메뉴 건너뛰기




Volumn 13, Issue 1, 2013, Pages 140-154

Extranuclear localization of SIRT1 and PGC-1α: An insight into possible roles in diseases associated with mitochondrial dysfunction

Author keywords

Biogenesis; Cellular metabolism; Cytoplasm; Mitochondria; Mitochondrial diseases; Transcriptional regulation

Indexed keywords

COPPER ZINC SUPEROXIDE DISMUTASE; ESTROGEN RELATED RECEPTOR ALPHA; GA BINDING PROTEIN; GLUTATHIONE PEROXIDASE; HEPATOCYTE NUCLEAR FACTOR 1ALPHA; HISTONE H4; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; INSULIN RECEPTOR SUBSTRATE 2; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MANGANESE SUPEROXIDE DISMUTASE; MITOCHONDRIAL DNA; MITOGEN ACTIVATED PROTEIN KINASE KINASE 4; MITOGEN ACTIVATED PROTEIN KINASE P38; NUCLEAR RESPIRATORY FACTOR 1; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; SIRTUIN 1; SIRTUIN 6; TRANSCRIPTION FACTOR FKHR; HEAT SHOCK PROTEIN; PPARGC1A PROTEIN, HUMAN; SIRT1 PROTEIN, HUMAN; TRANSCRIPTION FACTOR;

EID: 84878941111     PISSN: 15665240     EISSN: 18755666     Source Type: Journal    
DOI: 10.2174/156652413804486241     Document Type: Review
Times cited : (57)

References (136)
  • 1
    • 78650869592 scopus 로고    scopus 로고
    • Mitochondrial ROS Generation and Its Regulation: Mechanisms Involved in H(2)O(2) Signaling
    • Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS Generation and Its Regulation: Mechanisms Involved in H(2)O(2) Signaling. Antioxid Redox Signal 2010; 14(3): 459-68.
    • (2010) Antioxid Redox Signal , vol.14 , Issue.3 , pp. 459-468
    • Rigoulet, M.1    Yoboue, E.D.2    Devin, A.3
  • 2
    • 34548627532 scopus 로고    scopus 로고
    • DNA replication and transcription in mammalian mitochondria
    • Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007; 76: 679-99.
    • (2007) Annu Rev Biochem , vol.76 , pp. 679-699
    • Falkenberg, M.1    Larsson, N.G.2    Gustafsson, C.M.3
  • 3
    • 67651159365 scopus 로고    scopus 로고
    • Transcriptional control of mitochondrial biogenesis and function
    • Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009; 71: 177-203.
    • (2009) Annu Rev Physiol , vol.71 , pp. 177-203
    • Hock, M.B.1    Kralli, A.2
  • 4
    • 64549127790 scopus 로고    scopus 로고
    • PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
    • Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009; 20: 98-105.
    • (2009) Curr Opin Lipidol , vol.20 , pp. 98-105
    • Canto, C.1    Auwerx, J.2
  • 5
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458: 1056-60.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 6
    • 77953292238 scopus 로고    scopus 로고
    • SIRT1 and p53, effect on cancer, senescence and beyond
    • Yi J, Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta 2010; 1804: 1684-9.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1684-1689
    • Yi, J.1    Luo, J.2
  • 7
    • 4143050290 scopus 로고    scopus 로고
    • The interaction between FOXO and SIRT1: Tipping the balance towards survival
    • Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 2004; 14: 408-12.
    • (2004) Trends Cell Biol , vol.14 , pp. 408-412
    • Giannakou, M.E.1    Partridge, L.2
  • 9
    • 0036081167 scopus 로고    scopus 로고
    • Regulation of GLUT4 biogenesis in muscle: Evidence for involvement of AMPK and Ca(2+)
    • Ojuka EO, Jones TE, Nolte LA, et al. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+). Am J Physiol Endocrinol Metab 2002; 282: E1008-13.
    • (2002) Am J Physiol Endocrinol Metab , vol.282 , pp. 1008-1013
    • Ojuka, E.O.1    Jones, T.E.2    Nolte, L.A.3
  • 10
    • 37349110355 scopus 로고    scopus 로고
    • Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways
    • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 2008; 582: 46-53.
    • (2008) FEBS Lett , vol.582 , pp. 46-53
    • Rodgers, J.T.1    Lerin, C.2    Gerhart-Hines, Z.3    Puigserver, P.4
  • 11
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
    • Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 2005; 280: 16456-60.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 12
    • 29244436681 scopus 로고    scopus 로고
    • AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1
    • Lee WJ, Kim M, Park HS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun 2006; 340: 291-5.
    • (2006) Biochem Biophys Res Commun , vol.340 , pp. 291-295
    • Lee, W.J.1    Kim, M.2    Park, H.S.3
  • 13
    • 33750846134 scopus 로고    scopus 로고
    • Cell biology: A clean energy programme
    • Finkel T. Cell biology: a clean energy programme. Nature 2006; 444: 151-2.
    • (2006) Nature , vol.444 , pp. 151-152
    • Finkel, T.1
  • 14
    • 13444306450 scopus 로고    scopus 로고
    • Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators
    • Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 2005; 25: 1354-66.
    • (2005) Mol Cell Biol , vol.25 , pp. 1354-1366
    • Gleyzer, N.1    Vercauteren, K.2    Scarpulla, R.C.3
  • 15
    • 33748746678 scopus 로고    scopus 로고
    • Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane
    • Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 2006; 281: 25791-802.
    • (2006) J Biol Chem , vol.281 , pp. 25791-25802
    • Wang, Y.1    Bogenhagen, D.F.2
  • 16
    • 33847656213 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions
    • Kang D, Kim SH, Hamasaki N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 2007; 7: 39-44.
    • (2007) Mitochondrion , vol.7 , pp. 39-44
    • Kang, D.1    Kim, S.H.2    Hamasaki, N.3
  • 17
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829-39.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5    Spiegelman, B.M.6
  • 18
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005; 1: 361-70.
    • (2005) Cell Metab , vol.1 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 19
    • 42049114034 scopus 로고    scopus 로고
    • Transcriptional paradigms in mammalian mitochondrial biogenesis and function
    • Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88: 611-38.
    • (2008) Physiol Rev , vol.88 , pp. 611-638
    • Scarpulla, R.C.1
  • 20
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
    • Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 2010; 1813(7): 1269-78.
    • (2010) Biochim Biophys Acta , vol.1813 , Issue.7 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 21
    • 34548349302 scopus 로고    scopus 로고
    • Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver
    • Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 2007; 6: 208-16.
    • (2007) Cell Metab , vol.6 , pp. 208-216
    • Matsumoto, M.1    Pocai, A.2    Rossetti, L.3    Depinho, R.A.4    Accili, D.5
  • 22
    • 79953734462 scopus 로고    scopus 로고
    • PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination
    • author reply 2
    • Handschin C, Spiegelman BM. PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. Cell Metab 2011; 13: 351; author reply 2.
    • (2011) Cell Metab , vol.13 , pp. 351
    • Handschin, C.1    Spiegelman, B.M.2
  • 23
    • 33751011308 scopus 로고    scopus 로고
    • PGC-1alpha: A key regulator of energy metabolism
    • Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 2006; 30: 145-51.
    • (2006) Adv Physiol Educ , vol.30 , pp. 145-151
    • Liang, H.1    Ward, W.F.2
  • 24
    • 0038036024 scopus 로고    scopus 로고
    • Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells
    • St-Pierre J, Lin J, Krauss S, et al. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 2003; 278: 26597-603.
    • (2003) J Biol Chem , vol.278 , pp. 26597-26603
    • St-Pierre, J.1    Lin, J.2    Krauss, S.3
  • 25
    • 33749999530 scopus 로고    scopus 로고
    • Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
    • St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127: 397-408.
    • (2006) Cell , vol.127 , pp. 397-408
    • St-Pierre, J.1    Drori, S.2    Uldry, M.3
  • 26
    • 0034650893 scopus 로고    scopus 로고
    • The coregulator exchange in transcriptional functions of nuclear receptors
    • Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14: 121-41.
    • (2000) Genes Dev , vol.14 , pp. 121-141
    • Glass, C.K.1    Rosenfeld, M.G.2
  • 27
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 1868-76.
    • (2000) Mol Cell Biol , vol.20 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 28
    • 33845596500 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
    • Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006; 27: 728-35.
    • (2006) Endocr Rev , vol.27 , pp. 728-735
    • Handschin, C.1    Spiegelman, B.M.2
  • 29
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450: 736-40.
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3    Vazquez, F.4    Mootha, V.K.5    Puigserver, P.6
  • 30
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
    • Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003; 423: 550-5.
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1    Rhee, J.2    Donovan, J.3
  • 31
    • 0035957375 scopus 로고    scopus 로고
    • Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
    • Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 2001; 98: 3820-5.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3820-3825
    • Michael, L.F.1    Wu, Z.2    Cheatham, R.B.3
  • 32
    • 67749124479 scopus 로고    scopus 로고
    • GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation
    • Kelly TJ, Lerin C, Haas W, Gygi SP, Puigserver P. GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation. J Biol Chem 2009; 284: 19945-52.
    • (2009) J Biol Chem , vol.284 , pp. 19945-19952
    • Kelly, T.J.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Puigserver, P.5
  • 33
    • 33744534726 scopus 로고    scopus 로고
    • GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
    • Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 2006; 3: 429-38.
    • (2006) Cell Metab , vol.3 , pp. 429-438
    • Lerin, C.1    Rodgers, J.T.2    Kalume, D.E.3    Kim, S.H.4    Pandey, A.5    Puigserver, P.6
  • 34
    • 0142091356 scopus 로고    scopus 로고
    • PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity
    • Kamei Y, Ohizumi H, Fujitani Y, et al. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA 2003; 100: 12378-83.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 12378-12383
    • Kamei, Y.1    Ohizumi, H.2    Fujitani, Y.3
  • 36
    • 80052530278 scopus 로고    scopus 로고
    • Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1beta involves reductions in long- chain acyl-CoA levels and oxidative stress
    • Wright LE, Brandon AE, Hoy AJ, et al. Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1beta involves reductions in long- chain acyl-CoA levels and oxidative stress. Diabetologia 2011; 54(6): 1417-26.
    • (2011) Diabetologia , vol.54 , Issue.6 , pp. 1417-1426
    • Wright, L.E.1    Brandon, A.E.2    Hoy, A.J.3
  • 37
    • 79955961489 scopus 로고    scopus 로고
    • Nitric oxide and calcium participate in the fine regulation of mitochondrial biogenesis in follicular thyroid carcinoma cells
    • Le Pennec S, Mirebeau-Prunier D, Boutet-Bouzamondo N, et al. Nitric oxide and calcium participate in the fine regulation of mitochondrial biogenesis in follicular thyroid carcinoma cells. J Biol Chem 2011; 286(20): 18229-39.
    • (2011) J Biol Chem , vol.286 , Issue.20 , pp. 18229-18239
    • Le Pennec, S.1    Mirebeau-Prunier, D.2    Boutet-Bouzamondo, N.3
  • 38
    • 71049170134 scopus 로고    scopus 로고
    • PGC-1-related coactivator modulates mitochondrial-nuclear crosstalk through endogenous nitric oxide in a cellular model of oncocytic thyroid tumours
    • Raharijaona M, Le Pennec S, Poirier J, et al. PGC-1-related coactivator modulates mitochondrial-nuclear crosstalk through endogenous nitric oxide in a cellular model of oncocytic thyroid tumours. PLoS One 2009; 4: e7964.
    • (2009) Plos One , vol.4
    • Raharijaona, M.1    Le Pennec, S.2    Poirier, J.3
  • 39
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570-80.
    • (1999) Genes Dev , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 40
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-95.
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 41
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999; 260: 273-9.
    • (1999) Biochem Biophys Res Commun , vol.260 , pp. 273-279
    • Frye, R.A.1
  • 42
    • 1042265486 scopus 로고    scopus 로고
    • Quantitative assays for characterization of the Sir2 family of NAD(+)-dependent deacetylases
    • Borra MT, Denu JM. Quantitative assays for characterization of the Sir2 family of NAD(+)-dependent deacetylases. Methods Enzymol 2004; 376: 171-87.
    • (2004) Methods Enzymol , vol.376 , pp. 171-187
    • Borra, M.T.1    Denu, J.M.2
  • 43
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005; 280: 21313-20.
    • (2005) J Biol Chem , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 44
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • Ahuja N, Schwer B, Carobbio S, et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 2007; 282: 33583-92.
    • (2007) J Biol Chem , vol.282 , pp. 33583-33592
    • Ahuja, N.1    Schwer, B.2    Carobbio, S.3
  • 45
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 2000; 97: 14178-82.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 14178-14182
    • Tanner, K.G.1    Landry, J.2    Sternglanz, R.3    Denu, J.M.4
  • 46
    • 65249091951 scopus 로고    scopus 로고
    • Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD
    • Du J, Jiang H, Lin H. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry 2009; 48: 2878-90.
    • (2009) Biochemistry , vol.48 , pp. 2878-2890
    • Du, J.1    Jiang, H.2    Lin, H.3
  • 47
    • 77954353059 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: Possible direct function in mitochondrial biogenesis
    • Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR. Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 2010; 285: 21590-9.
    • (2010) J Biol Chem , vol.285 , pp. 21590-21599
    • Aquilano, K.1    Vigilanza, P.2    Baldelli, S.3    Pagliei, B.4    Rotilio, G.5    Ciriolo, M.R.6
  • 48
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11: 437-44.
    • (2003) Mol Cell , vol.11 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3    Denu, J.M.4    Verdin, E.5
  • 49
    • 34248151365 scopus 로고    scopus 로고
    • The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
    • Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007; 6: 1011-8.
    • (2007) Cell Cycle , vol.6 , pp. 1011-1018
    • Inoue, T.1    Hiratsuka, M.2    Osaki, M.3    Oshimura, M.4
  • 50
    • 34447626095 scopus 로고    scopus 로고
    • SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
    • Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007; 6: 505-14.
    • (2007) Aging Cell , vol.6 , pp. 505-514
    • Wang, F.1    Nguyen, M.2    Qin, F.X.3    Tong, Q.4
  • 51
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 2006; 103: 10224-9.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3    Ersen, J.S.4    Verdin, E.5
  • 52
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27: 8807-14.
    • (2007) Mol Cell Biol , vol.27 , pp. 8807-8814
    • Lombard, D.B.1    Alt, F.W.2    Cheng, H.L.3
  • 53
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105: 14447-52.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3
  • 54
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006; 20: 1075-80.
    • (2006) Genes Dev , vol.20 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3    Magin, C.4    Grummt, I.5    Guarente, L.6
  • 55
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124: 315-29.
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 56
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587-91.
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1    Deng, C.X.2    Mostoslavsky, R.3
  • 57
    • 37549016377 scopus 로고    scopus 로고
    • A functional link between SIRT1 deacetylase and NBS1 in DNA damage response
    • Yuan Z, Seto E. A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle 2007; 6: 2869-71.
    • (2007) Cell Cycle , vol.6 , pp. 2869-2871
    • Yuan, Z.1    Seto, E.2
  • 58
    • 33847647624 scopus 로고    scopus 로고
    • SIRT1 promotes DNA repair activity and deacetylation of Ku70
    • Jeong J, Juhn K, Lee H, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 2007; 39: 8-13.
    • (2007) Exp Mol Med , vol.39 , pp. 8-13
    • Jeong, J.1    Juhn, K.2    Lee, H.3
  • 59
    • 70349138701 scopus 로고    scopus 로고
    • The conserved role of sirtuins in chromatin regulation
    • Vaquero A. The conserved role of sirtuins in chromatin regulation. Int J Dev Biol 2009; 53: 303-22.
    • (2009) Int J Dev Biol , vol.53 , pp. 303-322
    • Vaquero, A.1
  • 60
    • 4944245398 scopus 로고    scopus 로고
    • Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
    • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16: 93-105.
    • (2004) Mol Cell , vol.16 , pp. 93-105
    • Vaquero, A.1    Scher, M.2    Lee, D.3    Erdjument-Bromage, H.4    Tempst, P.5    Reinberg, D.6
  • 61
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303: 2011-5.
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1    Sweeney, L.B.2    Sturgill, J.F.3
  • 62
    • 33645221885 scopus 로고    scopus 로고
    • Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage
    • Solomon JM, Pasupuleti R, Xu L, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol 2006; 26: 28-38.
    • (2006) Mol Cell Biol , vol.26 , pp. 28-38
    • Solomon, J.M.1    Pasupuleti, R.2    Xu, L.3
  • 63
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23: 2369-80.
    • (2004) EMBO J , vol.23 , pp. 2369-2380
    • Yeung, F.1    Hoberg, J.E.2    Ramsey, C.S.3
  • 64
    • 36248975293 scopus 로고    scopus 로고
    • SIRT1 transgenic mice show phenotypes resembling calorie restriction
    • Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007; 6: 759-67.
    • (2007) Aging Cell , vol.6 , pp. 759-767
    • Bordone, L.1    Cohen, D.2    Robinson, A.3
  • 67
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
    • Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2: 105-17.
    • (2005) Cell Metab , vol.2 , pp. 105-117
    • Moynihan, K.A.1    Grimm, A.A.2    Plueger, M.M.3
  • 68
    • 17144429302 scopus 로고    scopus 로고
    • Calorie restriction, SIRT1 and metabolism: Understanding longevity
    • Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005; 6: 298-305.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 298-305
    • Bordone, L.1    Guarente, L.2
  • 69
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR- gamma
    • Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR- gamma. Nature 2004; 429: 771-6.
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1    Kurtev, M.2    Chung, N.3
  • 70
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007; 282: 6823-32.
    • (2007) J Biol Chem , vol.282 , pp. 6823-6832
    • Tanno, M.1    Sakamoto, J.2    Miura, T.3    Shimamoto, K.4    Horio, Y.5
  • 71
    • 55749095213 scopus 로고    scopus 로고
    • Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
    • Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 2008; 105: 15599-604.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15599-15604
    • Hisahara, S.1    Chiba, S.2    Matsumoto, H.3
  • 72
    • 77953724950 scopus 로고    scopus 로고
    • Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells
    • Sugino T, Maruyama M, Tanno M, Kuno A, Houkin K, Horio Y. Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells. FEBS Lett 2010; 584: 2821-6.
    • (2010) FEBS Lett , vol.584 , pp. 2821-2826
    • Sugino, T.1    Maruyama, M.2    Tanno, M.3    Kuno, A.4    Houkin, K.5    Horio, Y.6
  • 73
    • 77951818902 scopus 로고    scopus 로고
    • Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation
    • Hou J, Chong ZZ, Shang YC, Maiese K. Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res 2010; 7: 95-112.
    • (2010) Curr Neurovasc Res , vol.7 , pp. 95-112
    • Hou, J.1    Chong, Z.Z.2    Shang, Y.C.3    Maiese, K.4
  • 75
    • 77950901103 scopus 로고    scopus 로고
    • Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure
    • Tanno M, Kuno A, Yano T, et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 2010; 285: 8375-82.
    • (2010) J Biol Chem , vol.285 , pp. 8375-8382
    • Tanno, M.1    Kuno, A.2    Yano, T.3
  • 76
    • 77949539030 scopus 로고    scopus 로고
    • JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
    • Nasrin N, Kaushik VK, Fortier E, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 2009; 4: e8414.
    • (2009) Plos One , vol.4
    • Nasrin, N.1    Kaushik, V.K.2    Fortier, E.3
  • 77
    • 80052198700 scopus 로고    scopus 로고
    • A biotin switch-based proteomics approach identifies 14-3-3zeta as a target of sirt1 in the metabolic regulation of caspase-2
    • Andersen JL, Thompson JW, Lindblom KR, et al. A biotin switch-based proteomics approach identifies 14-3-3zeta as a target of sirt1 in the metabolic regulation of caspase-2. Mol Cell 2011; 43: 834-42.
    • (2011) Mol Cell , vol.43 , pp. 834-842
    • Andersen, J.L.1    Thompson, J.W.2    Lindblom, K.R.3
  • 78
    • 78650048197 scopus 로고    scopus 로고
    • Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells
    • Byles V, Chmilewski LK, Wang J, et al. Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int J Biol Sci 2010; 6: 599-612.
    • (2010) Int J Biol Sci , vol.6 , pp. 599-612
    • Byles, V.1    Chmilewski, L.K.2    Wang, J.3
  • 79
    • 36348974168 scopus 로고    scopus 로고
    • The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation
    • Zhang J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 2007; 282: 34356-64.
    • (2007) J Biol Chem , vol.282 , pp. 34356-34364
    • Zhang, J.1
  • 80
    • 66249144685 scopus 로고    scopus 로고
    • Identification and characterization of proteins interacting with SIRT1 and SIRT3: Implications in the anti-aging and metabolic effects of sirtuins
    • Law IK, Liu L, Xu A, et al. Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics 2009; 9: 2444-56.
    • (2009) Proteomics , vol.9 , pp. 2444-2456
    • Law, I.K.1    Liu, L.2    Xu, A.3
  • 81
    • 59649126261 scopus 로고    scopus 로고
    • Deacetylation of cortactin by SIRT1 promotes cell migration
    • Zhang Y, Zhang M, Dong H, et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 2009; 28: 445-60.
    • (2009) Oncogene , vol.28 , pp. 445-460
    • Zhang, Y.1    Zhang, M.2    Dong, H.3
  • 82
    • 34447308268 scopus 로고    scopus 로고
    • SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
    • Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007; 26: 3169-79.
    • (2007) EMBO J , vol.26 , pp. 3169-3179
    • Kim, D.1    Nguyen, M.D.2    Dobbin, M.M.3
  • 83
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105: 3374-9.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 84
    • 33846992686 scopus 로고    scopus 로고
    • Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression
    • Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem 2007; 282: 194-9.
    • (2007) J Biol Chem , vol.282 , pp. 194-199
    • Wright, D.C.1    Han, D.H.2    Garcia-Roves, P.M.3    Geiger, P.C.4    Jones, T.E.5    Holloszy, J.O.6
  • 86
    • 38349130508 scopus 로고    scopus 로고
    • Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response
    • Anderson RM, Barger JL, Edwards MG, et al. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 2008; 7: 101-11.
    • (2008) Aging Cell , vol.7 , pp. 101-111
    • Anderson, R.M.1    Barger, J.L.2    Edwards, M.G.3
  • 87
    • 78650037609 scopus 로고    scopus 로고
    • Ubiquitin proteasome-dependent degradation of the transcriptional coactivator PGC-1{alpha} via the N-terminal pathway
    • Trausch-Azar J, Leone TC, Kelly DP, Schwartz AL. Ubiquitin proteasome-dependent degradation of the transcriptional coactivator PGC-1{alpha} via the N-terminal pathway. J Biol Chem 2010; 285: 40192-200.
    • (2010) J Biol Chem , vol.285 , pp. 40192-40200
    • Trausch-Azar, J.1    Leone, T.C.2    Kelly, D.P.3    Schwartz, A.L.4
  • 88
    • 33748314528 scopus 로고    scopus 로고
    • Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2
    • Soriano FX, Liesa M, Bach D, Chan DC, Palacin M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 2006; 55: 1783-91.
    • (2006) Diabetes , vol.55 , pp. 1783-1791
    • Soriano, F.X.1    Liesa, M.2    Bach, D.3    Chan, D.C.4    Palacin, M.5    Zorzano, A.6
  • 89
    • 36549044009 scopus 로고    scopus 로고
    • Function of the SIRT1 protein deacetylase in cancer
    • Stunkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2007; 2: 1360-8.
    • (2007) Biotechnol J , vol.2 , pp. 1360-1368
    • Stunkel, W.1    Peh, B.K.2    Tan, Y.C.3
  • 90
    • 79551518229 scopus 로고    scopus 로고
    • Energy deficit in Huntington disease: Why it matters
    • Mochel F, Haller RG. Energy deficit in Huntington disease: why it matters. J Clin Invest 2011; 121: 493-9.
    • (2011) J Clin Invest , vol.121 , pp. 493-499
    • Mochel, F.1    Haller, R.G.2
  • 91
    • 67349247037 scopus 로고    scopus 로고
    • Mitochondrial structural and functional dynamics in Huntington's disease
    • Reddy PH, Mao P, Manczak M. Mitochondrial structural and functional dynamics in Huntington's disease. Brain Res Rev 2009; 61: 33-48.
    • (2009) Brain Res Rev , vol.61 , pp. 33-48
    • Reddy, P.H.1    Mao, P.2    Manczak, M.3
  • 92
    • 56549089781 scopus 로고    scopus 로고
    • Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington's disease
    • Acevedo-Torres K, Berrios L, Rosario N, et al. Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington's disease. DNA Repair (Amst) 2009; 8: 126-36.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 126-136
    • Acevedo-Torres, K.1    Berrios, L.2    Rosario, N.3
  • 93
    • 77958072667 scopus 로고    scopus 로고
    • PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease
    • Zheng B, Liao Z, Locascio JJ, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2010; 2: 52ra73.
    • (2010) Sci Transl Med , vol.2
    • Zheng, B.1    Liao, Z.2    Locascio, J.J.3
  • 94
    • 58849090439 scopus 로고    scopus 로고
    • Transcribe to survive: Transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease
    • Clark J, Simon DK. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal 2009; 11: 509-28.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 509-528
    • Clark, J.1    Simon, D.K.2
  • 95
    • 79952857040 scopus 로고    scopus 로고
    • Regulation of neuronal oxidative and nitrosative stress by endogenous protective pathways and disease processes
    • Hardingham GE, Lipton SA. Regulation of neuronal oxidative and nitrosative stress by endogenous protective pathways and disease processes. Antioxid Redox Signal 2011; 14: 1421-4.
    • (2011) Antioxid Redox Signal , vol.14 , pp. 1421-1424
    • Hardingham, G.E.1    Lipton, S.A.2
  • 96
    • 51549098145 scopus 로고    scopus 로고
    • Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity
    • Chao J, Yu MS, Ho YS, Wang M, Chang RC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med 2008; 45: 1019-26.
    • (2008) Free Radic Biol Med , vol.45 , pp. 1019-1026
    • Chao, J.1    Yu, M.S.2    Ho, Y.S.3    Wang, M.4    Chang, R.C.5
  • 97
    • 68949206606 scopus 로고    scopus 로고
    • The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide
    • Albani D, Polito L, Batelli S, et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem 2009; 110: 1445-56.
    • (2009) J Neurochem , vol.110 , pp. 1445-1456
    • Albani, D.1    Polito, L.2    Batelli, S.3
  • 98
    • 45849121349 scopus 로고    scopus 로고
    • Modulation of SIRT1 expression in different neurodegenerative models and human pathologies
    • Pallas M, Pizarro JG, Gutierrez-Cuesta J, et al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 2008; 154: 1388-97.
    • (2008) Neuroscience , vol.154 , pp. 1388-1397
    • Pallas, M.1    Pizarro, J.G.2    Gutierrez-Cuesta, J.3
  • 99
    • 77950661030 scopus 로고    scopus 로고
    • Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson's subject mitochondrial transfer
    • Esteves AR, Lu J, Rodova M, et al. Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson's subject mitochondrial transfer. J Neurochem 2010; 113: 674-82.
    • (2010) J Neurochem , vol.113 , pp. 674-682
    • Esteves, A.R.1    Lu, J.2    Rodova, M.3
  • 100
    • 79958245892 scopus 로고    scopus 로고
    • Mitochondrial defect and PGC-1alpha dysfunction in parkin-associated familial Parkinson's disease
    • Pacelli C, De Rasmo D, Signorile A, et al. Mitochondrial defect and PGC-1alpha dysfunction in parkin-associated familial Parkinson's disease. Biochim Biophys Acta 2011; 1812(8): 1041-53.
    • (2011) Biochim Biophys Acta , vol.1812 , Issue.8 , pp. 1041-1053
    • Pacelli, C.1    De Rasmo, D.2    Signorile, A.3
  • 101
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
    • Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 2011; 144: 689-702.
    • (2011) Cell , vol.144 , pp. 689-702
    • Shin, J.H.1    Ko, H.S.2    Kang, H.3
  • 102
    • 79951686964 scopus 로고    scopus 로고
    • The sirtuin pathway in ageing and Alzheimer disease: Mechanistic and therapeutic considerations
    • Bonda DJ, Lee HG, Camins A, et al. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol 2011; 10: 275-9.
    • (2011) Lancet Neurol , vol.10 , pp. 275-279
    • Bonda, D.J.1    Lee, H.G.2    Camins, A.3
  • 103
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha- secretase gene ADAM10
    • Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha- secretase gene ADAM10. Cell 2010; 142: 320-32.
    • (2010) Cell , vol.142 , pp. 320-332
    • Donmez, G.1    Wang, D.2    Cohen, D.E.3    Guarente, L.4
  • 104
    • 75149192820 scopus 로고    scopus 로고
    • Sirtuins as novel targets for Alzheimer's disease and other neurodegenerative disorders: Experimental and genetic evidence
    • Albani D, Polito L, Forloni G. Sirtuins as novel targets for Alzheimer's disease and other neurodegenerative disorders: experimental and genetic evidence. J Alzheimers Dis 2010; 19: 11-26.
    • (2010) J Alzheimers Dis , vol.19 , pp. 11-26
    • Albani, D.1    Polito, L.2    Forloni, G.3
  • 105
    • 9844222853 scopus 로고    scopus 로고
    • Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes
    • Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 1997; 6: 1771-80.
    • (1997) Hum Mol Genet , vol.6 , pp. 1771-1780
    • Campuzano, V.1    Montermini, L.2    Lutz, Y.3
  • 106
    • 67249133451 scopus 로고    scopus 로고
    • Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich's ataxia
    • Coppola G, Marmolino D, Lu D, et al. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich's ataxia. Hum Mol Genet 2009; 18: 2452-61.
    • (2009) Hum Mol Genet , vol.18 , pp. 2452-2461
    • Coppola, G.1    Marmolino, D.2    Lu, D.3
  • 107
    • 68449096810 scopus 로고    scopus 로고
    • Friedreich's Ataxia: From the (GAA)n repeat mediated silencing to new promising molecules for therapy
    • Marmolino D, Acquaviva F. Friedreich's Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. Cerebellum 2009; 8: 245-59.
    • (2009) Cerebellum , vol.8 , pp. 245-259
    • Marmolino, D.1    Acquaviva, F.2
  • 108
    • 77956318471 scopus 로고    scopus 로고
    • PGC-1alpha down-regulation affects the antioxidant response in Friedreich's ataxia
    • Marmolino D, Manto M, Acquaviva F, et al. PGC-1alpha down-regulation affects the antioxidant response in Friedreich's ataxia. PLoS One 2010; 5: e10025.
    • (2010) Plos One , vol.5
    • Marmolino, D.1    Manto, M.2    Acquaviva, F.3
  • 109
    • 11844269951 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis
    • Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 2005; 191: 331-6.
    • (2005) Exp Neurol , vol.191 , pp. 331-336
    • Kiaei, M.1    Kipiani, K.2    Chen, J.3    Calingasan, N.Y.4    Beal, M.F.5
  • 110
    • 23944490153 scopus 로고    scopus 로고
    • The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice
    • Schutz B, Reimann J, Dumitrescu-Ozimek L, et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci 2005; 25: 7805-12.
    • (2005) J Neurosci , vol.25 , pp. 7805-7812
    • Schutz, B.1    Reimann, J.2    Dumitrescu-Ozimek, L.3
  • 111
    • 81555206662 scopus 로고    scopus 로고
    • PGC-1alpha protects neurons and alters disease progression in an amyotrophic lateral sclerosis mouse model
    • Liang H, Ward WF, Jang YC, et al. PGC-1alpha protects neurons and alters disease progression in an amyotrophic lateral sclerosis mouse model. Muscle Nerve 2011; 44: 947-56.
    • (2011) Muscle Nerve , vol.44 , pp. 947-956
    • Liang, H.1    Ward, W.F.2    Jang, Y.C.3
  • 112
    • 79960560886 scopus 로고    scopus 로고
    • Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1alpha) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis
    • Zhao W, Varghese M, Yemul S, et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1alpha) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2011; 6: 51.
    • (2011) Mol Neurodegener , vol.6 , pp. 51
    • Zhao, W.1    Varghese, M.2    Yemul, S.3
  • 114
    • 50049118173 scopus 로고    scopus 로고
    • Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype
    • Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 2008; 8: 249-56.
    • (2008) Cell Metab , vol.8 , pp. 249-256
    • Wenz, T.1    Diaz, F.2    Spiegelman, B.M.3    Moraes, C.T.4
  • 115
    • 66349120223 scopus 로고    scopus 로고
    • Endurance exercise is protective for mice with mitochondrial myopathy
    • Wenz T, Diaz F, Hernandez D, Moraes CT. Endurance exercise is protective for mice with mitochondrial myopathy. J Appl Physiol 2009; 106: 1712-9.
    • (2009) J Appl Physiol , vol.106 , pp. 1712-1719
    • Wenz, T.1    Diaz, F.2    Hernandez, D.3    Moraes, C.T.4
  • 116
    • 84862965401 scopus 로고    scopus 로고
    • Myopathy caused by mammalian target of rapamycin complex 1 (MTORC1) inactivation is not reversed by restoring mitochondrial function
    • Romanino K, Mazelin L, Albert V, et al. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proc Natl Acad Sci USA 2011; 108: 20808-13.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 20808-20813
    • Romanino, K.1    Mazelin, L.2    Albert, V.3
  • 117
    • 78650785696 scopus 로고    scopus 로고
    • Fiber type conversion by PGC-1alpha activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle
    • Takikita S, Schreiner C, Baum R, et al. Fiber type conversion by PGC-1alpha activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle. PLoS One 2010; 5: e15239.
    • (2010) Plos One , vol.5
    • Takikita, S.1    Schreiner, C.2    Baum, R.3
  • 118
    • 73949099327 scopus 로고    scopus 로고
    • Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging
    • Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 2009; 106: 20405-10.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 20405-20410
    • Wenz, T.1    Rossi, S.G.2    Rotundo, R.L.3    Spiegelman, B.M.4    Moraes, C.T.5
  • 119
    • 34347272966 scopus 로고    scopus 로고
    • Overexpression of peroxisome proliferator-activated receptor gamma co-activator-1alpha leads to muscle atrophy with depletion of ATP
    • Miura S, Tomitsuka E, Kamei Y, et al. Overexpression of peroxisome proliferator-activated receptor gamma co-activator-1alpha leads to muscle atrophy with depletion of ATP. Am J Pathol 2006; 169: 1129-39.
    • (2006) Am J Pathol , vol.169 , pp. 1129-1139
    • Miura, S.1    Tomitsuka, E.2    Kamei, Y.3
  • 120
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function
    • Price NL, Gomes AP, Ling AJ, et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metab 2012; 15: 675-90.
    • (2012) Cell Metab , vol.15 , pp. 675-690
    • Price, N.L.1    Gomes, A.P.2    Ling, A.J.3
  • 121
    • 84855181568 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus
    • Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012; 2012: 703538.
    • (2012) Exp Diabetes Res , vol.2012
    • Ma, Z.A.1    Zhao, Z.2    Turk, J.3
  • 122
    • 84857785686 scopus 로고    scopus 로고
    • Mitochondrial signals drive insulin secretion in the pancreatic beta-cell
    • Wiederkehr A, Wollheim CB. Mitochondrial signals drive insulin secretion in the pancreatic beta-cell. Mol Cell Endocrinol 2012; 353: 128-37.
    • (2012) Mol Cell Endocrinol , vol.353 , pp. 128-137
    • Wiederkehr, A.1    Wollheim, C.B.2
  • 123
    • 0029946335 scopus 로고    scopus 로고
    • The molecular basis and clinical characteristics of Maternally Inherited Diabetes and Deafness (MIDD), a recently recognized diabetic subtype
    • Maassen JA, Jansen JJ, Kadowaki T, van den Ouweland JM, 't Hart LM, Lemkes HH. The molecular basis and clinical characteristics of Maternally Inherited Diabetes and Deafness (MIDD), a recently recognized diabetic subtype. Exp Clin Endocrinol Diabetes 1996; 104: 205-11.
    • (1996) Exp Clin Endocrinol Diabetes , vol.104 , pp. 205-211
    • Maassen, J.A.1    Jansen, J.J.2    Kadowaki, T.3    Van Den Ouweland, J.M.4    T Hart, L.M.5    Lemkes, H.H.6
  • 124
    • 77954859197 scopus 로고    scopus 로고
    • The role of mitochondria in the pathogenesis of type 2 diabetes
    • Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 2010; 31: 364-95.
    • (2010) Endocr Rev , vol.31 , pp. 364-395
    • Patti, M.E.1    Corvera, S.2
  • 125
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpharesponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpharesponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267-73.
    • (2003) Nat Genet , vol.34 , pp. 267-273
    • Mootha, V.K.1    Lindgren, C.M.2    Eriksson, K.F.3
  • 126
    • 77953807425 scopus 로고    scopus 로고
    • Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes
    • Zorzano A, Hernandez-Alvarez MI, Palacin M, Mingrone G. Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim Biophys Acta 2010; 1797: 1028-33.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 1028-1033
    • Zorzano, A.1    Hernandez-Alvarez, M.I.2    Palacin, M.3    Mingrone, G.4
  • 127
    • 77953702287 scopus 로고    scopus 로고
    • Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes
    • Roberts-Wilson TK, Reddy RN, Bailey JL, et al. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes. Biochim Biophys Acta 2010; 1803: 960-7.
    • (2010) Biochim Biophys Acta , vol.1803 , pp. 960-967
    • Roberts-Wilson, T.K.1    Reddy, R.N.2    Bailey, J.L.3
  • 128
    • 49949103399 scopus 로고    scopus 로고
    • Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus
    • Lumini JA, Magalhaes J, Oliveira PJ, Ascensao A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med 2008; 38: 735-50.
    • (2008) Sports Med , vol.38 , pp. 735-750
    • Lumini, J.A.1    Magalhaes, J.2    Oliveira, P.J.3    Ascensao, A.4
  • 129
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
    • Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127: 1109-22.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3
  • 130
    • 84855611491 scopus 로고    scopus 로고
    • Mitochondrial dysregulation in the pathogenesis of diabetes: Potential for mitochondrial biogenesis-mediated interventions
    • Joseph AM, Joanisse DR, Baillot RG, Hood DA. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Experimental diabetes research 2012; 2012: 642038.
    • (2012) Experimental Diabetes Research , vol.2012
    • Joseph, A.M.1    Joanisse, D.R.2    Baillot, R.G.3    Hood, D.A.4
  • 131
    • 84862162100 scopus 로고    scopus 로고
    • Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues
    • Kleiner S, Mepani RJ, Laznik D, et al. Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. Proc Natl Acad Sci USA 2012; 109(24): 9635-40.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.24 , pp. 9635-9640
    • Kleiner, S.1    Mepani, R.J.2    Laznik, D.3
  • 132
    • 79955949858 scopus 로고    scopus 로고
    • The elimination of accumulated and aggregated proteins: A role for aggrephagy in neurodegeneration
    • Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2011; 43: 17-28.
    • (2011) Neurobiol Dis , vol.43 , pp. 17-28
    • Yamamoto, A.1    Simonsen, A.2
  • 133
    • 52949135887 scopus 로고    scopus 로고
    • Resveratrol exerts pharmacological preconditioning by activating PGC-1alpha
    • Tan L, Yu JT, Guan HS. Resveratrol exerts pharmacological preconditioning by activating PGC-1alpha. Med Hypotheses 2008; 71: 664-7.
    • (2008) Med Hypotheses , vol.71 , pp. 664-667
    • Tan, L.1    Yu, J.T.2    Guan, H.S.3
  • 134
    • 83455218662 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1): The Misunderstood HDAC
    • Stunkel W, Campbell RM. Sirtuin 1 (SIRT1): The Misunderstood HDAC. J Biomol Screen 2011; 16(10): 1153-69.
    • (2011) J Biomol Screen , vol.16 , Issue.10 , pp. 1153-1169
    • Stunkel, W.1    Campbell, R.M.2
  • 135
    • 70350524083 scopus 로고    scopus 로고
    • Resveratrol is not a direct activator of SIRT1 enzyme activity
    • Beher D, Wu J, Cumine S, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 2009; 74: 619-24.
    • (2009) Chem Biol Drug Des , vol.74 , pp. 619-624
    • Beher, D.1    Wu, J.2    Cumine, S.3
  • 136
    • 44049091481 scopus 로고    scopus 로고
    • Peroxisome Proliferator-Activated Receptor-gamma in Amyotrophic Lateral Sclerosis and Huntington's Disease
    • Kiaei M. Peroxisome Proliferator-Activated Receptor-gamma in Amyotrophic Lateral Sclerosis and Huntington's Disease. PPAR Res 2008; 2008: 418765.
    • (2008) PPAR Res
    • Kiaei, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.