메뉴 건너뛰기




Volumn 19, Issue 28, 2013, Pages 5019-5042

Histone acetylation: From code to web and router via intrinsically disordered regions

Author keywords

Chromatin; Epigenetics; Gene regulation; Histone code; Modification web; Network structure; Nucleosome; Signal router

Indexed keywords

DNA; HISTONE; UNTRANSLATED RNA;

EID: 84881321633     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/1381612811319280002     Document Type: Review
Times cited : (19)

References (221)
  • 1
    • 0016221697 scopus 로고
    • Chromatin structure: A repeating unit of histones and DNA
    • Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science 1974; 184: 868-71.
    • (1974) Science , vol.184 , pp. 868-871
    • Kornberg, R.D.1
  • 2
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999; 98: 285-94.
    • (1999) Cell , vol.98 , pp. 285-294
    • Kornberg, R.D.1    Lorch, Y.2
  • 3
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8Å resolution
    • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 1997; 389: 251-60.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 4
    • 0018221572 scopus 로고
    • Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA
    • Laskey RA, Honda BM, Mills AD, Finch JT. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 1978; 275: 416-20.
    • (1978) Nature , vol.275 , pp. 416-420
    • Laskey, R.A.1    Honda, B.M.2    Mills, A.D.3    Finch, J.T.4
  • 5
    • 38949202272 scopus 로고    scopus 로고
    • Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly
    • Eitoku M, Sato L, Senda T, Horikoshi M. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell Mol Life Sci 2008; 65: 414-44.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 414-444
    • Eitoku, M.1    Sato, L.2    Senda, T.3    Horikoshi, M.4
  • 6
    • 67649476233 scopus 로고    scopus 로고
    • Theoretical framework for the histone modification network: Modifications in the unstructured histone tails form a robust scale-free network
    • Hayashi Y, Senda T, Sano N, Horikoshi M. Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network. Genes Cells 2009; 14: 789-806.
    • (2009) Genes Cells , vol.14 , pp. 789-806
    • Hayashi, Y.1    Senda, T.2    Sano, N.3    Horikoshi, M.4
  • 8
    • 0029805762 scopus 로고    scopus 로고
    • An asymmetric model for the nucleosome: A binding site for linker histones inside the DNA gyres
    • Pruss D, Bartholomew B, Persinger J, et al. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 1996; 274: 614-7.
    • (1996) Science , vol.274 , pp. 614-617
    • Pruss, D.1    Bartholomew, B.2    Persinger, J.3
  • 9
    • 77952097668 scopus 로고    scopus 로고
    • Multifunctionality of the linker histones: An emerging role for protein-protein interactions
    • McBryant SJ, Lu X, Hansen JC. Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 2010; 20: 519-28.
    • (2010) Cell Res , vol.20 , pp. 519-528
    • McBryant, S.J.1    Lu, X.2    Hansen, J.C.3
  • 10
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403: 41-5.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 11
    • 77952335828 scopus 로고    scopus 로고
    • Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction
    • Akai Y, Adachi N, Hayashi Y, et al. Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction. Proc Natl Acad Sci USA 2010; 107: 8153-8.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 8153-8158
    • Akai, Y.1    Adachi, N.2    Hayashi, Y.3
  • 12
    • 79959484677 scopus 로고    scopus 로고
    • Signals and combinatorial functions of histone modifications
    • Suganuma T, Workman JL. Signals and combinatorial functions of histone modifications. Annu Rev Biochem 2011; 80: 473-99.
    • (2011) Annu Rev Biochem , vol.80 , pp. 473-499
    • Suganuma, T.1    Workman, J.L.2
  • 13
    • 32944469082 scopus 로고    scopus 로고
    • A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes
    • Kimura A, Matsubara K, Horikoshi M. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem 2005; 138: 647-62.
    • (2005) J Biochem , vol.138 , pp. 647-662
    • Kimura, A.1    Matsubara, K.2    Horikoshi, M.3
  • 14
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
    • Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 1964; 51: 786-94.
    • (1964) Proc Natl Acad Sci USA , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 15
    • 0024003456 scopus 로고
    • A direct link between core histone acetylation and transcriptionally active chromatin
    • Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 1988; 7: 1395-402.
    • (1988) EMBO J , vol.7 , pp. 1395-1402
    • Hebbes, T.R.1    Thorne, A.W.2    Crane-Robinson, C.3
  • 16
    • 0023732753 scopus 로고
    • Mechanism of action of a yeast activator: Direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions
    • Horikoshi M, Carey MF, Kakidani H, Roeder RG. Mechanism of action of a yeast activator: Direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 1988; 54: 665-9.
    • (1988) Cell , vol.54 , pp. 665-669
    • Horikoshi, M.1    Carey, M.F.2    Kakidani, H.3    Roeder, R.G.4
  • 17
    • 0023773323 scopus 로고
    • Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex
    • Horikoshi M, Hai T, Lin YS, Green MR, Roeder RG. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 1988; 54: 1033-42.
    • (1988) Cell , vol.54 , pp. 1033-1042
    • Horikoshi, M.1    Hai, T.2    Lin, Y.S.3    Green, M.R.4    Roeder, R.G.5
  • 18
    • 0030013203 scopus 로고    scopus 로고
    • Biochemistry and structural biology of transcription factor IID (TFIID)
    • Burley SK, Roeder RG. Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem 1996; 65: 769-99.
    • (1996) Annu Rev Biochem , vol.65 , pp. 769-799
    • Burley, S.K.1    Roeder, R.G.2
  • 21
  • 22
    • 0027049397 scopus 로고
    • Identification of human TFIID components and direct interaction between a 250-kDa polypeptide and the TATA box-binding protein (TFIID)
    • Takada R, Nakatani Y, Hoffmann A, et al. Identification of human TFIID components and direct interaction between a 250-kDa polypeptide and the TATA box-binding protein (TFIID). Proc Natl Acad Sci USA 1992; 89: 11809-13.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 11809-11813
    • Takada, R.1    Nakatani, Y.2    Hoffmann, A.3
  • 23
  • 24
    • 0023661185 scopus 로고
    • Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II
    • Workman JL, Roeder RG. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 1987; 51: 613-22.
    • (1987) Cell , vol.51 , pp. 613-622
    • Workman, J.L.1    Roeder, R.G.2
  • 25
    • 0021022011 scopus 로고
    • Transcription of class III genes: Formation of preinitiation complexes
    • Lassar AB, Martin PL, Roeder RG. Transcription of class III genes: formation of preinitiation complexes. Science 1983; 222: 740-8.
    • (1983) Science , vol.222 , pp. 740-748
    • Lassar, A.B.1    Martin, P.L.2    Roeder, R.G.3
  • 26
    • 0023732884 scopus 로고
    • Factors involved in specific transcription by mammalian RNA polymerase II: Purification, genetic specificity, and TATA box-promoter interactions of TFIID
    • Nakajima N, Horikoshi M, Roeder RG. Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specificity, and TATA box-promoter interactions of TFIID. Mol Cell Biol 1988; 8: 4028-40.
    • (1988) Mol Cell Biol , vol.8 , pp. 4028-4040
    • Nakajima, N.1    Horikoshi, M.2    Roeder, R.G.3
  • 28
    • 0029869460 scopus 로고    scopus 로고
    • Structural similarity between TAFs and the heterotetrameric core of the histone octamer
    • Xie X, Kokubo T, Cohen SL, et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 1996; 380: 316-22.
    • (1996) Nature , vol.380 , pp. 316-322
    • Xie, X.1    Kokubo, T.2    Cohen, S.L.3
  • 29
    • 0027367145 scopus 로고
    • Molecular cloning, expression, and characterization of the Drosophila 85-kilodalton TFIID subunit
    • Kokubo T, Gong DW, Yamashita S, et al. Molecular cloning, expression, and characterization of the Drosophila 85-kilodalton TFIID subunit. Mol Cell Biol 1993; 13: 7859-63.
    • (1993) Mol Cell Biol , vol.13 , pp. 7859-7863
    • Kokubo, T.1    Gong, D.W.2    Yamashita, S.3
  • 30
    • 0027526619 scopus 로고
    • The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1
    • Hisatake K, Hasegawa S, Takada R, Nakatani Y, Horikoshi M, Roeder RG. The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature 1993; 362: 179-81.
    • (1993) Nature , vol.362 , pp. 179-181
    • Hisatake, K.1    Hasegawa, S.2    Takada, R.3    Nakatani, Y.4    Horikoshi, M.5    Roeder, R.G.6
  • 31
    • 0026091129 scopus 로고
    • Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation
    • Dynlacht BD, Hoey T, Tjian R. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 1991; 66: 563-76.
    • (1991) Cell , vol.66 , pp. 563-576
    • Dynlacht, B.D.1    Hoey, T.2    Tjian, R.3
  • 32
    • 0026566417 scopus 로고
    • Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei
    • Turner BM, Birley AJ, Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 1992; 69: 375-84.
    • (1992) Cell , vol.69 , pp. 375-384
    • Turner, B.M.1    Birley, A.J.2    Lavender, J.3
  • 33
    • 0028885077 scopus 로고
    • Identification of a gene encoding a yeast histone H4 acetyltransferase
    • Kleff S, Andrulis ED, Anderson CW, Sternglanz R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 1995; 270: 24674-7.
    • (1995) J Biol Chem , vol.270 , pp. 24674-24677
    • Kleff, S.1    Andrulis, E.D.2    Anderson, C.W.3    Sternglanz, R.4
  • 34
    • 0021710076 scopus 로고
    • Xenopus 5S gene transcription factor, TFIIIA: Characterization of a cDNA clone and measurement of RNA levels throughout development
    • Ginsberg AM, King BO, Roeder RG. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 1984; 39: 479-89.
    • (1984) Cell , vol.39 , pp. 479-489
    • Ginsberg, A.M.1    King, B.O.2    Roeder, R.G.3
  • 35
    • 0040215628 scopus 로고
    • Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes
    • Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985; 4: 1609-14.
    • (1985) EMBO J , vol.4 , pp. 1609-1614
    • Miller, J.1    McLachlan, A.D.2    Klug, A.3
  • 37
    • 0032555689 scopus 로고    scopus 로고
    • Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily
    • Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 1998; 94: 427-38.
    • (1998) Cell , vol.94 , pp. 427-438
    • Dutnall, R.N.1    Tafrov, S.T.2    Sternglanz, R.3    Ramakrishnan, V.4
  • 38
    • 0029049102 scopus 로고
    • An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei
    • Brownell J, Allis CD. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci USA 1995; 92: 6364-8.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 6364-6368
    • Brownell, J.1    Allis, C.D.2
  • 39
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation
    • Brownell J, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996; 84: 843-51.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.1    Zhou, J.2    Ranalli, T.3
  • 40
    • 0029932598 scopus 로고    scopus 로고
    • A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
    • Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996; 272: 408-11.
    • (1996) Science , vol.272 , pp. 408-411
    • Taunton, J.1    Hassig, C.A.2    Schreiber, S.L.3
  • 41
    • 0029665857 scopus 로고    scopus 로고
    • A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A
    • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996; 382: 319-24.
    • (1996) Nature , vol.382 , pp. 319-324
    • Yang, X.J.1    Ogryzko, V.V.2    Nishikawa, J.3    Howard, B.H.4    Nakatani, Y.5
  • 42
  • 43
    • 0030480969 scopus 로고    scopus 로고
    • The CBP coactivator is a histone acetyltransferase
    • Bannister AJ, Kouzarides T. The CBP coactivator is a histone acetyltransferase. Nature 1996; 84: 641-3
    • (1996) Nature , vol.84 , pp. 641-643
    • Bannister, A.J.1    Kouzarides, T.2
  • 44
    • 0030447943 scopus 로고    scopus 로고
    • The TAFII250 subunit of TFIID has histone acetyltransferase activity
    • Mizzen CA, Yang XJ, Kokubo T, et al. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 1996; 87: 1261-70.
    • (1996) Cell , vol.87 , pp. 1261-1270
    • Mizzen, C.A.1    Yang, X.J.2    Kokubo, T.3
  • 45
    • 0034051227 scopus 로고    scopus 로고
    • Acetylation of histones and transcriptionrelated factors
    • Sterner DE, Berger SL. Acetylation of histones and transcriptionrelated factors. Microbiol Mol Biol Rev 2000; 64: 435-59.
    • (2000) Microbiol Mol Biol Rev , vol.64 , pp. 435-459
    • Sterner, D.E.1    Berger, S.L.2
  • 47
    • 2342599619 scopus 로고    scopus 로고
    • The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases
    • Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 2004; 32: 959-76.
    • (2004) Nucleic Acids Res , vol.32 , pp. 959-976
    • Yang, X.J.1
  • 48
    • 33947532026 scopus 로고    scopus 로고
    • Histone acetyltransferase complexes: One size doesn't fit all
    • Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 2007; 8: 284-95.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 284-295
    • Lee, K.K.1    Workman, J.L.2
  • 49
    • 1842578986 scopus 로고    scopus 로고
    • Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis
    • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338: 17-31.
    • (2004) J Mol Biol , vol.338 , pp. 17-31
    • Gregoretti, I.V.1    Lee, Y.M.2    Goodson, H.V.3
  • 50
    • 26444514954 scopus 로고    scopus 로고
    • Genome-wide analysis of HDAC function
    • Ekwall K. Genome-wide analysis of HDAC function. Trends Genet 2005; 21: 608-15.
    • (2005) Trends Genet , vol.21 , pp. 608-615
    • Ekwall, K.1
  • 51
    • 0030712311 scopus 로고    scopus 로고
    • Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60
    • Yamamoto T, Horikoshi M. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem 1997; 272: 30595-8.
    • (1997) J Biol Chem , vol.272 , pp. 30595-30598
    • Yamamoto, T.1    Horikoshi, M.2
  • 52
    • 0032584196 scopus 로고    scopus 로고
    • ESA1 is a histone acetyltransferase that is essential for growth in yeast
    • Smith ER, Eisen A, Gu W, et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci USA 1998; 95: 3561-5.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 3561-3565
    • Smith, E.R.1    Eisen, A.2    Gu, W.3
  • 53
    • 79953712902 scopus 로고    scopus 로고
    • MYST-family histone acetyltransferases: Beyond chromatin
    • Sapountzi V, Côté J. MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 2011; 68: 1147-56.
    • (2011) Cell Mol Life Sci , vol.68 , pp. 1147-1156
    • Sapountzi, V.1    Côté, J.2
  • 54
    • 0029763523 scopus 로고    scopus 로고
    • RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1 acetyltransferase
    • Lu L, Berkey KA, Casero Jr RA. RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1 acetyltransferase. J Biol Chem 1996; 271: 18920-4.
    • (1996) J Biol Chem , vol.271 , pp. 18920-18924
    • Lu, L.1    Berkey, K.A.2    Casero Jr., R.A.3
  • 55
    • 0037144555 scopus 로고    scopus 로고
    • A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3
    • Adachi N, Kimura A, Horikoshi M. A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3. J Biol Chem 2002; 277: 35688-95.
    • (2002) J Biol Chem , vol.277 , pp. 35688-35695
    • Adachi, N.1    Kimura, A.2    Horikoshi, M.3
  • 56
    • 0029741343 scopus 로고    scopus 로고
    • Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases
    • Reifsnyder C, Lowell J, Clarke A, Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nature Genet 1996; 14: 42-9.
    • (1996) Nature Genet , vol.14 , pp. 42-49
    • Reifsnyder, C.1    Lowell, J.2    Clarke, A.3    Pillus, L.4
  • 57
    • 0030939235 scopus 로고    scopus 로고
    • The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function
    • Ehrenhofer-Murray AE, Rivier DH, Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 1997; 145: 923-34.
    • (1997) Genetics , vol.145 , pp. 923-934
    • Ehrenhofer-Murray, A.E.1    Rivier, D.H.2    Rine, J.3
  • 58
    • 0030891858 scopus 로고    scopus 로고
    • Mof, a putative acetyltransferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila
    • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC. mof, a putative acetyltransferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 1997; 16: 2054-60.
    • (1997) EMBO J , vol.16 , pp. 2054-2060
    • Hilfiker, A.1    Hilfiker-Kleiner, D.2    Pannuti, A.3    Lucchesi, J.C.4
  • 59
    • 0034682736 scopus 로고    scopus 로고
    • Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis
    • Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000; 102: 463-73.
    • (2000) Cell , vol.102 , pp. 463-473
    • Ikura, T.1    Ogryzko, V.V.2    Grigoriev, M.3
  • 60
    • 34547890019 scopus 로고    scopus 로고
    • Functions of site-specific histone acetylation and deacetylation
    • Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007; 76: 75-100.
    • (2007) Annu Rev Biochem , vol.76 , pp. 75-100
    • Shahbazian, M.D.1    Grunstein, M.2
  • 61
    • 78049246250 scopus 로고    scopus 로고
    • Fast signals and slow marks: The dynamics of histone modifications
    • Barth TK, Imhof A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 2010; 35: 618-26.
    • (2010) Trends Biochem Sci , vol.35 , pp. 618-626
    • Barth, T.K.1    Imhof, A.2
  • 62
    • 79954416946 scopus 로고    scopus 로고
    • Readers of histone modifications
    • Yun M, Wu J, Workman JL, Li B. Readers of histone modifications. Cell Res 2011; 21: 564-78.
    • (2011) Cell Res , vol.21 , pp. 564-578
    • Yun, M.1    Wu, J.2    Workman, J.L.3    Li, B.4
  • 66
    • 84892166712 scopus 로고
    • Einfluss der Configuration auf die Wirkung der Enzyme
    • Fischer E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dt Chem Ges 1894; 27: 2985-93.
    • (1894) Ber Dt Chem Ges , vol.27 , pp. 2985-2993
    • Fischer, E.1
  • 67
    • 0023683667 scopus 로고
    • How eukaryotic transcriptional activators work
    • Ptashne M. How eukaryotic transcriptional activators work. Nature 1988; 335: 683-9.
    • (1988) Nature , vol.335 , pp. 683-689
    • Ptashne, M.1
  • 68
    • 54249116230 scopus 로고
    • Genetic regulatory mechanisms in the synthesis of proteins
    • Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961; 3: 318-56.
    • (1961) J Mol Biol , vol.3 , pp. 318-356
    • Jacob, F.1    Monod, J.2
  • 69
    • 0000251397 scopus 로고
    • Das Heterochromatin der Moose
    • Heitz E. Das Heterochromatin der Moose. Jahrb Wiss Botanik 1928; 69: 762-818.
    • (1928) Jahrb Wiss Botanik , vol.69 , pp. 762-818
    • Heitz, E.1
  • 70
    • 34948839944 scopus 로고    scopus 로고
    • Facultative heterochromatin: Is there a distinctive molecular signature?
    • Trojer P, Reinberg D. Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 2007; 28: 1-13.
    • (2007) Mol Cell , vol.28 , pp. 1-13
    • Trojer, P.1    Reinberg, D.2
  • 72
    • 0030916153 scopus 로고    scopus 로고
    • Redistribution of Silencing Proteins from Telomeres to the Nucleolus Is Associated with Extension of Life Span in S. cerevisiae
    • Kennedy BK, Gotta M, Sinclair DA, et al. Redistribution of Silencing Proteins from Telomeres to the Nucleolus Is Associated with Extension of Life Span in S. cerevisiae. Cell 1997; 89: 381-91.
    • (1997) Cell , vol.89 , pp. 381-391
    • Kennedy, B.K.1    Gotta, M.2    Sinclair, D.A.3
  • 73
    • 81855212626 scopus 로고    scopus 로고
    • Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control
    • Lee JT. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 2011; 12: 815-26.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 815-826
    • Lee, J.T.1
  • 74
    • 0025243605 scopus 로고
    • Isolation and characterization of acetylated histones H3 and H4 and their assembly into nucleosomes
    • Marvin KW, Yau P, Bradbury EM. Isolation and characterization of acetylated histones H3 and H4 and their assembly into nucleosomes. J Biol Chem 1990; 265: 19839-47.
    • (1990) J Biol Chem , vol.265 , pp. 19839-19847
    • Marvin, K.W.1    Yau, P.2    Bradbury, E.M.3
  • 76
    • 0032540755 scopus 로고    scopus 로고
    • How do histone acetyltransferases select lysine residues in core histones?
    • Kimura A, Horikoshi M. How do histone acetyltransferases select lysine residues in core histones? FEBS Lett 1998; 431: 131-3.
    • (1998) FEBS Lett , vol.431 , pp. 131-133
    • Kimura, A.1    Horikoshi, M.2
  • 77
    • 0032467640 scopus 로고    scopus 로고
    • Tip60 acetylates six lysines of a specific class in core histones in vitro
    • Kimura A, Horikoshi M. Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 1998; 3: 789-800.
    • (1998) Genes Cells , vol.3 , pp. 789-800
    • Kimura, A.1    Horikoshi, M.2
  • 78
    • 0032504040 scopus 로고    scopus 로고
    • Histone-like TAFs within the PCAF histone acetylase complex
    • Ogryzko VV, Kotani T, Zhang X, et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell 1998; 94: 35-44.
    • (1998) Cell , vol.94 , pp. 35-44
    • Ogryzko, V.V.1    Kotani, T.2    Zhang, X.3
  • 79
    • 0032504104 scopus 로고    scopus 로고
    • A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation
    • Grant PA, Schieltz D, Pray-Grant MG, et al. A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 1998; 94: 45-53.
    • (1998) Cell , vol.94 , pp. 45-53
    • Grant, P.A.1    Schieltz, D.2    Pray-Grant, M.G.3
  • 80
    • 0038204415 scopus 로고    scopus 로고
    • The diverse functions of histone acetyltransferase complexes
    • Carrozza MJ, Utley RT, Workman JL, Côté J. The diverse functions of histone acetyltransferase complexes. Trends Genet 2003; 19: 321-9.
    • (2003) Trends Genet , vol.19 , pp. 321-329
    • Carrozza, M.J.1    Utley, R.T.2    Workman, J.L.3    Côté, J.4
  • 81
    • 0030797349 scopus 로고    scopus 로고
    • Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (Spt/Ada) complex
    • Grant PA, Duggan L, Côté J, et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 1997; 11: 1640-50.
    • (1997) Genes Dev , vol.11 , pp. 1640-1650
    • Grant, P.A.1    Duggan, L.2    Côté, J.3
  • 82
  • 83
    • 0038284360 scopus 로고    scopus 로고
    • Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin
    • Boudreault AA, Cronier D, Selleck W, et al. Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev 2003; 17: 1415-28.
    • (2003) Genes Dev , vol.17 , pp. 1415-1428
    • Boudreault, A.A.1    Cronier, D.2    Selleck, W.3
  • 85
    • 84855170184 scopus 로고    scopus 로고
    • Nucleosome surface containing nucleosomal DNA entry/exit site regulates H3-K36me3 via association with RNA polymerase II and Set2
    • Endo H, Nakabayashi Y, Kawashima S, Enomoto T, Seki M, Horikoshi M. Nucleosome surface containing nucleosomal DNA entry/exit site regulates H3-K36me3 via association with RNA polymerase II and Set2. Genes Cells 2012; 17: 65-81.
    • (2012) Genes Cells , vol.17 , pp. 65-81
    • Endo, H.1    Nakabayashi, Y.2    Kawashima, S.3    Enomoto, T.4    Seki, M.5    Horikoshi, M.6
  • 86
    • 0033567954 scopus 로고    scopus 로고
    • NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p
    • Allard S, Utley RT, Savard J, et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 1999; 18: 5108-19.
    • (1999) EMBO J , vol.18 , pp. 5108-5119
    • Allard, S.1    Utley, R.T.2    Savard, J.3
  • 87
    • 0033019841 scopus 로고    scopus 로고
    • A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila
    • Ohba R, Steger DJ, Brownell JE, et al. A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila. Mol Cell Biol 1999; 19: 2061-8.
    • (1999) Mol Cell Biol , vol.19 , pp. 2061-2068
    • Ohba, R.1    Steger, D.J.2    Brownell, J.E.3
  • 88
    • 0034707037 scopus 로고    scopus 로고
    • Global histone acetylation and deacetylation in yeast
    • Vogelauer M, Wu J, Suka N, Grunstein M. Global histone acetylation and deacetylation in yeast. Nature 2000; 408: 495-8.
    • (2000) Nature , vol.408 , pp. 495-498
    • Vogelauer, M.1    Wu, J.2    Suka, N.3    Grunstein, M.4
  • 89
    • 0034839973 scopus 로고    scopus 로고
    • Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin
    • Suka N, Suka Y, Carmen AA, Wu J, Grunstein M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 2001; 8: 473-9.
    • (2001) Mol Cell , vol.8 , pp. 473-479
    • Suka, N.1    Suka, Y.2    Carmen, A.A.3    Wu, J.4    Grunstein, M.5
  • 90
    • 0036843170 scopus 로고    scopus 로고
    • Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
    • Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 2002; 32: 370-7.
    • (2002) Nat Genet , vol.32 , pp. 370-377
    • Kimura, A.1    Umehara, T.2    Horikoshi, M.3
  • 91
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
    • Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 2002; 32: 378-83.
    • (2002) Nat Genet , vol.32 , pp. 378-383
    • Suka, N.1    Luo, K.2    Grunstein, M.3
  • 92
    • 0034657420 scopus 로고    scopus 로고
    • The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex
    • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 2000; 14: 1196-208.
    • (2000) Genes Dev , vol.14 , pp. 1196-1208
    • John, S.1    Howe, L.2    Tafrov, S.T.3    Grant, P.A.4    Sternglanz, R.5    Workman, J.L.6
  • 93
    • 0035577668 scopus 로고    scopus 로고
    • Histone H3 specific acetyltransferases are essential for cell cycle progression
    • Howe L, Auston D, Grant P, et al. Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 2001; 15: 3144-54.
    • (2001) Genes Dev , vol.15 , pp. 3144-3154
    • Howe, L.1    Auston, D.2    Grant, P.3
  • 94
    • 0037930802 scopus 로고    scopus 로고
    • Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex
    • Sutton A, Shia WJ, Band D, et al. Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 2003; 278: 16887-92.
    • (2003) J Biol Chem , vol.278 , pp. 16887-16892
    • Sutton, A.1    Shia, W.J.2    Band, D.3
  • 96
    • 33847076248 scopus 로고    scopus 로고
    • Chromatin challenges during DNA replication and repair
    • Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007; 128: 721-33.
    • (2007) Cell , vol.128 , pp. 721-733
    • Groth, A.1    Rocha, W.2    Verreault, A.3    Almouzni, G.4
  • 98
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128: 707-19.
    • (2007) Cell , vol.128 , pp. 707-719
    • Li, B.1    Carey, M.2    Workman, J.L.3
  • 99
    • 35848964068 scopus 로고    scopus 로고
    • Histone chaperones: An escort network regulating histone traffic
    • De Koning L, Corpet A, Haber JE, Almouzni G. Histone chaperones: An escort network regulating histone traffic. Nat Struct Mol Biol 2007; 14: 997-1007.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 997-1007
    • De Koning, L.1    Corpet, A.2    Haber, J.E.3    Almouzni, G.4
  • 100
    • 44949119317 scopus 로고    scopus 로고
    • Histone chaperones in nucleosome eviction and histone exchange
    • Park YJ, Luger K. Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol 2008; 18: 282-9.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 282-289
    • Park, Y.J.1    Luger, K.2
  • 101
    • 35848958821 scopus 로고    scopus 로고
    • Chromatin remodeling: Insights and intrigue from single-molecule studies
    • Cairns BR. Chromatin remodeling: Insights and intrigue from single-molecule studies. Nat Struct Mol Biol 2007; 14: 989-96.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 989-996
    • Cairns, B.R.1
  • 102
    • 0018763473 scopus 로고
    • In vitro core particle and nucleosome assembly at physiological ionic strength
    • Ruiz-Carrillo A, Jorcano JL, Eder G, Lurz R. In vitro core particle and nucleosome assembly at physiological ionic strength. Proc Natl Acad Sci USA 1979; 76: 3284-8.
    • (1979) Proc Natl Acad Sci USA , vol.76 , pp. 3284-3288
    • Ruiz-Carrillo, A.1    Jorcano, J.L.2    Eder, G.3    Lurz, R.4
  • 103
    • 0034100123 scopus 로고    scopus 로고
    • A human homologue of yeast anti-silencing factor has histone chaperone activity
    • Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M. A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 2000; 5: 221-33.
    • (2000) Genes Cells , vol.5 , pp. 221-233
    • Munakata, T.1    Adachi, N.2    Yokoyama, N.3    Kuzuhara, T.4    Horikoshi, M.5
  • 104
    • 0037047101 scopus 로고    scopus 로고
    • Identification and characterization of CIA/ASF1 as an interactor of bromodomains associated with TFIID
    • Chimura T, Kuzuhara T, Horikoshi M. Identification and characterization of CIA/ASF1 as an interactor of bromodomains associated with TFIID. Proc Natl Acad Sci USA 2002; 99: 9334-9.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 9334-9339
    • Chimura, T.1    Kuzuhara, T.2    Horikoshi, M.3
  • 107
    • 33847226680 scopus 로고    scopus 로고
    • Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4
    • Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 2007; 446: 338-41.
    • (2007) Nature , vol.446 , pp. 338-341
    • Natsume, R.1    Eitoku, M.2    Akai, Y.3    Sano, N.4    Horikoshi, M.5    Senda, T.6
  • 108
    • 0031009397 scopus 로고    scopus 로고
    • Chromatin remodeling and transcription
    • Tsukiyama T, Wu C. Chromatin remodeling and transcription. Curr Opin Genet Dev 1997; 7: 182-91.
    • (1997) Curr Opin Genet Dev , vol.7 , pp. 182-191
    • Tsukiyama, T.1    Wu, C.2
  • 109
    • 0344198456 scopus 로고    scopus 로고
    • Chromatin remodeling by ATP-dependent molecular machines
    • Lusser A, Kadonaga JT. Chromatin remodeling by ATP-dependent molecular machines. Bioessays 2003; 25: 1192-200.
    • (2003) Bioessays , vol.25 , pp. 1192-1200
    • Lusser, A.1    Kadonaga, J.T.2
  • 110
    • 15544384745 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling
    • Smith CL, Peterson CL. ATP-dependent chromatin remodeling. Curr Top Dev Biol 2005; 65: 115-48.
    • (2005) Curr Top Dev Biol , vol.65 , pp. 115-148
    • Smith, C.L.1    Peterson, C.L.2
  • 111
    • 44649089374 scopus 로고    scopus 로고
    • ATP-dependent chromatosome remodeling
    • Maier VK, Chioda M, Becker PB. ATP-dependent chromatosome remodeling. Biol Chem 2008; 389: 345-52.
    • (2008) Biol Chem , vol.389 , pp. 345-352
    • Maier, V.K.1    Chioda, M.2    Becker, P.B.3
  • 112
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009; 78: 273-304.
    • (2009) Annu Rev Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 113
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997; 389: 349-52.
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 114
  • 115
    • 0037636027 scopus 로고    scopus 로고
    • The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
    • Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003; 72: 481-516.
    • (2003) Annu Rev Biochem , vol.72 , pp. 481-516
    • Rusche, L.N.1    Kirchmaier, A.L.2    Rine, J.3
  • 116
    • 18944372806 scopus 로고    scopus 로고
    • Epigenetic silencing mechanisms in budding yeast and fruit fly: Different paths, same destinations
    • Pirrotta V, Gross DS. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations. Mol Cell 2005; 18: 395-8.
    • (2005) Mol Cell , vol.18 , pp. 395-398
    • Pirrotta, V.1    Gross, D.S.2
  • 117
    • 0037097940 scopus 로고    scopus 로고
    • Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast
    • Luo K, Vega-Palas MA, Grunstein M. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 2002; 16: 1528-39.
    • (2002) Genes Dev , vol.16 , pp. 1528-1539
    • Luo, K.1    Vega-Palas, M.A.2    Grunstein, M.3
  • 118
    • 3042733279 scopus 로고    scopus 로고
    • Partition of distinct chromosomal regions: Negotiable border and fixed border
    • Kimura A, Horikoshi M. Partition of distinct chromosomal regions: negotiable border and fixed border. Genes Cells 2004; 9: 499-508.
    • (2004) Genes Cells , vol.9 , pp. 499-508
    • Kimura, A.1    Horikoshi, M.2
  • 119
    • 0036467996 scopus 로고    scopus 로고
    • Insulators: Many functions, many mechanisms
    • West AG, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. Genes Dev 2002; 16: 271-88.
    • (2002) Genes Dev , vol.16 , pp. 271-288
    • West, A.G.1    Gaszner, M.2    Felsenfeld, G.3
  • 120
    • 0037291760 scopus 로고    scopus 로고
    • Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries
    • Ladurner AG, Inouye C, Jain R, Tjian R. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 2003; 11: 365-76.
    • (2003) Mol Cell , vol.11 , pp. 365-376
    • Ladurner, A.G.1    Inouye, C.2    Jain, R.3    Tjian, R.4
  • 121
    • 0348184963 scopus 로고    scopus 로고
    • ATPdriven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
    • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. ATPdriven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 2004; 303: 343-8.
    • (2004) Science , vol.303 , pp. 343-348
    • Mizuguchi, G.1    Shen, X.2    Landry, J.3    Wu, W.H.4    Sen, S.5    Wu, C.6
  • 122
    • 9144269660 scopus 로고    scopus 로고
    • A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1
    • Krogan NJ, Keogh MC, Datta N, et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 2004; 12: 1565-76.
    • (2004) Mol Cell , vol.12 , pp. 1565-1576
    • Krogan, N.J.1    Keogh, M.C.2    Datta, N.3
  • 123
    • 19344372948 scopus 로고    scopus 로고
    • A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A. Z into euchromatin
    • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A. Z into euchromatin. PLoS Biol 2004; 2: E131.
    • (2004) PLoS Biol , vol.2
    • Kobor, M.S.1    Venkatasubrahmanyam, S.2    Meneghini, M.D.3
  • 124
    • 0037423930 scopus 로고    scopus 로고
    • Conserved histone variant H2A. Z protects euchromatin from the ectopic spread of silent heterochromatin
    • Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A. Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 2003; 112: 725-36.
    • (2003) Cell , vol.112 , pp. 725-736
    • Meneghini, M.D.1    Wu, M.2    Madhani, H.D.3
  • 125
    • 0037077178 scopus 로고    scopus 로고
    • Dot1p modulates silencing in yeast by methylation of the nucleosome core
    • van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002; 109: 745-56.
    • (2002) Cell , vol.109 , pp. 745-756
    • van Leeuwen, F.1    Gafken, P.R.2    Gottschling, D.E.3
  • 126
    • 0037098044 scopus 로고    scopus 로고
    • Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association
    • Ng HH, Feng Q, Wang H, et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 2002; 16: 1518-27.
    • (2002) Genes Dev , vol.16 , pp. 1518-1527
    • Ng, H.H.1    Feng, Q.2    Wang, H.3
  • 127
    • 9144253287 scopus 로고    scopus 로고
    • Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin
    • Santos-Rosa H, Bannister AJ, Dehe PM, Geli V, Kouzarides T. Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin. J Biol Chem 2004; 279: 47506-12.
    • (2004) J Biol Chem , vol.279 , pp. 47506-47512
    • Santos-Rosa, H.1    Bannister, A.J.2    Dehe, P.M.3    Geli, V.4    Kouzarides, T.5
  • 128
    • 0037019333 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
    • Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 2002; 418: 104-8.
    • (2002) Nature , vol.418 , pp. 104-108
    • Sun, Z.W.1    Allis, C.D.2
  • 129
    • 0036682364 scopus 로고    scopus 로고
    • Gene silencing: Trans-histone regulatory pathway in chromatin
    • Briggs SD, Xiao T, Sun ZW, et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 2002; 418: 498.
    • (2002) Nature , vol.418 , pp. 498
    • Briggs, S.D.1    Xiao, T.2    Sun, Z.W.3
  • 130
    • 8644240108 scopus 로고    scopus 로고
    • Recruitment of histone modifications by USF proteins at a vertebrate barrier element
    • West AG, Huang S, Gaszner M, Litt MD, Felsenfeld G. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol Cell 2004; 16: 453-63.
    • (2004) Mol Cell , vol.16 , pp. 453-463
    • West, A.G.1    Huang, S.2    Gaszner, M.3    Litt, M.D.4    Felsenfeld, G.5
  • 131
    • 1342346506 scopus 로고    scopus 로고
    • Barrier proteins remodel and modify chromatin to restrict silenced domains
    • Oki M, Valenzuela L, Chiba T, Ito T, Kamakaka RT. Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol Cell Biol 2004; 24: 1956-67.
    • (2004) Mol Cell Biol , vol.24 , pp. 1956-1967
    • Oki, M.1    Valenzuela, L.2    Chiba, T.3    Ito, T.4    Kamakaka, R.T.5
  • 133
    • 0042528729 scopus 로고    scopus 로고
    • Heterochromatin and epigenetic control of gene expression
    • Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science 2003; 301: 798-802.
    • (2003) Science , vol.301 , pp. 798-802
    • Grewal, S.I.1    Moazed, D.2
  • 134
    • 0942279635 scopus 로고    scopus 로고
    • RNAi-mediated targeting of heterochromatin by the RITS complex
    • Verdel A, Jia S, Gerber S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303: 672-6.
    • (2004) Science , vol.303 , pp. 672-676
    • Verdel, A.1    Jia, S.2    Gerber, S.3
  • 135
    • 2942746179 scopus 로고    scopus 로고
    • Histone variants, nucleosome assembly and epigenetic inheritance
    • Henikoff S, Furuyama T, Ahmad K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 2004; 20: 320-6.
    • (2004) Trends Genet , vol.20 , pp. 320-326
    • Henikoff, S.1    Furuyama, T.2    Ahmad, K.3
  • 136
    • 11844295965 scopus 로고    scopus 로고
    • The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin
    • Swaminathan J, Baxter EM, Corces VG. The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 2005; 19: 65-76.
    • (2005) Genes Dev , vol.19 , pp. 65-76
    • Swaminathan, J.1    Baxter, E.M.2    Corces, V.G.3
  • 137
    • 84875262801 scopus 로고    scopus 로고
    • TFIIIC bound DNA elements in nuclear organization and insulation
    • Available from, [Accessed 7 January 2013]
    • Kirkland JG, Raab JR, Kamakaka RT. TFIIIC bound DNA elements in nuclear organization and insulation. Biochim Biophys Acta 2012; Available from: http://dx.doi.org/10.1016/j.bbagrm.2012.09.006 [Accessed 7 January 2013]
    • (2012) Biochim Biophys Acta
    • Kirkland, J.G.1    Raab, J.R.2    Kamakaka, R.T.3
  • 138
    • 0033848849 scopus 로고    scopus 로고
    • Histone acetylation and an epigenetic code
    • Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000; 22: 836-45.
    • (2000) Bioessays , vol.22 , pp. 836-845
    • Turner, B.M.1
  • 139
    • 22144440879 scopus 로고    scopus 로고
    • Shaping time: Chromatin structure and the DNA replication programme
    • Donaldson AD. Shaping time: chromatin structure and the DNA replication programme. Trends Genet 2005; 21: 444-9.
    • (2005) Trends Genet , vol.21 , pp. 444-449
    • Donaldson, A.D.1
  • 140
    • 11144357255 scopus 로고    scopus 로고
    • Cellular machineries for chromosomal DNA repair
    • Peterson CL, Côté J. Cellular machineries for chromosomal DNA repair. Genes Dev 2004; 18: 602-16.
    • (2004) Genes Dev , vol.18 , pp. 602-616
    • Peterson, C.L.1    Côté, J.2
  • 141
    • 20444391346 scopus 로고    scopus 로고
    • Chromatin in need of a fix: Phosphorylation of H2AX connects chromatin to DNA repair
    • Thiriet C, Hayes JJ. Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 2005; 18: 617-22.
    • (2005) Mol Cell , vol.18 , pp. 617-622
    • Thiriet, C.1    Hayes, J.J.2
  • 142
    • 0036847620 scopus 로고    scopus 로고
    • Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
    • Hassan AH, Prochasson P, Neely KE, et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 2002; 111: 369-79.
    • (2002) Cell , vol.111 , pp. 369-379
    • Hassan, A.H.1    Prochasson, P.2    Neely, K.E.3
  • 143
    • 0037291695 scopus 로고    scopus 로고
    • Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation
    • Matangkasombut O, Buratowski S. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 2003; 11: 353-63.
    • (2003) Mol Cell , vol.11 , pp. 353-363
    • Matangkasombut, O.1    Buratowski, S.2
  • 144
    • 0041806599 scopus 로고    scopus 로고
    • The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis
    • Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 2003; 100: 8758-63.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 8758-8763
    • Dey, A.1    Chitsaz, F.2    Abbasi, A.3    Misteli, T.4    Ozato, K.5
  • 145
    • 1642564551 scopus 로고    scopus 로고
    • Selective recognition of acetylated histones by bromodomain proteins visualized in living cells
    • Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 2004; 13: 33-43
    • (2004) Mol Cell , vol.13 , pp. 33-43
    • Kanno, T.1    Kanno, Y.2    Siegel, R.M.3    Jang, M.K.4    Lenardo, M.J.5    Ozato, K.6
  • 146
    • 7044250740 scopus 로고    scopus 로고
    • Lysine acetylation and the bromodomain: A new partnership for signaling
    • Yang XJ. Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 2004; 26: 1076-87.
    • (2004) Bioessays , vol.26 , pp. 1076-1087
    • Yang, X.J.1
  • 147
    • 0032171040 scopus 로고    scopus 로고
    • Chromatin remodeling: A marriage between two families?
    • Pollard KJ, Peterson CL. Chromatin remodeling: a marriage between two families? Bioessays 1998; 20: 771-80.
    • (1998) Bioessays , vol.20 , pp. 771-780
    • Pollard, K.J.1    Peterson, C.L.2
  • 148
    • 0036850346 scopus 로고    scopus 로고
    • Deciphering the transcriptional histone acetylation code for a human gene
    • Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 2002; 111: 381-92.
    • (2002) Cell , vol.111 , pp. 381-392
    • Agalioti, T.1    Chen, G.2    Thanos, D.3
  • 149
    • 0033617334 scopus 로고    scopus 로고
    • Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle-and developmentally regulated promoter
    • Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle-and developmentally regulated promoter. Cell 1999; 97: 299-311.
    • (1999) Cell , vol.97 , pp. 299-311
    • Cosma, M.P.1    Tanaka, T.2    Nasmyth, K.3
  • 150
    • 0033152279 scopus 로고    scopus 로고
    • Cell cycle-regulated histone acetylation required for expression of the yeast HO gene
    • Krebs JE, Kuo MH, Allis CD, Peterson CL. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev 1999; 13: 1412-21.
    • (1999) Genes Dev , vol.13 , pp. 1412-1421
    • Krebs, J.E.1    Kuo, M.H.2    Allis, C.D.3    Peterson, C.L.4
  • 151
    • 0035937419 scopus 로고    scopus 로고
    • Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes
    • Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 2001; 104: 817-27.
    • (2001) Cell , vol.104 , pp. 817-827
    • Hassan, A.H.1    Neely, K.E.2    Workman, J.L.3
  • 152
    • 0028919756 scopus 로고
    • Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast
    • Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 1995; 80: 583-92.
    • (1995) Cell , vol.80 , pp. 583-592
    • Hecht, A.1    Laroche, T.2    Strahl-Bolsinger, S.3    Gasser, S.M.4    Grunstein, M.5
  • 153
    • 0037085264 scopus 로고    scopus 로고
    • Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3
    • Carmen AA, Milne L, Grunstein M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem 2002; 277: 4778-81.
    • (2002) J Biol Chem , vol.277 , pp. 4778-4781
    • Carmen, A.A.1    Milne, L.2    Grunstein, M.3
  • 154
    • 0030003051 scopus 로고    scopus 로고
    • Repression domain of the yeast global repressor Tup1interacts directly with histones H3 and H4
    • Edmondson DG, Smith MM, Roth SY. Repression domain of the yeast global repressor Tup1interacts directly with histones H3 and H4. Genes Dev 1996; 10: 1247-59.
    • (1996) Genes Dev , vol.10 , pp. 1247-1259
    • Edmondson, D.G.1    Smith, M.M.2    Roth, S.Y.3
  • 155
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 156
    • 0034234638 scopus 로고    scopus 로고
    • Turning genes off by Ssn6-Tup1: A conserved system of transcriptional repression in eukaryotes
    • Smith RL, Johnson AD. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 2000; 25: 325-30.
    • (2000) Trends Biochem Sci , vol.25 , pp. 325-330
    • Smith, R.L.1    Johnson, A.D.2
  • 157
    • 0035105035 scopus 로고    scopus 로고
    • TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
    • Wu J, Suka N, Carlson M, Grunstein M. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 2001; 7: 117-26.
    • (2001) Mol Cell , vol.7 , pp. 117-126
    • Wu, J.1    Suka, N.2    Carlson, M.3    Grunstein, M.4
  • 159
    • 0141992114 scopus 로고    scopus 로고
    • Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase
    • Clements A, Poux AN, Lo WS, Pillus L, Berger SL, Marmorstein R. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 2003; 12: 461-73.
    • (2003) Mol Cell , vol.12 , pp. 461-473
    • Clements, A.1    Poux, A.N.2    Lo, W.S.3    Pillus, L.4    Berger, S.L.5    Marmorstein, R.6
  • 160
    • 0141929385 scopus 로고    scopus 로고
    • Binary switches and modification cassettes in histone biology and beyond
    • Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003; 425: 475-9.
    • (2003) Nature , vol.425 , pp. 475-479
    • Fischle, W.1    Wang, Y.2    Allis, C.D.3
  • 161
    • 51149107006 scopus 로고    scopus 로고
    • Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex
    • Lange M, Kaynak B, Forster UB, et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 2008; 22: 2370-84.
    • (2008) Genes Dev , vol.22 , pp. 2370-2384
    • Lange, M.1    Kaynak, B.2    Forster, U.B.3
  • 162
    • 77954487796 scopus 로고    scopus 로고
    • Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b
    • Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 2010; 466: 258-62.
    • (2010) Nature , vol.466 , pp. 258-262
    • Zeng, L.1    Zhang, Q.2    Li, S.3    Plotnikov, A.N.4    Walsh, M.J.5    Zhou, M.M.6
  • 163
    • 73049150125 scopus 로고
    • The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides
    • Nirenberg MW, Matthaei JH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 1961; 47: 1588-602.
    • (1961) Proc Natl Acad Sci USA , vol.47 , pp. 1588-1602
    • Nirenberg, M.W.1    Matthaei, J.H.2
  • 164
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705.
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 165
    • 35848936709 scopus 로고    scopus 로고
    • Cross-regulation of histone modifications
    • Latham JA, Dent SY. Cross-regulation of histone modifications. Nat Struct Mol Biol 2007; 14: 1017-24.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 1017-1024
    • Latham, J.A.1    Dent, S.Y.2
  • 166
    • 34948839944 scopus 로고    scopus 로고
    • Facultative heterochromatin: Is there a distinctive molecular signature?
    • Trojer P, Reinberg D. Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 2007; 28: 1-13.
    • (2007) Mol Cell , vol.28 , pp. 1-13
    • Trojer, P.1    Reinberg, D.2
  • 167
    • 0030797585 scopus 로고    scopus 로고
    • Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
    • Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595-606.
    • (1997) Cell , vol.90 , pp. 595-606
    • Gu, W.1    Roeder, R.G.2
  • 168
    • 52449132322 scopus 로고    scopus 로고
    • Is there a code embedded in proteins that is based on post-translational modification?
    • Sims RJ 3rd, Reinberg D. Is there a code embedded in proteins that is based on post-translational modification? Nat Rev Mol Cell Biol 2008; 9: 815-20.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 815-820
    • Sims III, R.J.1    Reinberg, D.2
  • 169
    • 77957241989 scopus 로고    scopus 로고
    • A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes
    • Günesdogan U, Jäckle H, Herzig A. A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes. EMBO Rep 2010; 11: 772-6.
    • (2010) EMBO Rep , vol.11 , pp. 772-776
    • Günesdogan, U.1    Jäckle, H.2    Herzig, A.3
  • 170
    • 34249299791 scopus 로고    scopus 로고
    • The complex language of chromatin regulation during transcription
    • Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447: 407-12.
    • (2007) Nature , vol.447 , pp. 407-412
    • Berger, S.L.1
  • 171
    • 2942612843 scopus 로고    scopus 로고
    • Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53
    • An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 2004; 117: 735-48.
    • (2004) Cell , vol.117 , pp. 735-748
    • An, W.1    Kim, J.2    Roeder, R.G.3
  • 172
    • 0025736044 scopus 로고
    • Yeast histone H4 N-terminal sequence is required for promoter activation in vivo
    • Durrin LK, Mann RK, Kayne PS, Grunstein M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 1991; 65: 1023-31.
    • (1991) Cell , vol.65 , pp. 1023-1031
    • Durrin, L.K.1    Mann, R.K.2    Kayne, P.S.3    Grunstein, M.4
  • 173
    • 33845880445 scopus 로고    scopus 로고
    • Global analysis of functional surfaces of core histones with comprehensive point mutants
    • Matsubara K, Sano N, Umehara T, Horikoshi M. Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 2007; 12: 13-33.
    • (2007) Genes Cells , vol.12 , pp. 13-33
    • Matsubara, K.1    Sano, N.2    Umehara, T.3    Horikoshi, M.4
  • 174
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature 1998; 393: 440-2.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 175
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi AL, Albert R. Emergence of scaling in random networks. Science 1999; 286: 509-12.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 176
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004; 5: 101-13.
    • (2004) Nat Rev Genet , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 177
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • Albert R. Scale-free networks in cell biology. J Cell Sci 2005; 118: 4947-57.
    • (2005) J Cell Sci , vol.118 , pp. 4947-4957
    • Albert, R.1
  • 178
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert R, Barabasi AL. Statistical mechanics of complex networks. Review Modern Physics 2002; 74: 47-97.
    • (2002) Review Modern Physics , vol.74 , pp. 47-97
    • Albert, R.1    Barabasi, A.L.2
  • 179
    • 0034721164 scopus 로고    scopus 로고
    • Error and attack tolerance of complex networks
    • Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature 2000; 406: 378-82.
    • (2000) Nature , vol.406 , pp. 378-382
    • Albert, R.1    Jeong, H.2    Barabasi, A.L.3
  • 180
    • 33947513027 scopus 로고    scopus 로고
    • Regulation of histone methylation by demethylimination and demethylation
    • Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 2007; 8: 307-18.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 307-318
    • Klose, R.J.1    Zhang, Y.2
  • 181
    • 34447512704 scopus 로고    scopus 로고
    • Understanding network concepts in modules
    • Dong J, Horvath S. Understanding network concepts in modules. BMC System Biol 2007; 1: 1-20.
    • (2007) BMC System Biol , vol.1 , pp. 1-20
    • Dong, J.1    Horvath, S.2
  • 182
    • 14644435825 scopus 로고    scopus 로고
    • Intrinsically unstructured proteins and their functions
    • Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005; 6: 197-208.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 197-208
    • Dyson, H.J.1    Wright, P.E.2
  • 183
    • 27744569240 scopus 로고    scopus 로고
    • Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases
    • Khan AN, Lewis PN. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem 2005; 280: 36073-8.
    • (2005) J Biol Chem , vol.280 , pp. 36073-36078
    • Khan, A.N.1    Lewis, P.N.2
  • 184
    • 35848961668 scopus 로고    scopus 로고
    • How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers
    • Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007; 14: 1025-40.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 1025-1040
    • Taverna, S.D.1    Li, H.2    Ruthenburg, A.J.3    Allis, C.D.4    Patel, D.J.5
  • 185
    • 13844255387 scopus 로고    scopus 로고
    • Natively unfolded proteins
    • Fink AL. Natively unfolded proteins. Curr Opin Struct Biol 2005; 15: 35-41.
    • (2005) Curr Opin Struct Biol , vol.15 , pp. 35-41
    • Fink, A.L.1
  • 186
    • 43749098985 scopus 로고    scopus 로고
    • DNA methylation landscapes: Provocative insights from epigenomics
    • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9: 465-76.
    • (2008) Nat Rev Genet , vol.9 , pp. 465-476
    • Suzuki, M.M.1    Bird, A.2
  • 187
    • 27944442030 scopus 로고    scopus 로고
    • In and out: Histone variant exchange in chromatin
    • Jin J, Cai Y, Li B, et al. In and out: histone variant exchange in chromatin. Trends Biochem Sci 2005; 30: 680-7.
    • (2005) Trends Biochem Sci , vol.30 , pp. 680-687
    • Jin, J.1    Cai, Y.2    Li, B.3
  • 188
    • 84867009687 scopus 로고    scopus 로고
    • Asymmetrically modified nucleosomes
    • Voigt P, LeRoy G, Drury WJ 3rd, et al. Asymmetrically modified nucleosomes. Cell 2012; 151: 181-93.
    • (2012) Cell , vol.151 , pp. 181-193
    • Voigt, P.1    LeRoy, G.2    Drury III, W.J.3
  • 190
    • 77954155784 scopus 로고    scopus 로고
    • Global analysis of functional relationships between histone point mutations and the effects of histone deacetylase inhibitors
    • Sato L, Noguchi S, Hayashi Y, Sakamoto M, Horikoshi M. Global analysis of functional relationships between histone point mutations and the effects of histone deacetylase inhibitors. Genes Cells 2010; 15: 553-94.
    • (2010) Genes Cells , vol.15 , pp. 553-594
    • Sato, L.1    Noguchi, S.2    Hayashi, Y.3    Sakamoto, M.4    Horikoshi, M.5
  • 191
    • 4444372638 scopus 로고    scopus 로고
    • Histone deimination antagonizes arginine methylation
    • Cuthbert GL, Daujat S, Snowden AW, et al. Histone deimination antagonizes arginine methylation. Cell 2004; 118: 545-53.
    • (2004) Cell , vol.118 , pp. 545-553
    • Cuthbert, G.L.1    Daujat, S.2    Snowden, A.W.3
  • 192
    • 35349030188 scopus 로고    scopus 로고
    • Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive
    • Guccione E, Bassi C, Casadio F, et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 2007; 449: 933-7.
    • (2007) Nature , vol.449 , pp. 933-937
    • Guccione, E.1    Bassi, C.2    Casadio, F.3
  • 193
    • 35348986412 scopus 로고    scopus 로고
    • Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation
    • Kirmizis A, Santos-Rosa H, Penkett CJ, et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 2007; 449: 928-32.
    • (2007) Nature , vol.449 , pp. 928-932
    • Kirmizis, A.1    Santos-Rosa, H.2    Penkett, C.J.3
  • 194
    • 0037083757 scopus 로고    scopus 로고
    • Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation
    • Nishioka K, Chuikov S, Sarma K, et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 2002; 16: 479-89.
    • (2002) Genes Dev , vol.16 , pp. 479-489
    • Nishioka, K.1    Chuikov, S.2    Sarma, K.3
  • 195
    • 0035694922 scopus 로고    scopus 로고
    • Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase
    • Wang H, Cao R, Xia L, et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 2001; 8: 1207-17.
    • (2001) Mol Cell , vol.8 , pp. 1207-1217
    • Wang, H.1    Cao, R.2    Xia, L.3
  • 196
    • 33751527233 scopus 로고    scopus 로고
    • Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs
    • Taverna SD, Ilin S, Rogers RS, et al. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 2006; 24: 785-96.
    • (2006) Mol Cell , vol.24 , pp. 785-796
    • Taverna, S.D.1    Ilin, S.2    Rogers, R.S.3
  • 197
    • 33745868054 scopus 로고    scopus 로고
    • ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression
    • Shi X, Hong T, Walter KL, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 2006; 442: 96-9.
    • (2006) Nature , vol.442 , pp. 96-99
    • Shi, X.1    Hong, T.2    Walter, K.L.3
  • 198
    • 2642542643 scopus 로고    scopus 로고
    • A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin
    • Schotta G, Lachner M, Sarma K, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18: 1251-62.
    • (2004) Genes Dev , vol.18 , pp. 1251-1262
    • Schotta, G.1    Lachner, M.2    Sarma, K.3
  • 199
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by site-specific histone H3 methyltransferases
    • Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406: 593-9.
    • (2000) Nature , vol.406 , pp. 593-599
    • Rea, S.1    Eisenhaber, F.2    O'Carroll, D.3
  • 200
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
    • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001; 292: 110-3.
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1    Rice, J.C.2    Strahl, B.D.3    Allis, C.D.4    Grewal, S.I.5
  • 202
    • 18744373853 scopus 로고    scopus 로고
    • MLL targets SET domain methyltransferase activity to Hox gene promoters
    • Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107-17.
    • (2002) Mol Cell , vol.10 , pp. 1107-1117
    • Milne, T.A.1    Briggs, S.D.2    Brock, H.W.3
  • 203
    • 33947492804 scopus 로고    scopus 로고
    • Cross-talk between histonemodifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation
    • Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM. Cross-talk between histonemodifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 2007; 282: 4408-16.
    • (2007) J Biol Chem , vol.282 , pp. 4408-4416
    • Nightingale, K.P.1    Gendreizig, S.2    White, D.A.3    Bradbury, C.4    Hollfelder, F.5    Turner, B.M.6
  • 204
    • 0033638105 scopus 로고    scopus 로고
    • Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14
    • Lo WS, Trievel RC, Rojas JR, et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 2000; 5: 917-26.
    • (2000) Mol Cell , vol.5 , pp. 917-926
    • Lo, W.S.1    Trievel, R.C.2    Rojas, J.R.3
  • 205
    • 0033636595 scopus 로고    scopus 로고
    • Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation
    • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 2000; 5: 905-15.
    • (2000) Mol Cell , vol.5 , pp. 905-915
    • Cheung, P.1    Tanner, K.G.2    Cheung, W.L.3    Sassone-Corsi, P.4    Denu, J.M.5    Allis, C.D.6
  • 207
    • 33748163064 scopus 로고    scopus 로고
    • Proline isomerization of histone H3 regulates lysine methylation and gene expression
    • Nelson CJ, Santos-Rosa H, Kouzarides T. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 2006; 126: 905-16.
    • (2006) Cell , vol.126 , pp. 905-916
    • Nelson, C.J.1    Santos-Rosa, H.2    Kouzarides, T.3
  • 208
    • 0035800524 scopus 로고    scopus 로고
    • Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor
    • Wang H, Huang ZQ, Xia L, et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 2001; 93: 853-7.
    • (2001) Science , vol.93 , pp. 853-857
    • Wang, H.1    Huang, Z.Q.2    Xia, L.3
  • 209
    • 23244448558 scopus 로고    scopus 로고
    • The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing
    • Zhou Y, Grummt I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 2005; 15: 1434-8.
    • (2005) Curr Biol , vol.15 , pp. 1434-1438
    • Zhou, Y.1    Grummt, I.2
  • 210
    • 18444392703 scopus 로고    scopus 로고
    • PRSet7 is a nucleosomespecific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin
    • Nishioka K, Rice JC, Sarma K, et al. PRSet7 is a nucleosomespecific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 2002; 9: 1201-13.
    • (2002) Mol Cell , vol.9 , pp. 1201-1213
    • Nishioka, K.1    Rice, J.C.2    Sarma, K.3
  • 211
    • 38149081168 scopus 로고    scopus 로고
    • Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di-and trimethylation
    • Nakagawa T, Kajitani T, Togo S, et al. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di-and trimethylation. Genes Dev 2008; 22: 37-49.
    • (2008) Genes Dev , vol.22 , pp. 37-49
    • Nakagawa, T.1    Kajitani, T.2    Togo, S.3
  • 212
    • 35548986309 scopus 로고    scopus 로고
    • Regulation of cell cycle progression and gene expression by H2A deubiquitination
    • Joo HY, Zhai L, Yang C, et al. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 2007; 449: 1068-72.
    • (2007) Nature , vol.449 , pp. 1068-1072
    • Joo, H.Y.1    Zhai, L.2    Yang, C.3
  • 213
    • 10944267160 scopus 로고    scopus 로고
    • Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites
    • Downs JA, Allard S, Jobin-Robitaille O, et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 2004; 16: 979-90.
    • (2004) Mol Cell , vol.16 , pp. 979-990
    • Downs, J.A.1    Allard, S.2    Jobin-Robitaille, O.3
  • 214
    • 33749669082 scopus 로고    scopus 로고
    • Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10
    • Ahn SH, Diaz RL, Grunstein M, Allis CD. Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10. Mol Cell 2006; 24: 211-20.
    • (2006) Mol Cell , vol.24 , pp. 211-220
    • Ahn, S.H.1    Diaz, R.L.2    Grunstein, M.3    Allis, C.D.4
  • 215
    • 22544461653 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1
    • Shahbazian MD, Zhang K, Grunstein M. Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 2005; 19: 271-7.
    • (2005) Mol Cell , vol.19 , pp. 271-277
    • Shahbazian, M.D.1    Zhang, K.2    Grunstein, M.3
  • 216
    • 44849100496 scopus 로고    scopus 로고
    • Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation
    • McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 2008; 453: 812-6.
    • (2008) Nature , vol.453 , pp. 812-816
    • McGinty, R.K.1    Kim, J.2    Chatterjee, C.3    Roeder, R.G.4    Muir, T.W.5
  • 217
    • 2542440487 scopus 로고    scopus 로고
    • Phosphorylation of histone H2A inhibits transcription on chromatin templates
    • Zhang Y, Griffin K, Mondal N, Parvin JD. Phosphorylation of histone H2A inhibits transcription on chromatin templates. J Biol Chem 2004; 279: 21866-72.
    • (2004) J Biol Chem , vol.279 , pp. 21866-21872
    • Zhang, Y.1    Griffin, K.2    Mondal, N.3    Parvin, J.D.4
  • 218
    • 34547730282 scopus 로고    scopus 로고
    • A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation
    • Zhu P, Zhou W, Wang J, et al. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 2007; 27: 609-21.
    • (2007) Mol Cell , vol.27 , pp. 609-621
    • Zhu, P.1    Zhou, W.2    Wang, J.3
  • 219
    • 13444267442 scopus 로고    scopus 로고
    • Chd1 chromodomain links histone H3 methylation with SAGAand SLIK-dependent acetylation
    • Pray-Grant MG, Daniel JA, Schieltz D, Yates JR III, Grant PA. Chd1 chromodomain links histone H3 methylation with SAGAand SLIK-dependent acetylation. Nature 2005; 433: 434-8.
    • (2005) Nature , vol.433 , pp. 434-438
    • Pray-Grant, M.G.1    Daniel, J.A.2    Schieltz, D.3    Yates III, J.R.4    Grant, P.A.5
  • 220
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza MJ, Li B, Florens L, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005; 123: 581-92.
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1    Li, B.2    Florens, L.3
  • 221
    • 24344481673 scopus 로고    scopus 로고
    • Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4
    • Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Côté J. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 2005; 25: 8179-90.
    • (2005) Mol Cell Biol , vol.25 , pp. 8179-8190
    • Utley, R.T.1    Lacoste, N.2    Jobin-Robitaille, O.3    Allard, S.4    Côté, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.