-
1
-
-
27744519400
-
Fuel feeds function: energy metabolism and the T-cell response
-
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005;5:844-852.
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 844-852
-
-
Fox, C.J.1
Hammerman, P.S.2
Thompson, C.B.3
-
2
-
-
34548014737
-
Revving the engine: signal transduction fuels T cell activation
-
Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity 2007;27:173-178.
-
(2007)
Immunity
, vol.27
, pp. 173-178
-
-
Jones, R.G.1
Thompson, C.B.2
-
3
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
4
-
-
77953785070
-
The metabolic life and times of a T-cell
-
Michalek RD, Rathmell JC. The metabolic life and times of a T-cell. Immunol Rev 2010;236:190-202.
-
(2010)
Immunol Rev
, vol.236
, pp. 190-202
-
-
Michalek, R.D.1
Rathmell, J.C.2
-
5
-
-
77953534607
-
Metabolism in T cell activation and differentiation
-
Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol 2010;22:314-320.
-
(2010)
Curr Opin Immunol
, vol.22
, pp. 314-320
-
-
Pearce, E.L.1
-
6
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769-777.
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
-
7
-
-
0041975825
-
Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma
-
Rathmell JC, Elstrom RL, Cinalli RM, Thompson CB. Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur J Immunol 2003;33:2223-2232.
-
(2003)
Eur J Immunol
, vol.33
, pp. 2223-2232
-
-
Rathmell, J.C.1
Elstrom, R.L.2
Cinalli, R.M.3
Thompson, C.B.4
-
8
-
-
70350418625
-
mTOR signaling at a glance
-
Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009;122:3589-3594.
-
(2009)
J Cell Sci
, vol.122
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
9
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010;33:301-311.
-
(2010)
Immunity
, vol.33
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
10
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe GM, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009;30:832-844.
-
(2009)
Immunity
, vol.30
, pp. 832-844
-
-
Delgoffe, G.M.1
-
11
-
-
74649085700
-
The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
-
Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010;32:67-78.
-
(2010)
Immunity
, vol.32
, pp. 67-78
-
-
Rao, R.R.1
Li, Q.2
Odunsi, K.3
Shrikant, P.A.4
-
12
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
Lee K, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010;32:743-753.
-
(2010)
Immunity
, vol.32
, pp. 743-753
-
-
Lee, K.1
-
13
-
-
20444373376
-
Rapamycin selectively expands CD4+ CD25+ FoxP3+ regulatory T cells
-
Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+ CD25+ FoxP3+ regulatory T cells. Blood 2005;105:4743-4748.
-
(2005)
Blood
, vol.105
, pp. 4743-4748
-
-
Battaglia, M.1
Stabilini, A.2
Roncarolo, M.G.3
-
14
-
-
35748956420
-
Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells
-
Kopf H, de laRosa GM, Howard OM, Chen X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol 2007;7:1819-1824.
-
(2007)
Int Immunopharmacol
, vol.7
, pp. 1819-1824
-
-
Kopf, H.1
de laRosa, G.M.2
Howard, O.M.3
Chen, X.4
-
15
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
-
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007;8:774-785.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
16
-
-
0032495530
-
A serine/threonine kinase gene defective in Peutz-Jeghers syndrome
-
Hemminki A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998;391:184-187.
-
(1998)
Nature
, vol.391
, pp. 184-187
-
-
Hemminki, A.1
-
17
-
-
0031974516
-
Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase
-
Jenne DE, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998;18:38-43.
-
(1998)
Nat Genet
, vol.18
, pp. 38-43
-
-
Jenne, D.E.1
-
18
-
-
0347318052
-
The AMP-activated protein kinase cascade-a unifying system for energy control
-
Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem Sci 2004;29:18-24.
-
(2004)
Trends Biochem Sci
, vol.29
, pp. 18-24
-
-
Carling, D.1
-
19
-
-
0018963044
-
Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge
-
Yeh LA, Lee KH, Kim KH. Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J Biol Chem 1980;255:2308-2314.
-
(1980)
J Biol Chem
, vol.255
, pp. 2308-2314
-
-
Yeh, L.A.1
Lee, K.H.2
Kim, K.H.3
-
20
-
-
0023642627
-
A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis
-
Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 1987;223:217-222.
-
(1987)
FEBS Lett
, vol.223
, pp. 217-222
-
-
Carling, D.1
Zammit, V.A.2
Hardie, D.G.3
-
21
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004;101:3329-3335.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
-
22
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley SA, et al. Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003;2:28.
-
(2003)
J Biol
, vol.2
, pp. 28
-
-
Hawley, S.A.1
-
23
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods A, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003;13:2004-2008.
-
(2003)
Curr Biol
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
-
24
-
-
12144287284
-
LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1
-
Lizcano JM, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 2004;23:833-843.
-
(2004)
EMBO J
, vol.23
, pp. 833-843
-
-
Lizcano, J.M.1
-
25
-
-
0028070457
-
Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
-
Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 1994;269:19509-19515.
-
(1994)
J Biol Chem
, vol.269
, pp. 19509-19515
-
-
Woods, A.1
Munday, M.R.2
Scott, J.3
Yang, X.4
Carlson, M.5
Carling, D.6
-
26
-
-
0022534202
-
A yeast gene that is essential for release from glucose repression encodes a protein kinase
-
Celenza JL, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 1986;233:1175-1180.
-
(1986)
Science
, vol.233
, pp. 1175-1180
-
-
Celenza, J.L.1
Carlson, M.2
-
27
-
-
0019566797
-
Mutants of yeast defective in sucrose utilization
-
Carlson M, Osmond BC, Botstein D. Mutants of yeast defective in sucrose utilization. Genetics 1981;98:25-40.
-
(1981)
Genetics
, vol.98
, pp. 25-40
-
-
Carlson, M.1
Osmond, B.C.2
Botstein, D.3
-
28
-
-
34250827107
-
Energy-dependent regulation of cell structure by AMP-activated protein kinase
-
Lee JH, et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 2007;447:1017-1020.
-
(2007)
Nature
, vol.447
, pp. 1017-1020
-
-
Lee, J.H.1
-
29
-
-
28444496362
-
Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila
-
Mandal S, Guptan P, Owusu-Ansah E, Banerjee U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell 2005;9:843-854.
-
(2005)
Dev Cell
, vol.9
, pp. 843-854
-
-
Mandal, S.1
Guptan, P.2
Owusu-Ansah, E.3
Banerjee, U.4
-
30
-
-
33645090940
-
Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling
-
Narbonne P, Roy R. Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 2006;133:611-619.
-
(2006)
Development
, vol.133
, pp. 611-619
-
-
Narbonne, P.1
Roy, R.2
-
31
-
-
10644282295
-
The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans
-
Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 2004;18:3004-3009.
-
(2004)
Genes Dev
, vol.18
, pp. 3004-3009
-
-
Apfeld, J.1
O'Connor, G.2
McDonagh, T.3
DiStefano, P.S.4
Curtis, R.5
-
32
-
-
63549108476
-
Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans
-
Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 2009;8:113-127.
-
(2009)
Aging Cell
, vol.8
, pp. 113-127
-
-
Greer, E.L.1
Brunet, A.2
-
33
-
-
58149339613
-
Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival
-
Narbonne P, Roy R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 2009;457:210-214.
-
(2009)
Nature
, vol.457
, pp. 210-214
-
-
Narbonne, P.1
Roy, R.2
-
34
-
-
0037799908
-
AMPK beta subunit targets metabolic stress sensing to glycogen
-
Polekhina G, et al. AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol 2003;13:867-871.
-
(2003)
Curr Biol
, vol.13
, pp. 867-871
-
-
Polekhina, G.1
-
35
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B, et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011;472:230-233.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
-
36
-
-
79959338922
-
AMPK is a direct adenylate charge-regulated protein kinase
-
Oakhill JS, et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011;332:1433-1435.
-
(2011)
Science
, vol.332
, pp. 1433-1435
-
-
Oakhill, J.S.1
-
37
-
-
0032529139
-
AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform
-
Salt I, et al. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J 1998;334:177-187.
-
(1998)
Biochem J
, vol.334
, pp. 177-187
-
-
Salt, I.1
-
38
-
-
33745823168
-
Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes
-
Tamas P, et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 2006;203:1665-1670.
-
(2006)
J Exp Med
, vol.203
, pp. 1665-1670
-
-
Tamas, P.1
-
39
-
-
80054726323
-
The liver kinase B1 is a central regulator of T cell development, activation, and metabolism
-
MacIver NJ, et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 2011;187:4187-4198.
-
(2011)
J Immunol
, vol.187
, pp. 4187-4198
-
-
MacIver, N.J.1
-
40
-
-
0344081177
-
Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status
-
Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003;144:5179-5183.
-
(2003)
Endocrinology
, vol.144
, pp. 5179-5183
-
-
Hardie, D.G.1
-
41
-
-
33845949733
-
Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase
-
Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D. Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 2006;281:32207-32216.
-
(2006)
J Biol Chem
, vol.281
, pp. 32207-32216
-
-
Suter, M.1
Riek, U.2
Tuerk, R.3
Schlattner, U.4
Wallimann, T.5
Neumann, D.6
-
42
-
-
34147152841
-
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade
-
Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 2007;403:139-148.
-
(2007)
Biochem J
, vol.403
, pp. 139-148
-
-
Sanders, M.J.1
Grondin, P.O.2
Hegarty, B.D.3
Snowden, M.A.4
Carling, D.5
-
43
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley SA, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2005;2:9-19.
-
(2005)
Cell Metab
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
-
44
-
-
23844471263
-
The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
-
Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 2005;280:29060-29066.
-
(2005)
J Biol Chem
, vol.280
, pp. 29060-29066
-
-
Hurley, R.L.1
Anderson, K.A.2
Franzone, J.M.3
Kemp, B.E.4
Means, A.R.5
Witters, L.A.6
-
45
-
-
23044437445
-
Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
-
Woods A, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005;2:21-33.
-
(2005)
Cell Metab
, vol.2
, pp. 21-33
-
-
Woods, A.1
-
46
-
-
33751229931
-
A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway
-
Xie M, et al. A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 2006;103:17378-17383.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 17378-17383
-
-
Xie, M.1
-
47
-
-
33748747706
-
Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro
-
Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 2006;281:25336-25343.
-
(2006)
J Biol Chem
, vol.281
, pp. 25336-25343
-
-
Momcilovic, M.1
Hong, S.P.2
Carlson, M.3
-
48
-
-
78649874959
-
Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
-
Gan B, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010;468:701-704.
-
(2010)
Nature
, vol.468
, pp. 701-704
-
-
Gan, B.1
-
49
-
-
78649851511
-
The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
-
Gurumurthy S, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010;468:659-663.
-
(2010)
Nature
, vol.468
, pp. 659-663
-
-
Gurumurthy, S.1
-
50
-
-
78649811793
-
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
-
Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010;468:653-658.
-
(2010)
Nature
, vol.468
, pp. 653-658
-
-
Nakada, D.1
Saunders, T.L.2
Morrison, S.J.3
-
51
-
-
80055087603
-
A cell-intrinsic role for CaMKK2 in granulocyte lineage commitment and differentiation
-
Teng EC, Racioppi L, Means AR. A cell-intrinsic role for CaMKK2 in granulocyte lineage commitment and differentiation. J Leukoc Biol 2011;90:897-909.
-
(2011)
J Leukoc Biol
, vol.90
, pp. 897-909
-
-
Teng, E.C.1
Racioppi, L.2
Means, A.R.3
-
52
-
-
46949097612
-
TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice
-
Tang M, et al. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J Exp Med 2008;205:1611-1619.
-
(2008)
J Exp Med
, vol.205
, pp. 1611-1619
-
-
Tang, M.1
-
53
-
-
84863119109
-
Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function
-
Wang Y, Huang G, Vogel P, Neale G, Reizis B, Chi H. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function. Proc Natl Acad Sci USA 2012;109:E343-E352.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
-
-
Wang, Y.1
Huang, G.2
Vogel, P.3
Neale, G.4
Reizis, B.5
Chi, H.6
-
54
-
-
33746111852
-
The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function
-
Wan YY, Chi H, Xie M, Schneider MD, Flavell RA. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol 2006;7:851-858.
-
(2006)
Nat Immunol
, vol.7
, pp. 851-858
-
-
Wan, Y.Y.1
Chi, H.2
Xie, M.3
Schneider, M.D.4
Flavell, R.A.5
-
55
-
-
58649116274
-
C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest
-
Fogarty S, Hardie DG. C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J Biol Chem 2009;284:77-84.
-
(2009)
J Biol Chem
, vol.284
, pp. 77-84
-
-
Fogarty, S.1
Hardie, D.G.2
-
56
-
-
67650096912
-
Enhancing CD8 T-cell memory by modulating fatty acid metabolism
-
Pearce EL, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009;460:103-107.
-
(2009)
Nature
, vol.460
, pp. 103-107
-
-
Pearce, E.L.1
-
57
-
-
0033634977
-
TAB 2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway
-
Takaesu G, et al. TAB 2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000;5:649-658.
-
(2000)
Mol Cell
, vol.5
, pp. 649-658
-
-
Takaesu, G.1
-
58
-
-
77951639702
-
IL-7 is essential for homeostatic control of T cell metabolism in vivo
-
Jacobs SR, Michalek RD, Rathmell JC. IL-7 is essential for homeostatic control of T cell metabolism in vivo. J Immunol 2010;184:3461-3469.
-
(2010)
J Immunol
, vol.184
, pp. 3461-3469
-
-
Jacobs, S.R.1
Michalek, R.D.2
Rathmell, J.C.3
-
59
-
-
80053035284
-
AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
-
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011;25:1895-1908.
-
(2011)
Genes Dev
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
60
-
-
20844451123
-
AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005;1:15-25.
-
(2005)
Cell Metab
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
Alquier, T.2
Carling, D.3
Hardie, D.G.4
-
61
-
-
0025192341
-
Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase
-
Davies SP, Sim AT, Hardie DG. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem 1990;187:183-190.
-
(1990)
Eur J Biochem
, vol.187
, pp. 183-190
-
-
Davies, S.P.1
Sim, A.T.2
Hardie, D.G.3
-
62
-
-
0034687210
-
Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia
-
Marsin AS, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000;10:1247-1255.
-
(2000)
Curr Biol
, vol.10
, pp. 1247-1255
-
-
Marsin, A.S.1
-
64
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011;331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
65
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011;13:132-141.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
66
-
-
51649124519
-
Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
-
Kundu M, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008;112:1493-1502.
-
(2008)
Blood
, vol.112
, pp. 1493-1502
-
-
Kundu, M.1
-
67
-
-
77955664125
-
Maintenance of red blood cell integrity by AMP-activated protein kinase alpha1 catalytic subunit
-
Foretz M, et al. Maintenance of red blood cell integrity by AMP-activated protein kinase alpha1 catalytic subunit. FEBS Lett 2010;584:3667-3671.
-
(2010)
FEBS Lett
, vol.584
, pp. 3667-3671
-
-
Foretz, M.1
-
68
-
-
33846461678
-
A critical role for the autophagy gene Atg5 in T cell survival and proliferation
-
Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 2007;204:25-31.
-
(2007)
J Exp Med
, vol.204
, pp. 25-31
-
-
Pua, H.H.1
Dzhagalov, I.2
Chuck, M.3
Mizushima, N.4
He, Y.W.5
-
69
-
-
0028802746
-
A hierarchy of ATP-consuming processes in mammalian cells
-
Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 1995;312:163-167.
-
(1995)
Biochem J
, vol.312
, pp. 163-167
-
-
Buttgereit, F.1
Brand, M.D.2
-
70
-
-
3042818799
-
Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome
-
Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 2004;18:1533-1538.
-
(2004)
Genes Dev
, vol.18
, pp. 1533-1538
-
-
Corradetti, M.N.1
Inoki, K.2
Bardeesy, N.3
DePinho, R.A.4
Guan, K.L.5
-
71
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
72
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates mTOR signaling
-
Shaw RJ, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004;6:91-99.
-
(2004)
Cancer Cell
, vol.6
, pp. 91-99
-
-
Shaw, R.J.1
-
73
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214-226.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
-
74
-
-
1642328617
-
Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398
-
Browne GJ, Finn SG, Proud CG. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem 2004;279:12220-12231.
-
(2004)
J Biol Chem
, vol.279
, pp. 12220-12231
-
-
Browne, G.J.1
Finn, S.G.2
Proud, C.G.3
-
76
-
-
0036238675
-
AMP-activated kinase regulates cytoplasmic HuR
-
Wang W, et al. AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 2002;22:3425-3436.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 3425-3436
-
-
Wang, W.1
-
77
-
-
4043061488
-
Selective cytoplasmic translocation of HuR and site-specific binding to the interleukin-2 mRNA are not sufficient for CD28-mediated stabilization of the mRNA
-
Seko Y, Azmi H, Fariss R, Ragheb JA. Selective cytoplasmic translocation of HuR and site-specific binding to the interleukin-2 mRNA are not sufficient for CD28-mediated stabilization of the mRNA. J Biol Chem 2004;279:33359-33367.
-
(2004)
J Biol Chem
, vol.279
, pp. 33359-33367
-
-
Seko, Y.1
Azmi, H.2
Fariss, R.3
Ragheb, J.A.4
-
78
-
-
0031740335
-
Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
-
Treitel MA, Kuchin S, Carlson M. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 1998;18:6273-6280.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 6273-6280
-
-
Treitel, M.A.1
Kuchin, S.2
Carlson, M.3
-
79
-
-
0032768263
-
The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1
-
Smith FC, Davies SP, Wilson WA, Carling D, Hardie DG. The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett 1999;453:219-223.
-
(1999)
FEBS Lett
, vol.453
, pp. 219-223
-
-
Smith, F.C.1
Davies, S.P.2
Wilson, W.A.3
Carling, D.4
Hardie, D.G.5
-
80
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010;39:171-183.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
81
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li Y, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011;13:376-388.
-
(2011)
Cell Metab
, vol.13
, pp. 376-388
-
-
Li, Y.1
-
82
-
-
0035914324
-
Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors
-
Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem 2001;276:38341-38344.
-
(2001)
J Biol Chem
, vol.276
, pp. 38341-38344
-
-
Yang, W.1
Hong, Y.H.2
Shen, X.Q.3
Frankowski, C.4
Camp, H.S.5
Leff, T.6
-
83
-
-
42449161465
-
AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5
-
McGee SL, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008;57:860-867.
-
(2008)
Diabetes
, vol.57
, pp. 860-867
-
-
McGee, S.L.1
-
84
-
-
79955815135
-
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
-
Mihaylova MM, et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011;145:607-621.
-
(2011)
Cell
, vol.145
, pp. 607-621
-
-
Mihaylova, M.M.1
-
85
-
-
64549127790
-
PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
-
Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20:98-105.
-
(2009)
Curr Opin Lipidol
, vol.20
, pp. 98-105
-
-
Canto, C.1
Auwerx, J.2
-
86
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 2007;104:12017-12022.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
87
-
-
84856183120
-
Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
-
van der Windt GJ, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012;36:68-78.
-
(2012)
Immunity
, vol.36
, pp. 68-78
-
-
van der Windt, G.J.1
-
88
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005;18:283-293.
-
(2005)
Mol Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
-
89
-
-
34848861463
-
The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor
-
Greer EL, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007;282:30107-30119.
-
(2007)
J Biol Chem
, vol.282
, pp. 30107-30119
-
-
Greer, E.L.1
-
90
-
-
0042847434
-
AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability
-
Hong YH, Varanasi US, Yang W, Leff T. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem 2003;278:27495-27501.
-
(2003)
J Biol Chem
, vol.278
, pp. 27495-27501
-
-
Hong, Y.H.1
Varanasi, U.S.2
Yang, W.3
Leff, T.4
-
91
-
-
79956326256
-
Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
-
Zaugg K, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011;25:1041-1051.
-
(2011)
Genes Dev
, vol.25
, pp. 1041-1051
-
-
Zaugg, K.1
-
92
-
-
77956294919
-
Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation
-
Bungard D, et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 2010;329:1201-1205.
-
(2010)
Science
, vol.329
, pp. 1201-1205
-
-
Bungard, D.1
-
93
-
-
33746611519
-
Activated signal transduction kinases frequently occupy target genes
-
Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA. Activated signal transduction kinases frequently occupy target genes. Science 2006;313:533-536.
-
(2006)
Science
, vol.313
, pp. 533-536
-
-
Pokholok, D.K.1
Zeitlinger, J.2
Hannett, N.M.3
Reynolds, D.B.4
Young, R.A.5
-
94
-
-
0035839135
-
Snf1-a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription
-
Lo WS, et al. Snf1-a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 2001;293:1142-1146.
-
(2001)
Science
, vol.293
, pp. 1142-1146
-
-
Lo, W.S.1
-
95
-
-
0015924743
-
Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation
-
Roos D, Loos JA. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp Cell Res 1973;77:127-135.
-
(1973)
Exp Cell Res
, vol.77
, pp. 127-135
-
-
Roos, D.1
Loos, J.A.2
-
96
-
-
33947250696
-
The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis
-
Liang J, et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007;9:218-224.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 218-224
-
-
Liang, J.1
-
97
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006;126:107-120.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
-
98
-
-
33745149291
-
p53 regulates mitochondrial respiration
-
Matoba S, et al. p53 regulates mitochondrial respiration. Science 2006;312:1650-1653.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
-
99
-
-
34248185949
-
LKB1 and AMPK maintain epithelial cell polarity under energetic stress
-
Mirouse V, Swick LL, Kazgan N, St Johnston D, Brenman JE. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol 2007;177:387-392.
-
(2007)
J Cell Biol
, vol.177
, pp. 387-392
-
-
Mirouse, V.1
Swick, L.L.2
Kazgan, N.3
St Johnston, D.4
Brenman, J.E.5
-
100
-
-
0037461735
-
A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity
-
Martin SG, St Johnston D. A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 2003;421:379-384.
-
(2003)
Nature
, vol.421
, pp. 379-384
-
-
Martin, S.G.1
St Johnston, D.2
-
101
-
-
33947730608
-
Asymmetric T lymphocyte division in the initiation of adaptive immune responses
-
Chang JT, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 2007;315:1687-1691.
-
(2007)
Science
, vol.315
, pp. 1687-1691
-
-
Chang, J.T.1
-
102
-
-
84856071457
-
Asymmetric B cell division in the germinal center reaction
-
Barnett BE, et al. Asymmetric B cell division in the germinal center reaction. Science 2012;335:342-344.
-
(2012)
Science
, vol.335
, pp. 342-344
-
-
Barnett, B.E.1
-
103
-
-
79954906546
-
Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division
-
Chang JT, et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 2011;34:492-504.
-
(2011)
Immunity
, vol.34
, pp. 492-504
-
-
Chang, J.T.1
-
104
-
-
44849141880
-
AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function
-
Mayer A, Denanglaire S, Viollet B, Leo O, Andris F. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol 2008;38:948-956.
-
(2008)
Eur J Immunol
, vol.38
, pp. 948-956
-
-
Mayer, A.1
Denanglaire, S.2
Viollet, B.3
Leo, O.4
Andris, F.5
-
105
-
-
74249122511
-
LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells
-
Tamas P, et al. LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 2010;40:242-253.
-
(2010)
Eur J Immunol
, vol.40
, pp. 242-253
-
-
Tamas, P.1
-
106
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011;35:871-882.
-
(2011)
Immunity
, vol.35
, pp. 871-882
-
-
Wang, R.1
-
107
-
-
24944444760
-
Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism
-
Ciofani M, Zuniga-Pflucker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005;6:881-888.
-
(2005)
Nat Immunol
, vol.6
, pp. 881-888
-
-
Ciofani, M.1
Zuniga-Pflucker, J.C.2
-
108
-
-
67650480092
-
mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome
-
Shackelford DB, et al. mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci USA 2009;106:11137-11142.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 11137-11142
-
-
Shackelford, D.B.1
-
109
-
-
0033597129
-
Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6
-
Kimball SR, Shantz LM, Horetsky RL, Jefferson LS. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem 1999;274:11647-11652.
-
(1999)
J Biol Chem
, vol.274
, pp. 11647-11652
-
-
Kimball, S.R.1
Shantz, L.M.2
Horetsky, R.L.3
Jefferson, L.S.4
-
110
-
-
67650074206
-
mTOR regulates memory CD8 T-cell differentiation
-
Araki K, et al. mTOR regulates memory CD8 T-cell differentiation. Nature 2009;460:108-112.
-
(2009)
Nature
, vol.460
, pp. 108-112
-
-
Araki, K.1
-
111
-
-
73849112608
-
The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression
-
Cao Y, Li H, Liu H, Zheng C, Ji H, Liu X. The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res 2010;20:99-108.
-
(2010)
Cell Res
, vol.20
, pp. 99-108
-
-
Cao, Y.1
Li, H.2
Liu, H.3
Zheng, C.4
Ji, H.5
Liu, X.6
-
112
-
-
79956132815
-
LKB1 regulates TCR-mediated PLCgamma1 activation and thymocyte positive selection
-
Cao Y, et al. LKB1 regulates TCR-mediated PLCgamma1 activation and thymocyte positive selection. EMBO J 2011;30:2083-2093.
-
(2011)
EMBO J
, vol.30
, pp. 2083-2093
-
-
Cao, Y.1
-
113
-
-
70349669095
-
Ribosomal protein S6 kinase 1 signaling regulates mammalian life span
-
Selman C, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009;326:140-144.
-
(2009)
Science
, vol.326
, pp. 140-144
-
-
Selman, C.1
-
114
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003;5:578-581.
-
(2003)
Nat Cell Biol
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
Gao, X.2
Saucedo, L.J.3
Ru, B.4
Edgar, B.A.5
Pan, D.6
-
115
-
-
80051997049
-
The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function
-
Yang K, Neale G, Green DR, He W, Chi H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 2011;12:888-897.
-
(2011)
Nat Immunol
, vol.12
, pp. 888-897
-
-
Yang, K.1
Neale, G.2
Green, D.R.3
He, W.4
Chi, H.5
-
116
-
-
80054721266
-
Regulation of T-cell survival and mitochondrial homeostasis by TSC1
-
O'Brien TF, et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol 2011;41:3361-3370.
-
(2011)
Eur J Immunol
, vol.41
, pp. 3361-3370
-
-
O'Brien, T.F.1
-
117
-
-
58849115949
-
Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype
-
Sag D, Carling D, Stout RD, Suttles J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 2008;181:8633-8641.
-
(2008)
J Immunol
, vol.181
, pp. 8633-8641
-
-
Sag, D.1
Carling, D.2
Stout, R.D.3
Suttles, J.4
-
118
-
-
52649141738
-
Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury
-
Zhao X, et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008;295:L497-L504.
-
(2008)
Am J Physiol Lung Cell Mol Physiol
, vol.295
-
-
Zhao, X.1
-
119
-
-
21244437079
-
5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis
-
Nath N, Giri S, Prasad R, Salem ML, Singh AK, Singh I. 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J Immunol 2005;175:566-574.
-
(2005)
J Immunol
, vol.175
, pp. 566-574
-
-
Nath, N.1
Giri, S.2
Prasad, R.3
Salem, M.L.4
Singh, A.K.5
Singh, I.6
-
120
-
-
79953172571
-
Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
-
Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011;186:3299-3303.
-
(2011)
J Immunol
, vol.186
, pp. 3299-3303
-
-
Michalek, R.D.1
-
121
-
-
41149113441
-
The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells
-
Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med 2008;205:565-574.
-
(2008)
J Exp Med
, vol.205
, pp. 565-574
-
-
Haxhinasto, S.1
Mathis, D.2
Benoist, C.3
-
122
-
-
45549098562
-
T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
-
Sauer S, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA 2008;105:7797-7802.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 7797-7802
-
-
Sauer, S.1
-
123
-
-
44449165597
-
Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
-
Jacobs SR, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 2008;180:4476-4486.
-
(2008)
J Immunol
, vol.180
, pp. 4476-4486
-
-
Jacobs, S.R.1
-
124
-
-
67749111502
-
The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009;9:563-575.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
125
-
-
67649196932
-
Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis
-
Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 2009;182:8005-8014.
-
(2009)
J Immunol
, vol.182
, pp. 8005-8014
-
-
Nath, N.1
Khan, M.2
Paintlia, M.K.3
Singh, I.4
Hoda, M.N.5
Giri, S.6
|