1029-34.
    • (2011) Nucleic Acids Res , vol.39 , pp. 1029-1034
    • Liu, Z.1    Cao, J.2    Gao, X.3
  • 22
    • 79954415619 scopus 로고    scopus 로고
    • Comprehensive lysine acetylomes emerging from bacteria to humans
    • [22] Kim GW, Yang XJ, Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochemical Sci 2010; 36: 211-20.
    • (2010) Trends Biochemical Sci , vol.36 , pp. 211-220
    • Kim, G.W.1    Yang, X.J.2
  • 23
    • 79960797509 scopus 로고    scopus 로고
    • Proteome-Wide Mapping of the Drosophila Acetylome Demonstrates a High Degree of Conservation of Lysine Acetylation
    • [23] Weinert BT, Wagner SA, Horn H, et al. Proteome-Wide Mapping of the Drosophila Acetylome Demonstrates a High Degree of Conservation of Lysine Acetylation. Sci Signa. 2011; 4: 1-11.
    • (2011) Sci Signa , vol.4 , pp. 1-11
    • Weinert, B.T.1    Wagner, S.A.2    Horn, H.3
  • 24
    • 79953702814 scopus 로고    scopus 로고
    • Lysine Acetylation Is a Widespread Protein Modification for Diverse Proteins in Arabidopsis
    • [24] Wu X, Oh MH, Schwarz EM, et al. Lysine Acetylation Is a Widespread Protein Modification for Diverse Proteins in Arabidopsis. Plant Physiol 2011; 155: 1769-78.
    • (2011) Plant Physiol , vol.155 , pp. 1769-1778
    • Wu, X.1    Oh, M.H.2    Schwarz, E.M.3
  • 25
    • 62149143727 scopus 로고    scopus 로고
    • Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating glu-coneogenesis
    • [25] Lin YY, Lu JY, Zhang J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating glu-coneogenesis. Cell 2009; 136: 1073-84.
    • (2009) Cell , vol.136 , pp. 1073-1084
    • Lin, Y.Y.1    Lu, J.Y.2    Zhang, J.3
  • 26
    • 84867186480 scopus 로고    scopus 로고
    • Quantitative Acetylome Analysis Reveals the Roles of SIRT1 in Regulating Diverse Substrates and Cellular Pathways
    • [26] Chen Y, Zhao W, Yang JSS, et al. Quantitative Acetylome Analysis Reveals the Roles of SIRT1 in Regulating Diverse Substrates and Cellular Pathways. Mol Cell Proteomics P 2012; 11: 1048-62.
    • (2012) Mol Cell Proteomics P , vol.11 , pp. 1048-1062
    • Chen, Y.1    Zhao, W.2    Yang, J.3
  • 27
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • [27] Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010; 327: 1000-4.
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1    Xu, W.2    Jiang, W.3
  • 28
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey
    • [28] Kim SC, Sprung R, Chen Y, et al. Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey. Mol Cell 2006; 23: 607-18.
    • (2006) Mol Cell , vol.23 , pp. 607-618
    • Kim, S.C.1    Sprung, R.2    Chen, Y.3
  • 29
    • 78751513117 scopus 로고    scopus 로고
    • Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
    • [29] Kendrick AA, Choudhury M, Rahman SMM, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. J Biol Chem 201; 433: 505-14.
    • J Biol Chem 201 , vol.433 , pp. 505-514
    • Kendrick, A.A.1    Choudhury, M.2    Rahman, S.3
  • 30
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • [30] Schwer B, Eckersdorff M, Li Y, et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009; 8: 604-6.
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1    Eckersdorff, M.2    Li, Y.3
  • 31
    • 80052450371 scopus 로고    scopus 로고
    • The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetyla-tion coordinates organ-specific fuel switching
    • [31] Yang L, Vaitheesvaran B, Hartil K, et al. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetyla-tion coordinates organ-specific fuel switching. J Proteome Res 2011; 10: 4134-49.
    • (2011) J Proteome Res , vol.10 , pp. 4134-4149
    • Yang, L.1    Vaitheesvaran, B.2    Hartil, K.3
  • 32
    • 84863338534 scopus 로고    scopus 로고
    • Peripheral effects of FAAH deficiency on fuel and energy homeostasis: Role of dysregu-lated lysine acetylation
    • [32] Vaitheesvaran B, Yang L, Hartil K, et al. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregu-lated lysine acetylation. PloS one 2012; 7: e33717.
    • (2012) Plos One , vol.7
    • Vaitheesvaran, B.1    Yang, L.2    Hartil, K.3
  • 33
    • 0029932598 scopus 로고    scopus 로고
    • A mammalian histone deacety-lase related to the yeast transcriptional regulator Rpd3p
    • [33] Taunton J, Hassig C, Schreiber S. A mammalian histone deacety-lase related to the yeast transcriptional regulator Rpd3p. Science 1996; 272: 408-11.
    • (1996) Science , vol.272 , pp. 408-411
    • Taunton, J.1    Hassig, C.2    Schreiber, S.3
  • 34
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena Histone Acetyl-transferase A: A Homolog to Yeast Gcn5p Linking Histone Acety-lation to Gene Activation
    • [34] Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena Histone Acetyl-transferase A: A Homolog to Yeast Gcn5p Linking Histone Acety-lation to Gene Activation. Cell 1996; 84: 843-51.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1    Zhou, J.2    Ranalli, T.3
  • 35
    • 0034677535 scopus 로고    scopus 로고
    • Transcrip-tional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • [35] Imai S, Armstrong CM, Kaeberlein M and Guarente L. Transcrip-tional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 36
    • 56049090769 scopus 로고    scopus 로고
    • Acetylation of non-histone proteins modulates cellular signalling at multiple levels
    • [36] Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2009; 41: 185-98.
    • (2009) Int J Biochem Cell Biol , vol.41 , pp. 185-198
    • Spange, S.1    Wagner, T.2    Heinzel, T.3    Krämer, O.H.4
  • 37
    • 1842578986 scopus 로고    scopus 로고
    • Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis
    • [37] Gregoretti IV, Lee YMM, Goodson HV, Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338: 17-31.
    • (2004) J Mol Biol , vol.338 , pp. 17-31
    • Gregoretti, I.V.1    Lee, Y.2    Goodson, H.V.3
  • 38
    • 34547924046 scopus 로고    scopus 로고
    • HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention
    • [38] Yang X and Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. On-cogene 2007; 26: 5310-8.
    • (2007) On-Cogene , vol.26 , pp. 5310-5318
    • Yang, X.1    Seto, E.2
  • 40
    • 0034968450 scopus 로고    scopus 로고
    • Mammalian histone acetyltransferases and their complexes
    • [40] Ogryzko VV. Mammalian histone acetyltransferases and their complexes. Cell Mol Life Sci 2001; 58: 683-92.
    • (2001) Cell Mol Life Sci , vol.58 , pp. 683-692
    • Ogryzko, V.V.1
  • 41
    • 61849144810 scopus 로고    scopus 로고
    • HDAC family: What are the cancer relevant targets?
    • [41] Witt O, Deubzer HE, Milde T and Oehme I. HDAC family: What are the cancer relevant targets? Cancer Lett 2009; 277: 8-21.
    • (2009) Cancer Lett , vol.277 , pp. 8-21
    • Witt, O.1    Deubzer, H.E.2    Milde, T.3    Oehme, I.4
  • 42
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • [42] Frye R. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000; 273: 793-8.
    • (2000) Biochem Biophys Res Commun , vol.273 , pp. 793-798
    • Frye, R.1
  • 43
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • [43] Michan S and Sinclair D. Sirtuins in mammals: insights into their biological function. J Biol Chem 2007; 404: 1-13.
    • (2007) J Biol Chem , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 44
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • [44] Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105: 3374-9.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 46
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation
    • [46] Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation. Mol Cell Biol 2007; 27: 8807-14.
    • (2007) Mol Cell Biol , vol.27 , pp. 8807-8814
    • Lombard, D.B.1    Alt, F.W.2    Cheng, H.L.3
  • 47
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • [47] Michan S and Sinclair D. Sirtuins in mammals: insights into their biological function. J Biol Chem 2007; 404: 1-13.
    • (2007) J Biol Chem , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 48
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • [48] Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007, 282, 6823-32.
    • (2007) J Biol Chem , vol.282 , pp. 6823-6832
    • Tanno, M.1    Sakamoto, J.2    Miura, T.3
  • 49
    • 34547098165 scopus 로고    scopus 로고
    • Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation
    • [49] North BJ and Verdin E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J Biol Chem 2007; 282: 19546-55.
    • (2007) J Biol Chem , vol.282 , pp. 19546-19555
    • North, B.J.1    Verdin, E.2
  • 50
    • 64049089450 scopus 로고    scopus 로고
    • SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARy
    • [50] Wang F and Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARy. Mol Biol Cell 2009; 20: 801-8.
    • (2009) Mol Biol Cell , vol.20 , pp. 801-808
    • Wang, F.1    Tong, Q.2
  • 51
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • [51] North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 1: 437-44.
    • (2003) Mol Cell , vol.1 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3
  • 52
    • 34447626095 scopus 로고    scopus 로고
    • SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
    • [52] Wang F, Nguyen M, Qin FX and Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007; 6: 505-14.
    • (2007) Aging Cell , vol.6 , pp. 505-514
    • Wang, F.1    Nguyen, M.2    Qin, F.X.3    Tong, Q.4
  • 53
    • 78649738291 scopus 로고    scopus 로고
    • SIRT2 regulates NF-KB-dependent gene expression through deacetylation of p65 Lys310
    • [53] Rothgiesser KM, Erener S, Waibel S, et al. SIRT2 regulates NF-KB-dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 2010; 123: 4251-8.
    • (2010) J Cell Sci , vol.123 , pp. 4251-4258
    • Rothgiesser, K.M.1    Erener, S.2    Waibel, S.3
  • 54
    • 80054769188 scopus 로고    scopus 로고
    • SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
    • [54] Kim HSS, Vassilopoulos A, Wang RHH, Lahusen T, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011; 20: 487-99.
    • (2011) Cancer Cell , vol.20 , pp. 487-499
    • Kim, H.1    Vassilopoulos, A.2    Wang, R.3    Lahusen, T.4
  • 55
    • 84866620575 scopus 로고    scopus 로고
    • Acetylation regulates subcellular localization of eukaryotic translation initiation factor 5A (eIF5A)
    • [55] Ishfaq M, Maeta K, Maeda S, et al. Acetylation regulates subcellular localization of eukaryotic translation initiation factor 5A (eIF5A). FEBS Letters 2012; 586: 3236-41.
    • (2012) FEBS Letters , vol.586 , pp. 3236-3241
    • Ishfaq, M.1    Maeta, K.2    Maeda, S.3
  • 56
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • [56] Palacios OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009; 1: 771-83.
    • (2009) Aging , vol.1 , pp. 771-783
    • Palacios, O.M.1    Carmona, J.J.2    Michan, S.3
  • 57
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • [57] Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121-5.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 58
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • [58] Kim HSS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010; 17: 41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.1    Patel, K.2    Muldoon-Jacobs, K.3
  • 59
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 opposes reprogram-ming of cancer cell metabolism through HIF1a destabilization
    • [59] Finley LW, Carracedo A, Lee, et al. SIRT3 opposes reprogram-ming of cancer cell metabolism through HIF1a destabilization. Cancer Cell 2011; 19: 416-28.
    • (2011) Cancer Cell , vol.19 , pp. 416-428
    • Finley, L.W.1    Carracedo, Lee, A.2
  • 60
    • 79952266729 scopus 로고    scopus 로고
    • Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
    • [60] Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2010; 2: 914-23.
    • (2010) Aging , vol.2 , pp. 914-923
    • Hafner, A.V.1    Dai, J.2    Gomes, A.P.3
  • 61
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
    • [61] Pillai VB, Sundaresan NR, Kim G, Gupta M, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 2010; 285: 3133-44.
    • (2010) J Biol Chem , vol.285 , pp. 3133-3144
    • Pillai, V.B.1    Sundaresan, N.R.2    Kim, G.3    Gupta, M.4
  • 62
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • [62] Sundaresan NR, Gupta M, Kim G, Rajamohan SB, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119: 2758-71.
    • (2009) J Clin Invest , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3    Rajamohan, S.B.4
  • 63
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic p Cells
    • [63] Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic p Cells. Cell 2006; 126: 941-54.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 64
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • [64] Ahuja N, Schwer B, Carobbio S, Waltregny D, et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 2007; 282: 33583-92.
    • (2007) J Biol Chem , vol.282 , pp. 33583-33592
    • Ahuja, N.1    Schwer, B.2    Carobbio, S.3    Waltregny, D.4
  • 65
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • [65] Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011; 334: 806-9.
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3
  • 66
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • [66] Nakagawa T, Lomb DJ, Haigis MC and Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560-70.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 67
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
    • [67] Zhong L, D’Urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140: 280-93.
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1    D’Urso, A.2    Toiber, D.3
  • 68
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
    • [68] Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012; 18: 1643-50.
    • (2012) Nat Med , vol.18 , pp. 1643-1650
    • Sundaresan, N.R.1    Vasudevan, P.2    Zhong, L.3
  • 69
    • 84871336282 scopus 로고    scopus 로고
    • Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice
    • [69] Xiao C, Wang RHH, Lahusen TJ, Park O, et al. Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice. J Biol Chem 2012; 287: 41903-13.
    • (2012) J Biol Chem , vol.287 , pp. 41903-41913
    • Xiao, C.1    Wang, R.2    Lahusen, T.J.3    Park, O.4
  • 70
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • [70] Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483: 218-21.
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1    Naiman, S.2    Amir, G.3
  • 71
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homo log SIRT6 is a nuclear ADP-ribosyltransferase
    • [71] Liszt G, Ford E, Kurtev M and Guarente L. Mouse Sir2 homo log SIRT6 is a nuclear ADP-ribosyltransferase. The J Biol Chem 2005; 280: 21313-20.
    • (2005) The J Biol Chem , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 72
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • [72] Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487: 114-8.
    • (2012) Nature , vol.487 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3
  • 73
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 Increases Stress Resistance of Cardiomyocytes and Prevents Apoptosis and Inflammatory Cardiomyopathy in Mice
    • [73] Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 Increases Stress Resistance of Cardiomyocytes and Prevents Apoptosis and Inflammatory Cardiomyopathy in Mice. Circ Res 2008; 102: 703-10.
    • (2008) Circ Res , vol.102 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3
  • 74
    • 77954041542 scopus 로고    scopus 로고
    • Protein acetylation in synaptic plasticity and memory
    • [74] Sharma SK. Protein acetylation in synaptic plasticity and memory. Neurosci Biobehav Rev 2010; 34: 1234-40.
    • (2010) Neurosci Biobehav Rev , vol.34 , pp. 1234-1240
    • Sharma, S.K.1
  • 75
    • 34248523169 scopus 로고    scopus 로고
    • Recovery of learning and memory is associated with chromatin remodelling
    • [75] Fischer A, Sananbenesi F, Wang X, et al. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007; 447: 178-82.
    • (2007) Nature , vol.447 , pp. 178-182
    • Fischer, A.1    Sananbenesi, F.2    Wang, X.3
  • 76
    • 65549123471 scopus 로고    scopus 로고
    • HDAC2 negatively regulates memory formation and synaptic plasticity
    • [76] Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009; 459: 55-60.
    • (2009) Nature , vol.459 , pp. 55-60
    • Guan, J.S.1    Haggarty, S.J.2    Giacometti, E.3
  • 77
    • 77954855825 scopus 로고    scopus 로고
    • SIRT1 is essential for normal cognitive function and synaptic plasticity
    • [77] Michan S, Li Y, Chou MMH, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 2010; 30: 9695-707.
    • (2010) J Neurosci , vol.30 , pp. 9695-9707
    • Michan, S.1    Li, Y.2    Chou, M.3
  • 78
    • 77956185062 scopus 로고    scopus 로고
    • A novel pathway regulates memory and plasticity via SIRT1 and miR-134
    • [78] Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466: 1105-9.
    • (2010) Nature , vol.466 , pp. 1105-1109
    • Gao, J.1    Wang, W.Y.2    Mao, Y.W.3
  • 79
    • 0034213719 scopus 로고    scopus 로고
    • Insulin-Like Growth Factor I Stimulates Dendritic Growth in Primary Somatosensory Cortex
    • [79] Niblock MM, Brunso-Bechtold JK and Riddle DR. Insulin-Like Growth Factor I Stimulates Dendritic Growth in Primary Somatosensory Cortex. J Neurosci 2000; 20: 4165-76.
    • (2000) J Neurosci , vol.20 , pp. 4165-4176
    • Niblock, M.M.1    Brunso-Bechtold, J.K.2    Riddle, D.R.3
  • 80
    • 0042133327 scopus 로고    scopus 로고
    • Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites
    • [80] Gorski JA, Zeiler SR, Tamowski S and Jones KR. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 2003; 23: 6856-65.
    • (2003) J Neurosci , vol.23 , pp. 6856-6865
    • Gorski, J.A.1    Zeiler, S.R.2    Tamowski, S.3    Jones, K.R.4
  • 81
    • 33749590330 scopus 로고    scopus 로고
    • Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation
    • [81] Zhou Z, Hong EJ, Cohen S, et al. Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. Neuron 2006; 52: 255-69.
    • (2006) Neuron , vol.52 , pp. 255-269
    • Zhou, Z.1    Hong, E.J.2    Cohen, S.3
  • 82
    • 42149141146 scopus 로고    scopus 로고
    • Functionally significant insulin-like growth factor I receptor mutations in centenarians
    • [82] Suh Y, Atzmon G, Cho MOO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 2008; 105: 3438-42.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3438-3442
    • Suh, Y.1    Atzmon, G.2    Cho, M.3
  • 83
    • 0034613164 scopus 로고    scopus 로고
    • Regulation of C. Elegans life-span by insulinlike signaling in the nervous system
    • [83] Wolkow C, Kimura K, Lee M and Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000; 290: 147-50.
    • (2000) Science , vol.290 , pp. 147-150
    • Wolkow, C.1    Kimura, K.2    Lee, M.3    Ruvkun, G.4
  • 84
    • 36549062949 scopus 로고    scopus 로고
    • Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects
    • [84] Trejo JL, Piriz J, Llorens-Martin MV, et al. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry 2007; 12: 118-28.
    • (2007) Mol Psychiatry , vol.12 , pp. 118-128
    • Trejo, J.L.1    Piriz, J.2    Llorens-Martin, M.V.3
  • 85
    • 0032725305 scopus 로고    scopus 로고
    • A necessity for MAP kinase activation in mammalian spatial learning
    • [85] Selcher JC, Atkins CM, Trzaskos JM, et al. A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem 1999; 6: 478-90.
    • (1999) Learn Mem , vol.6 , pp. 478-490
    • Selcher, J.C.1    Atkins, C.M.2    Trzaskos, J.M.3
  • 87
    • 71449108913 scopus 로고    scopus 로고
    • Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice
    • [87] Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice. Cell 2009; 139: 1157-69.
    • (2009) Cell , vol.139 , pp. 1157-1169
    • Cohen, E.1    Paulsson, J.F.2    Blinder, P.3
  • 88
    • 45549096918 scopus 로고    scopus 로고
    • SirT1 Inhibition Reduces IGF-I/IRS-2/Ras/ERK1/2 Signaling and Protects Neurons
    • [88] Li Y, Xu, Mcburney M and Longo V. SirT1 Inhibition Reduces IGF-I/IRS-2/Ras/ERK1/2 Signaling and Protects Neurons. Cell Metab 2008; 8: 38-48.
    • (2008) Cell Metab , vol.8 , pp. 38-48
    • Li, Y.1    Xu, Mcburney, M.2    Longo, V.3
  • 89
    • 83055185674 scopus 로고    scopus 로고
    • Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging
    • [89] Zeng Y, Tan M, Kohyama J, et al. Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging. J Neurosci 2011; 31: 17800-10.
    • (2011) J Neurosci , vol.31 , pp. 17800-17810
    • Zeng, Y.1    Tan, M.2    Kohyama, J.3
  • 90
    • 84863808547 scopus 로고    scopus 로고
    • SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression
    • [90] Zocchi L and Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012; 7: 695-700.
    • (2012) Epigenetics , vol.7 , pp. 700
    • Zocchi, L.1    Sassone-Corsi, P.2
  • 91
    • 41149136753 scopus 로고    scopus 로고
    • Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65
    • [91] Buerki C, Rothgiesser KM, Valovka T, et al. Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65. Nucleic Acids Research 2008; 36: 1665-80.
    • (2008) Nucleic Acids Research , vol.36 , pp. 1665-1680
    • Buerki, C.1    Rothgiesser, K.M.2    Valovka, T.3
  • 92
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • [92] Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62-74.
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 93
    • 0141653866 scopus 로고    scopus 로고
    • Wiltgen BJ, et al.NF-kappa B functions in synaptic signaling and behavior
    • [93] Meffert MK. Chang JM, Wiltgen BJ, et al.NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci 2003; 6: 1072-8.
    • (2003) Nat Neurosci , vol.6 , pp. 1072-1078
    • Meffert, M.K.1    Chang, J.M.2
  • 94
    • 84860375179 scopus 로고    scopus 로고
    • NF-kB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus
    • [94] Oikawa K, Odero GL, Platt E, et al. NF-kB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus. BMC Neurosci 2012; 13: 45.
    • (2012) BMC Neurosci , vol.13 , pp. 45
    • Oikawa, K.1    Odero, G.L.2    Platt, E.3
  • 95
    • 34447315270 scopus 로고    scopus 로고
    • HDAC6 modulates cell motility by altering the acetylation level of cortactin
    • [95] Zhang X, Yuan Z, Zhang Y, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 2007; 27: 197-213.
    • (2007) Mol Cell , vol.27 , pp. 197-213
    • Zhang, X.1    Yuan, Z.2    Zhang, Y.3
  • 96
    • 59649126261 scopus 로고    scopus 로고
    • Deacetylation of cortactin by SIRT1 promotes cell migration
    • [96] Zhang Y, Zhang M, Dong H, et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 2009; 28: 445-60.
    • (2009) Oncogene , vol.28 , pp. 445-460
    • Zhang, Y.1    Zhang, M.2    Dong, H.3
  • 97
    • 84937233161 scopus 로고    scopus 로고
    • Regulation of Synapse Composition by Protein Acetylation: The Role of Acety-lated Cortactin
    • ahead of print
    • [97] Catarino T, Ribeiro L, Santos SD and Carvalho AL. Regulation of Synapse Composition by Protein Acetylation: The Role of Acety-lated Cortactin. J Cell Sci 2012; ahead of print.
    • (2012) J Cell Sci
    • Catarino, T.1    Ribeiro, L.2    Santos, S.D.3    Carvalho, A.L.4
  • 98
    • 80054928135 scopus 로고    scopus 로고
    • CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement
    • [98] Lopez-Atalaya JP, Ciccarelli A, Viosca J, et al. CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J 2011; 30: 4287-98.
    • (2011) EMBO J , vol.30 , pp. 4287-4298
    • Lopez-Atalaya, J.P.1    Ciccarelli, A.2    Viosca, J.3
  • 99
    • 79951844222 scopus 로고    scopus 로고
    • Role of Pax3 acetylation in the regulation of Hes1 and Neurog2
    • [99] Ichia S, Boshnjakua V, Shena YW, et al. Role of Pax3 acetylation in the regulation of Hes1 and Neurog2. Mol Biol Cell 2011; 22: 503-12.
    • (2011) Mol Biol Cell , vol.22 , pp. 503-512
    • Ichia, S.1    Boshnjakua, V.2    Shena, Y.W.3
  • 100
    • 84870565938 scopus 로고    scopus 로고
    • BCL6 controls neuro-genesis through Sirt1-dependent epigenetic repression of selective Notch targets
    • [100] Tiberi L, Ameele J, Dimidschstein J, et al. BCL6 controls neuro-genesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci 2012; 15: 1627-35.
    • (2012) Nat Neurosci , vol.15 , pp. 1627-1635
    • Tiberi, L.1    Ameele, J.2    Dimidschstein, J.3
  • 101
    • 78650724968 scopus 로고    scopus 로고
    • Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
    • [101] Schwer B, Schumacher B, Lombard DB, Xiao C, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. PNAS 2010; 107: 21790-4.
    • (2010) PNAS , vol.107 , pp. 21790-21794
    • Schwer, B.1    Schumacher, B.2    Lombard, D.B.3    Xiao, C.4
  • 102
    • 77955344258 scopus 로고    scopus 로고
    • SIRT1 promotes the central adaptive response to diet restriction through activation of the dor-somedial and lateral nuclei of the hypothalamus
    • [102] Satoh A, Brace CS, Ben-Josef G, et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dor-somedial and lateral nuclei of the hypothalamus. J Neurosci 2010; 30: 10220-32.
    • (2010) J Neurosci , vol.30 , pp. 10220-10232
    • Satoh, A.1    Brace, C.S.2    Ben-Josef, G.3
  • 103
    • 77949506721 scopus 로고    scopus 로고
    • Hypothalamic Sirt1 regulates food intake in a rodent model system
    • [103] Cakir I, Perello M, Lansari O, et al. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One 2009; 15: e8322.
    • (2009) Plos One , vol.15
    • Cakir, I.1    Perello, M.2    Lansari, O.3
  • 104
    • 80052700953 scopus 로고    scopus 로고
    • SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance
    • [104] Ramadori G, Fujikawa T, Anderson J, et al. SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 2011; 14: 301-12.
    • (2011) Cell Metab , vol.14 , pp. 301-312
    • Ramadori, G.1    Fujikawa, T.2    Erson, J.3
  • 105
    • 84859736930 scopus 로고    scopus 로고
    • Necdin Controls Foxo1 Acetylation in Hypothalamic Arcuate Neurons to Modulate the Thyroid Axis
    • [105] Hasegawa K, Kawahara T, Fujiwara K, et al. Necdin Controls Foxo1 Acetylation in Hypothalamic Arcuate Neurons to Modulate the Thyroid Axis. J Neurosci 2012; 32: 5562-72.
    • (2012) J Neurosci , vol.32 , pp. 5562-5572
    • Hasegawa, K.1    Kawahara, T.2    Fujiwara, K.3
  • 106
    • 3042709817 scopus 로고    scopus 로고
    • Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
    • [106] Naruse Y, Oh-hashi K, Iijima N, et al. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol 2004; 24: 6278-87.
    • (2004) Mol Cell Biol , vol.24 , pp. 6278-6287
    • Naruse, Y.1    Oh-Hashi, K.2    Iijima, N.3
  • 107
    • 47549102014 scopus 로고    scopus 로고
    • SIRT1 is a circadian deacetylase for core clock components
    • [107] Belden WJ and Dunlap JC SIRT1 is a circadian deacetylase for core clock components. Cell 2008; 134: 212-4.
    • (2008) Cell , vol.134 , pp. 212-214
    • Belden, W.J.1    Dunlap, J.C.2
  • 108
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetyla-tion of BMAL1 controls circadian function
    • [108] Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetyla-tion of BMAL1 controls circadian function. Nature 2007; 450: 1086-90.
    • (2007) Nature , vol.450 , pp. 1086-1090
    • Hirayama, J.1    Sahar, S.2    Grimaldi, B.3
  • 109
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control
    • [109] Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control. Cell 2008; 134: 329-40.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3
  • 110
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • [110] Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317-28.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1    Gatfield, D.2    Stratmann, M.3
  • 111
    • 47549091048 scopus 로고    scopus 로고
    • Chromatin remodeling and circadian control: Master regulator CLOCK is an enzyme
    • [111] Grimaldi B, Nakahata Y, Sahar S, et al. Chromatin remodeling and circadian control: master regulator CLOCK is an enzyme. Cold Spring Harb Symp Quant Biol 2007; 72: 105-12.
    • (2007) Cold Spring Harb Symp Quant Biol , vol.72 , pp. 105-112
    • Grimaldi, B.1    Nakahata, Y.2    Sahar, S.3
  • 112
    • 84862822068 scopus 로고    scopus 로고
    • PML regulates PER2 nuclear localization and circadian function
    • [112] Miki T, Xu Z, Chen-Goodspeed M, et al. PML regulates PER2 nuclear localization and circadian function. EMBO J 2012; 31: 1427-39.
    • (2012) EMBO J , vol.31 , pp. 1427-1439
    • Miki, T.1    Xu, Z.2    Chen-Goodspeed, M.3
  • 113
    • 84858136284 scopus 로고    scopus 로고
    • Biogenesis and significance of central nervous system myelin
    • [113] Soldán MPM and Pirko I. Biogenesis and significance of central nervous system myelin. Semin Neurol 2012; 32: 9-14.
    • (2012) Semin Neurol , vol.32 , pp. 9-14
    • Soldán, M.1    Pirko, I.2
  • 114
    • 32644483139 scopus 로고    scopus 로고
    • New observations on the compact myelin proteome
    • [114] Roth AD, Ivanova A and Colman DR. New observations on the compact myelin proteome. Neuron Glia Biology 2006; 2: 15-21.
    • (2006) Neuron Glia Biology , vol.2 , pp. 15-21
    • Roth, A.D.1    Ivanova, A.2    Colman, D.R.3
  • 115
    • 33847793039 scopus 로고    scopus 로고
    • Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oli-godendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin
    • [115] Li W, Zhang B, Tang J, et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oli-godendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci 2007; 27: 2606-16.
    • (2007) J Neurosci , vol.27 , pp. 2606-2616
    • Li, W.1    Zhang, B.2    Tang, J.3
  • 116
    • 80055085172 scopus 로고    scopus 로고
    • Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling
    • [116] Beirowski B, Gustin J, Armour SM, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci USA 2011; 108: E952-61.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 952-961
    • Beirowski, B.1    Gustin, J.2    Armour, S.M.3
  • 118
    • 77952168294 scopus 로고    scopus 로고
    • Altered Histone Acetyla-tion Is Associated with Age-Dependent Memory Impairment in Mice
    • [118] Peleg S, Sananbenesi F, Zovoilis A, et al. Altered Histone Acetyla-tion Is Associated with Age-Dependent Memory Impairment in Mice. Science 2010; 328: 753-6.
    • (2010) Science , vol.328 , pp. 753-756
    • Peleg, S.1    Sananbenesi, F.2    Zovoilis, A.3
  • 119
    • 3042631024 scopus 로고    scopus 로고
    • Gene regulation and DNA damage in the ageing human brain
    • [119] Lu T, Pan Y, Kao SYY, et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004; 429: 883-91.
    • (2004) Nature , vol.429 , pp. 883-891
    • Lu, T.1    Pan, Y.2    Kao, S.3
  • 120
    • 66049160126 scopus 로고    scopus 로고
    • The ageing epigenome: Damaged beyond repair?
    • [120] Sinclair DA and Oberdoerffer P. The ageing epigenome: Damaged beyond repair? Ageing Res Rev 2009; 8: 189-98.
    • (2009) Ageing Res Rev , vol.8 , pp. 189-198
    • Sinclair, D.A.1    Oberdoerffer, P.2
  • 121
    • 56749156405 scopus 로고    scopus 로고
    • SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging
    • [121] Oberdoerffer P, Michan S, McVay M, et al. SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging. Cell 2008; 135: 907-18.
    • (2008) Cell , vol.135 , pp. 907-918
    • Oberdoerffer, P.1    Michan, S.2    Mcvay, M.3
  • 122
    • 77955501963 scopus 로고    scopus 로고
    • SIRT1 Regulates UV-Induced DNA Repair through Deacetylating XPA
    • [122] Fan W and Luo J. SIRT1 Regulates UV-Induced DNA Repair through Deacetylating XPA. Mol Cell 2010; 39: 247-58.
    • (2010) Mol Cell , vol.39 , pp. 247-258
    • Fan, W.1    Luo, J.2
  • 123
    • 84855288980 scopus 로고    scopus 로고
    • Age-Related Neuronal Degeneration: Complementary Roles of Nucleotide Excision Repair and Transcription-Coupled Repair in Preventing Neuropathology
    • [123] Jaarsma D, van der Pluijm I, de Waard MC, et al. Age-Related Neuronal Degeneration: Complementary Roles of Nucleotide Excision Repair and Transcription-Coupled Repair in Preventing Neuropathology. PLoS Genet 2011; 7: e1002405.
    • (2011) Plos Genet , vol.7
    • Jaarsma, D.1    Van Der Pluijm, I.2    De Waard, M.C.3
  • 124
    • 3142740860 scopus 로고    scopus 로고
    • Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacety-lase
    • [124] Cohen HY, Miller C, Bitterman KJ, et al. Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacety-lase. Science 2004; 305: 390-2.
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1    Miller, C.2    Bitterman, K.J.3
  • 125
    • 84869186918 scopus 로고    scopus 로고
    • Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response
    • [125] Jurk D, Wang C, Miwa S, et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 2012; 11: 996-1004.
    • (2012) Aging Cell , vol.11 , pp. 996-1004
    • Jurk, D.1    Wang, C.2    Miwa, S.3
  • 126
    • 45849121349 scopus 로고    scopus 로고
    • Modulation of SIRT1 expression in different neurodegenerative models and human pathologies
    • [126] Pallas M, Pizarro JG, Gutierrez-Cuesta J, et al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 2008; 154: 1388-97.
    • (2008) Neuroscience , vol.154 , pp. 1388-1397
    • Pallas, M.1    Pizarro, J.G.2    Gutierrez-Cuesta, J.3
  • 127
    • 79952755363 scopus 로고    scopus 로고
    • SIRT1 regulation of wakefulness and senescence-like phenotype in wake neurons
    • [127] Panossian L, Fenik P, Zhu Y, et al. SIRT1 regulation of wakefulness and senescence-like phenotype in wake neurons. J Neurosci 2011; 31: 4025-36.
    • (2011) J Neurosci , vol.31 , pp. 4025-4036
    • Panossian, L.1    Fenik, P.2    Zhu, Y.3
  • 128
    • 84863974838 scopus 로고    scopus 로고
    • Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence
    • [128] Mao Z, Tian X, Van Meter M, et al. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci USA 2012; 109: 11800-5.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 11800-11805
    • Mao, Z.1    Tian, X.2    Van Meter, M.3
  • 129
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • [129] Kaidi A, Weinert BT, Choudhary C and Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010; 329: 1348-53.
    • (2010) Science , vol.329 , pp. 1348-1353
    • Kaidi, A.1    Weinert, B.T.2    Choudhary, C.3    Jackson, S.P.4
  • 130
    • 79952270884 scopus 로고    scopus 로고
    • HDACs link the DNA damage response, processing of double-strand breaks and autophagy
    • [130] Robert T, Vanoli F, Chiolo I et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 2011; 471: 74-9.
    • (2011) Nature , vol.471 , pp. 74-79
    • Robert, T.1    Vanoli, F.2    Chiolo, I.3
  • 131
    • 77955894794 scopus 로고    scopus 로고
    • Short-term fasting induces profound neuronal autophagy
    • [131] Alirezaei M, Kemball CC, Flynn CT, et al. Short-term fasting induces profound neuronal autophagy. Autophagy 2010; 6: 702-10.
    • (2010) Autophagy , vol.6 , pp. 702-710
    • Alirezaei, M.1    Kemball, C.C.2    Flynn, C.T.3
  • 132
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • [132] Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105: 3374-3379.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 133
    • 79957879876 scopus 로고    scopus 로고
    • Longevity-relevant regulation of autophagy at the level of the acetylproteome
    • [133] Mariño G, Morselli E, Bennetzen MV, et al. Longevity-relevant regulation of autophagy at the level of the acetylproteome. Autophagy 2011; 7: 647-9.
    • (2011) Autophagy , vol.7 , pp. 647-649
    • Mariño, G.1    Morselli, E.2    Bennetzen, M.V.3
  • 134
    • 77952548782 scopus 로고    scopus 로고
    • How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hor-mesis (mitohormesis)
    • [134] Ristow M and Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hor-mesis (mitohormesis). Exp Gerontol 2010; 45: 410-8.
    • (2010) Exp Gerontol , vol.45 , pp. 410-418
    • Ristow, M.1    Zarse, K.2
  • 135
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • [135] Tao R, Coleman MC, Pennington DD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010; 40: 893-904.
    • (2010) Mol Cell , vol.40 , pp. 893-904
    • Tao, R.1    Coleman, M.C.2    Pennington, D.D.3
  • 136
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • [136] Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010; 143: 802-12.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1    Yu, W.2    Hallows, W.C.3
  • 137
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a
    • [137] Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a. J Biol Chem 2005; 280: 16456-60.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 138
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • [138] Cheng HLL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10794-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10794-10799
    • Cheng, H.1    Mostoslavsky, R.2    Saito, S.3
  • 139
    • 77955499804 scopus 로고    scopus 로고
    • Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
    • [139] Lim JHH, Lee YMM, Chun YSS, et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Molecular Cell 2010; 38: 864-78.
    • (2010) Molecular Cell , vol.38 , pp. 864-878
    • Lim, J.1    Lee, Y.2    Chun, Y.3
  • 140
    • 79959819034 scopus 로고    scopus 로고
    • SirT3 suppresses hypoxia inducible factor 1a and tumor growth by inhibiting mitochondrial ROS production
    • [140] Bell E, Emerling B, Ricoult S, Guarente L. SirT3 suppresses hypoxia inducible factor 1a and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011; 30: 2986-96.
    • (2011) Oncogene , vol.30 , pp. 2986-2996
    • Bell, E.1    Emerling, B.2    Ricoult, S.3    Guarente, L.4
  • 141
    • 42349085704 scopus 로고    scopus 로고
    • Sirt1 contributes critically to the redox-dependent fate of neural progenitors
    • [141] Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors Nat Cell Biol 2008; 10: 385-394.
    • (2008) Nat Cell Biol , vol.10 , pp. 385-394
    • Prozorovski, T.1    Schulze-Topphoff, U.2    Glumm, R.3
  • 142
    • 43149099436 scopus 로고    scopus 로고
    • Molecular genetics of anxiety in mice and men
    • [142] Hovatta I and Barlow C. Molecular genetics of anxiety in mice and men. Ann Med 2008; 40: 92-109.
    • (2008) Ann Med , vol.40 , pp. 92-109
    • Hovatta, I.1    Barlow, C.2
  • 143
    • 84856643478 scopus 로고    scopus 로고
    • Loss of deacetylation activity of Hdac6 affects emotional behavior in mice
    • [143] Fukada M, Hanai A, Nakayama A, et al. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice. PloS one 2012; 7: e30924.
    • (2012) Plos One , vol.7
    • Fukada, M.1    Hanai, A.2    Nakayama, A.3
  • 144
    • 84455169414 scopus 로고    scopus 로고
    • SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive
    • [144] Libert S, Pointer K, Bell EL, et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 2011; 147: 1459-72.
    • (2011) Cell , vol.147 , pp. 1459-1472
    • Libert, S.1    Pointer, K.2    Bell, E.L.3
  • 145
    • 77956268388 scopus 로고    scopus 로고
    • SIRT1 gene is associated with major depressive disorder in the Japanese population
    • [145] Kishi T, Yoshimura R, Kitajima T, et al. SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disorders 2010; 126: 167-73.
    • (2010) J Affect Disorders , vol.126 , pp. 167-173
    • Kishi, T.1    Yoshimura, R.2    Kitajima, T.3
  • 146
    • 84870874690 scopus 로고    scopus 로고
    • The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism
    • [146] Sebastián C, Zwaans BMM, Silberman DM, et al. The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism. Cell 2012; 151: 1185-99.
    • (2012) Cell , vol.151 , pp. 1185-1199
    • Sebastián, C.1    Zwaans, B.2    Silberman, D.M.3
  • 147
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • [147] Kim HSS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010; 17: 41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.1    Patel, K.2    Muldoon-Jacobs, K.3
  • 148
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • [148] Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PloS one 2008; 3: e2020.
    • (2008) Plos One , vol.3
    • Firestein, R.1    Blander, G.2    Michan, S.3
  • 149
    • 0041829415 scopus 로고    scopus 로고
    • Proteomics-based identification of differentially expressed genes in human gliomas: Down-regulation of SIRT2 gene
    • [149] Hiratsukaa M, Inoueb T, Todac T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 2003; 309: 558-66.
    • (2003) Biochem Biophys Res Commun , vol.309 , pp. 558-566
    • Hiratsukaa, M.1    Inoueb, T.2    Todac, T.3
  • 150
    • 84857852626 scopus 로고    scopus 로고
    • Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFa)-induced apop-tosis through SIRT1 inhibition
    • [150] Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E. Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFa)-induced apop-tosis through SIRT1 inhibition. Cell Death Dis 2012; 3: e271
    • (2012) Cell Death Dis , vol.3
    • Dixit, D.1    Sharma, V.2    Ghosh, S.3    Mehta, V.S.4    Sen, E.5
  • 151
    • 0035066332 scopus 로고    scopus 로고
    • Alzheimer’s disease: Genes, proteins, and therapy
    • [151] Selkoe D. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741-66.
    • (2001) Physiol Rev , vol.81 , pp. 741-766
    • Selkoe, D.1
  • 152
    • 59049092157 scopus 로고    scopus 로고
    • Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels
    • [152] Ko MHH and Puglielli L Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J Biol Chem 2009; 284: 2482-92.
    • (2009) J Biol Chem , vol.284 , pp. 2482-2492
    • Ko, M.1    Puglielli, L.2
  • 153
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
    • [153] Donmez G, Wang D, Cohen DE and Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142: 320-32.
    • (2010) Cell , vol.142 , pp. 320-332
    • Donmez, G.1    Wang, D.2    Cohen, D.E.3    Guarente, L.4
  • 154
    • 84863798868 scopus 로고    scopus 로고
    • Nuclear factor-KB regulates |3APP and |3- and y-secretases differently at physiological and supraphysiological A(3 concentrations
    • [154] Chami L, Buggia-Prévot V, Duplan E, et al. Nuclear factor-KB regulates |3APP and |3- and y-secretases differently at physiological and supraphysiological A3 concentrations. J Biol Chem 2012; 287: 24573-84.
    • (2012) J Biol Chem , vol.287 , pp. 24573-24584
    • Chami, L.1    Buggia-Prévot, V.2    Duplan, E.3
  • 155
    • 28844474597 scopus 로고    scopus 로고
    • SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling
    • [155] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 2005; 280: 40364-74.
    • (2005) J Biol Chem , vol.280 , pp. 40364-40374
    • Chen, J.1    Zhou, Y.2    Mueller-Steiner, S.3
  • 156
    • 79953087890 scopus 로고    scopus 로고
    • The acetylation of tau inhibits its function and promotes pathological tau aggregation
    • [156] Cohen TJ, Guo JL, Hurtado DE, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2011; 2: 252.
    • (2011) Nat Commun , vol.2 , pp. 252
    • Cohen, T.J.1    Guo, J.L.2    Hurtado, D.E.3
  • 157
    • 84857620173 scopus 로고    scopus 로고
    • Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies
    • [157] Irwin DJ, Cohen TJ, Grossman M, et al. Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 2012; 135: 807-18.
    • (2012) Brain , vol.135 , pp. 807-818
    • Irwin, D.J.1    Cohen, T.J.2    Grossman, M.3
  • 158
    • 34948883324 scopus 로고    scopus 로고
    • SIRT1 deacetylates and positively regulates the nuclear receptor LXR
    • [158] Li X, Zhang S, Blander G, et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007; 28: 91-106.
    • (2007) Mol Cell , vol.28 , pp. 91-106
    • Li, X.1    Zhang, S.2    Blander, G.3
  • 159
    • 44649197748 scopus 로고    scopus 로고
    • ApoE promotes the proteolytic degradation of Abeta
    • [159] Jiang Q, Lee DY, Mandrekar, S, et al. ApoE promotes the proteolytic degradation of Abeta. Neuron 2008; 58: 681-93.
    • (2008) Neuron , vol.58 , pp. 681-693
    • Jiang, Q.1    Lee, D.Y.2    Mandrekar, S.3
  • 160
    • 34447308268 scopus 로고    scopus 로고
    • SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis
    • [160] Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 2007; 26: 3169-79.
    • (2007) EMBO J , vol.26 , pp. 3169-3179
    • Kim, D.1    Nguyen, M.D.2    Dobbin, M.M.3
  • 161
    • 80053099408 scopus 로고    scopus 로고
    • Sir-2.1 modulates “calorie-restriction-mediated” prevention of neurodegeneration in Caenorhabditis elegans: Implications for Parkinson’s disease
    • [161] Jadiya P, Chatterjee M, Sammi SRR, et al. Sir-2.1 modulates “calorie-restriction-mediated” prevention of neurodegeneration in Caenorhabditis elegans: implications for Parkinson’s disease. Biochem Biophys Res Commun 2011; 413: 306-10.
    • (2011) Biochem Biophys Res Commun , vol.413 , pp. 306-310
    • Jadiya, P.1    Chatterjee, M.2    Sammi, S.3
  • 162
    • 41949097891 scopus 로고    scopus 로고
    • C. Elegans Model Identifies Genetic Modifiers of a-Synuclein Inclusion Formation During Aging
    • [162] van Ham TJ, Thijssen KL, Breitling R, et al. C. elegans Model Identifies Genetic Modifiers of a-Synuclein Inclusion Formation During Aging. PLoS Genet 2008; 4: e1000027.
    • (2008) Plos Genet , vol.4
    • Van Ham, T.J.1    Thijssen, K.L.2    Breitling, R.3
  • 163
    • 84855929223 scopus 로고    scopus 로고
    • SIRT1 Protects against a-Synuclein Aggregation by Activating Molecular Chaperones
    • [163] Donmez G, Arun A, Chung CY, et al. SIRT1 Protects against a-Synuclein Aggregation by Activating Molecular Chaperones. J Neurosci 2012; 32: 124-32.
    • (2012) J Neurosci , vol.32 , pp. 124-132
    • Donmez, G.1    Arun, A.2    Chung, C.Y.3
  • 164
    • 60749101582 scopus 로고    scopus 로고
    • Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1
    • [164] Westerheide SD, Anckar J, Stevens SM, et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 2009; 323: 1063-6.
    • (2009) Science , vol.323 , pp. 1063-1066
    • Westerheide, S.D.1    Anckar, J.2    Stevens, S.M.3
  • 165
    • 84862300236 scopus 로고    scopus 로고
    • Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease
    • [165] Zhang A, Wang H, Qin X, et al. Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease. Biochem Biophys Res Commun 2012; 422: 693-6.
    • (2012) Biochem Biophys Res Commun , vol.422 , pp. 693-696
    • Zhang, A.1    Wang, H.2    Qin, X.3
  • 166
    • 80053137033 scopus 로고    scopus 로고
    • The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS
    • [166] Maxwell MM, Tomkinson EM, Nobles J, et al. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet 2011; 20: 3986-96.
    • (2011) Hum Mol Genet , vol.20 , pp. 3986-3996
    • Maxwell, M.M.1    Tomkinson, E.M.2    Nobles, J.3
  • 167
    • 34547599329 scopus 로고    scopus 로고
    • Sirtuin 2 Inhibitors Rescue a-Synuclein-Mediated Toxicity in Models of Parkinson’s Disease
    • [167] Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 Inhibitors Rescue a-Synuclein-Mediated Toxicity in Models of Parkinson’s Disease. Science 2007; 317: 516-9.
    • (2007) Science , vol.317 , pp. 516-519
    • Outeiro, T.F.1    Kontopoulos, E.2    Altmann, S.M.3
  • 168
    • 84866529842 scopus 로고    scopus 로고
    • SIRT2 Ablation Has No Effect on Tubulin Acetylation in Brain, Cholesterol Biosynthesis or the Progression of Huntington’s Disease Phenotypes In vivo
    • [168] Bobrowska A, Donmez G, Weiss A, et al. SIRT2 Ablation Has No Effect on Tubulin Acetylation in Brain, Cholesterol Biosynthesis or the Progression of Huntington’s Disease Phenotypes In vivo. PLoS ONE 2012; 7: e34805.
    • (2012) Plos ONE , vol.7
    • Bobrowska, A.1    Donmez, G.2    Weiss, A.3
  • 169
    • 84866556460 scopus 로고    scopus 로고
    • Sirtuin 2 (SIRT2) Enhances 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Nigrostriatal Damage via Deacetylating Forkhead Box O3a (Foxo3a) and Activating Bim Protein
    • [169] Liu L, Arun A, Ellis L, et al. Sirtuin 2 (SIRT2) Enhances 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Nigrostriatal Damage via Deacetylating Forkhead Box O3a (Foxo3a) and Activating Bim Protein. J Biol Chem 2012; 287: 32307-11.
    • (2012) J Biol Chem , vol.287 , pp. 32307-32311
    • Liu, L.1    Arun, A.2    Ellis, L.3
  • 170
    • 0035909330 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila
    • [170] Steffan J, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001; 413: 739-43.
    • (2001) Nature , vol.413 , pp. 739-743
    • Steffan, J.1    Bodai, L.2    Pallos, J.3
  • 171
    • 63049132756 scopus 로고    scopus 로고
    • Acetylation Targets Mutant Hunt-ingtin to Autophagosomes for Degradation
    • [171] Jeong H, Then F, Melia TJ, et al. Acetylation Targets Mutant Hunt-ingtin to Autophagosomes for Degradation. Cell 2009; 137: 60-72.
    • (2009) Cell , vol.137 , pp. 60-72
    • Jeong, H.1    Then, F.2    Melia, T.J.3
  • 172
    • 84855563516 scopus 로고    scopus 로고
    • Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
    • [172] Jeong H, Cohen DE, Cui L, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 2012; 18: 159-65.
    • (2012) Nat Med , vol.18 , pp. 159-165
    • Jeong, H.1    Cohen, D.E.2    Cui, L.3
  • 173
    • 84855544817 scopus 로고    scopus 로고
    • Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets
    • [173] Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 2012; 18: 153-158.
    • (2012) Nat Med , vol.18 , pp. 153-158
    • Jiang, M.1    Wang, J.2    Fu, J.3
  • 174
    • 79958064073 scopus 로고    scopus 로고
    • Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease
    • [174] Bobrowska A, Paganetti P, Matthias P, Bates GP. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PloS one 2011; 6: e20696.
    • (2011) Plos One , vol.6
    • Bobrowska, A.1    Paganetti, P.2    Matthias, P.3    Bates, G.P.4
  • 177
    • 84867581334 scopus 로고    scopus 로고
    • Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice
    • [177] Han S, Choi JR, Soon SK, Kang SJ. Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res 2012; 1483: 112-117.
    • (2012) Brain Res , vol.1483 , pp. 112-117
    • Han, S.1    Choi, J.R.2    Soon, S.K.3    Kang, S.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.