메뉴 건너뛰기




Volumn 12, Issue 6, 2007, Pages 2358-2371

Yeast as a model system to study glucose-mediated signalling and response

Author keywords

AMPK; Glucose induction; Glucose repression; Glucose sensing; Review; Snf1; TOR

Indexed keywords

EUKARYOTA; MAMMALIA; SACCHAROMYCES CEREVISIAE;

EID: 36049023020     PISSN: 27686701     EISSN: 27686698     Source Type: Journal    
DOI: 10.2741/2238     Document Type: Article
Times cited : (13)

References (145)
  • 1
    • 49549129756 scopus 로고
    • Catabolite inactivation in yeast
    • Holzer, H.: Catabolite inactivation in yeast. Trends Biochem. Sci., 8, 178-181 (1976)
    • (1976) Trends Biochem. Sci. , vol.8 , pp. 178-181
    • Holzer, H.1
  • 2
    • 0030858383 scopus 로고    scopus 로고
    • Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces
    • Jiang, H., I. Medintz & C. A. Michels: Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces. Mol Biol Cell, 8, 1293-1304. (1997) (Pubitemid 27310475)
    • (1997) Molecular Biology of the Cell , vol.8 , Issue.7 , pp. 1293-1304
    • Jiang, H.1    Medintz, I.2    Michels, C.A.3
  • 3
    • 0033983164 scopus 로고    scopus 로고
    • Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces
    • DOI 10.1128/JB.182.3.647-654.2000
    • Jiang, H., I. Medintz, B. Zhang & C. A. Michels: Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. J Bacteriol, 182, 647-654. (2000) (Pubitemid 30053994)
    • (2000) Journal of Bacteriology , vol.182 , Issue.3 , pp. 647-654
    • Jiang, H.1    Medintz, I.2    Zhang, B.3    Michels, C.A.4
  • 4
    • 0343593730 scopus 로고    scopus 로고
    • Monoubiquitination is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae
    • Lucero, P., E. Penalver, L. Vela & R. Lagunas: Monoubiquitination is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae. J Bacteriol, 182, 241-243 (2000) (Pubitemid 30004585)
    • (2000) Journal of Bacteriology , vol.182 , Issue.1 , pp. 241-243
    • Lucero, P.1    Penalver, E.2    Vela, L.3    Lagunas, R.4
  • 5
    • 0037040938 scopus 로고    scopus 로고
    • Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway
    • DOI 10.1074/jbc.M107255200
    • Horak, J., J. Regelmann & D. H. Wolf: Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1, 6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J Biol Chem, 277, 8248-8254. (2002) (Pubitemid 34968282)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.10 , pp. 8248-8254
    • Horak, J.1    Regelmann, J.2    Wolf, D.H.3
  • 6
    • 33645130011 scopus 로고    scopus 로고
    • Glucose signaling in Saccharomyces cerevisiae
    • Santangelo, G. M.: Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 70, 253-282 (2006)
    • (2006) Microbiol Mol Biol Rev , vol.70 , pp. 253-282
    • Santangelo, G.M.1
  • 7
    • 0036275447 scopus 로고    scopus 로고
    • Getting started with yeast
    • DOI 10.1016/S0076-6879(02)50954-X
    • Sherman, F.: Getting started with yeast. Methods Enzymol, 350, 3-41 (2002) (Pubitemid 34619482)
    • (2002) Methods in Enzymology , vol.350 , pp. 3-41
    • Sherman, F.1
  • 8
    • 0036276994 scopus 로고    scopus 로고
    • Yeast genomic expression studies using DNA microarrays
    • DOI 10.1016/S0076-6879(02)50976-9
    • Gasch, A. P.: Yeast genomic expression studies using DNA microarrays. Methods Enzymol, 350, 393-414 (2002) (Pubitemid 34619504)
    • (2002) Methods in Enzymology , vol.350 , pp. 393-414
    • Gasch, A.P.1
  • 9
    • 0030071902 scopus 로고    scopus 로고
    • From DNA sequence to biological function
    • DOI 10.1038/379597a0
    • Oliver, S. G.: From DNA sequence to biological function. Nature, 379, 597-600 (1996) (Pubitemid 26052817)
    • (1996) Nature , vol.379 , Issue.6566 , pp. 597-600
    • Oliver, S.G.1
  • 10
    • 13044310139 scopus 로고    scopus 로고
    • Transposon mutagenesis for the analysis of protein production, function, and localization
    • Ross-Macdonald, P., A. Sheehan, C. Friddle, G. S. Roeder & M. Snyder: Transposon mutagenesis for the analysis of protein production, function, and localization. Methods Enzymol, 303, 512-532 (1999)
    • (1999) Methods Enzymol , vol.303 , pp. 512-532
    • Ross-Macdonald, P.1    Sheehan, A.2    Friddle, C.3    Roeder, G.S.4    Snyder, M.5
  • 11
    • 0036273430 scopus 로고    scopus 로고
    • Use of two-dimensional gels in yeast proteomics
    • DOI 10.1016/S0076-6879(02)50985-X
    • Blomberg, A.: Use of two-dimensional gels in yeast proteomics. Methods Enzymol, 350, 559-584 (2002) (Pubitemid 34619513)
    • (2002) Methods in Enzymology , vol.350 , pp. 559-584
    • Blomberg, A.1
  • 21
    • 14644424616 scopus 로고    scopus 로고
    • Glucose as a hormone: Receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae
    • DOI 10.1042/BST0330247
    • Johnston, M. & J. H. Kim: Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans, 33, 247-252 (2005) (Pubitemid 40313813)
    • (2005) Biochemical Society Transactions , vol.33 , Issue.1 , pp. 247-252
    • Johnston, M.1    Kim, J.-H.2
  • 22
    • 0032421093 scopus 로고    scopus 로고
    • How do yeast cells sense glucose?
    • DOI 10.1002/(SICI)1521-1878(199812)20:12<972::AID-BIES2>3.0.CO;2-M
    • Kruckeberg, A. L., M. C. Walsh & K. Van Dam: How do yeast cells sense glucose? Bioessays, 20, 972-976 (1998) (Pubitemid 29032174)
    • (1998) BioEssays , vol.20 , Issue.12 , pp. 972-976
    • Kruckeberg, A.L.1    Walsh, M.C.2    Van Dam, K.3
  • 23
    • 0034799351 scopus 로고    scopus 로고
    • Sensors of extracellular nutrients in Saccharomyces cerevisiae
    • DOI 10.1007/s002940100244
    • Forsberg, H. & P. O. Ljungdahl: Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet, 40, 91-109. (2001) (Pubitemid 32962894)
    • (2001) Current Genetics , vol.40 , Issue.2 , pp. 91-109
    • Forsberg, H.1    Ljungdahl, P.O.2
  • 24
    • 0032080298 scopus 로고    scopus 로고
    • Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae
    • DOI 10.1093/emboj/17.9.2566
    • Ozcan, S., J. Dover & M. Johnston: Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. Embo J, 17, 2566-2573. (1998) (Pubitemid 28221192)
    • (1998) EMBO Journal , vol.17 , Issue.9 , pp. 2566-2573
    • Ozcan, S.1    Dover, J.2    Johnston, M.3
  • 25
    • 0033745888 scopus 로고    scopus 로고
    • Glucose-induced cAMP signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinasedependent sensing process
    • Rolland, F., J. H. De Winde, K. Lemaire, E. Boles, J. M. Thevelein & J. Winderickx: Glucose-induced cAMP signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinasedependent sensing process. Mol Microbiol, 38, 348-358 (2000)
    • (2000) Mol Microbiol , vol.38 , pp. 348-358
    • Rolland, F.1    De Winde, J.H.2    Lemaire, K.3    Boles, E.4    Thevelein, J.M.5    Winderickx, J.6
  • 26
    • 0036281361 scopus 로고    scopus 로고
    • Glucosesensing and-signalling mechanisms in yeast
    • Rolland, F., J. Winderickx & J. M. Thevelein: Glucosesensing and-signalling mechanisms in yeast. FEMS Yeast Res, 2, 183-201 (2002)
    • (2002) FEMS Yeast Res , vol.2 , pp. 183-201
    • Rolland, F.1    Winderickx, J.2    Thevelein, J.M.3
  • 27
    • 0032986914 scopus 로고    scopus 로고
    • A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose
    • DOI 10.1046/j.1365-2958.1999.01413.x
    • Kraakman, L., K. Lemaire, P. Ma, A. W. Teunissen, M. C. Donaton, P. Van Dijck, J. Winderickx, J. H. de Winde & J. M. Thevelein: A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol, 32, 1002-1012 (1999) (Pubitemid 29255766)
    • (1999) Molecular Microbiology , vol.32 , Issue.5 , pp. 1002-1012
    • Kraakman, L.1    Lemaire, K.2    Ma, P.3    Teunlssen, A.W.R.H.4    Donaton, M.C.V.5    Van Dijck, P.6    Winderickx, J.7    De Winde, J.H.8    Thevelein, J.M.9
  • 28
    • 0033569790 scopus 로고    scopus 로고
    • A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2
    • DOI 10.1093/emboj/18.20.5577
    • Versele, M., J. H. de Winde & J. M. Thevelein: A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. Embo J, 18, 5577-5591 (1999) (Pubitemid 29486377)
    • (1999) EMBO Journal , vol.18 , Issue.20 , pp. 5577-5591
    • Versele, M.1    De Winde, J.H.2    Thevelein, J.M.3
  • 29
    • 0035984604 scopus 로고    scopus 로고
    • The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits
    • DOI 10.1016/S1097-2765(02)00569-5
    • Harashima, T. & J. Heitman: The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits. Mol Cell, 10, 163-173 (2002) (Pubitemid 34876570)
    • (2002) Molecular Cell , vol.10 , Issue.1 , pp. 163-173
    • Harashima, T.1    Heitman, J.2
  • 31
    • 0027500533 scopus 로고
    • The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase
    • Kuroda, Y., N. Suzuki & T. Kataoka: The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science, 259, 683-686 (1993) (Pubitemid 23066291)
    • (1993) Science , vol.259 , Issue.5095 , pp. 683-686
    • Kuroda, Y.1    Suzuki, N.2    Kataoka, T.3
  • 32
    • 6344256284 scopus 로고    scopus 로고
    • Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae
    • DOI 10.1074/jbc.M405136200
    • Colombo, S., D. Ronchetti, J. M. Thevelein, J. Winderickx & E. Martegani: Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem, 279, 46715-46722 (2004) (Pubitemid 39518319)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.45 , pp. 46715-46722
    • Colombo, S.1    Ronchetti, D.2    Thevelein, J.M.3    Winderickx, J.4    Martegani, E.5
  • 33
    • 0026569634 scopus 로고
    • Engineering of glucose-stimulated insulin secretion and biosynthesis in non-islet cells
    • Hughes, S. D., J. H. Johnson, C. Quaade & C. B. Newgard: Engineering of glucose-stimulated insulin secretion and biosynthesis in non-islet cells. Proc Natl Acad Sci U S A, 89, 688-692 (1992)
    • (1992) Proc Natl Acad Sci U S A , vol.89 , pp. 688-692
    • Hughes, S.D.1    Johnson, J.H.2    Quaade, C.3    Newgard, C.B.4
  • 35
    • 0034024476 scopus 로고    scopus 로고
    • The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells
    • Guillemain, G., M. Loizeau, M. Pincon-Raymond, J. Girard & A. Leturque: The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells. J Cell Sci, 113, 841-847. (2000) (Pubitemid 30168652)
    • (2000) Journal of Cell Science , vol.113 , Issue.5 , pp. 841-847
    • Guillemain, G.1    Loizeau, M.2    Pincon-Raymond, M.3    Girard, J.4    Leturque, A.5
  • 37
    • 0742289585 scopus 로고    scopus 로고
    • A karyopherin α2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells
    • DOI 10.1046/j.1398-9219.2003.0143.x
    • Cassany, A., G. Guillemain, C. Klein, V. Dalet, E. Brot-Laroche & A. Leturque: A karyopherin alpha2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells. Traffic, 5, 10-19 (2004) (Pubitemid 38159400)
    • (2004) Traffic , vol.5 , Issue.1 , pp. 10-19
    • Cassany, A.1    Guillemain, G.2    Klein, C.3    Dalet, V.4    Brot-Laroche, E.5    Leturque, A.6
  • 39
    • 27844566646 scopus 로고    scopus 로고
    • Glucose as a regulator of eukaryotic gene transcription
    • DOI 10.1016/j.tem.2005.10.003, PII S1043276005002316
    • Towle, H. C.: Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab, 16, 489-494 (2005) (Pubitemid 41660865)
    • (2005) Trends in Endocrinology and Metabolism , vol.16 , Issue.10 , pp. 489-494
    • Towle, H.C.1
  • 40
    • 0030874516 scopus 로고    scopus 로고
    • Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: Coupling glucose sensing to gene expression and the cell cycle
    • DOI 10.1093/emboj/16.18.5629
    • Li, F. N. & M. Johnston: Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. Embo J, 16, 5629-5638. (1997) (Pubitemid 27399855)
    • (1997) EMBO Journal , vol.16 , Issue.18 , pp. 5629-5638
    • Li, F.N.1    Johnston, M.2
  • 41
    • 0031884615 scopus 로고    scopus 로고
    • Grr1 functions in the ubiquitin pathway in Saccharomyces cerevisiae through association with Skp1
    • Kishi, T., T. Seno & F. Yamao: Grr1 functions in the ubiquitin pathway in Saccharomyces cerevisiae through association with Skp1. Mol Gen Genet, 257, 143-148. (1998)
    • (1998) Mol Gen Genet , vol.257 , pp. 143-148
    • Kishi, T.1    Seno, T.2    Yamao, F.3
  • 42
    • 0037855780 scopus 로고    scopus 로고
    • Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator
    • DOI 10.1074/jbc.M212802200
    • Mosley, A. L., J. Lakshmanan, B. K. Aryal & S. Ozcan: Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J Biol Chem, 278, 10322-10327 (2003) (Pubitemid 36800294)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.12 , pp. 10322-10327
    • Mosley, A.L.1    Lakshmanan, J.2    Aryal, B.K.3    Ozcan, S.4
  • 43
    • 0142061170 scopus 로고    scopus 로고
    • Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1
    • DOI 10.1007/s00294-003-0423-2
    • Lakshmanan, J., A. L. Mosley & S. Ozcan: Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr Genet, 44, 19-25 (2003) (Pubitemid 37265827)
    • (2003) Current Genetics , vol.44 , Issue.1 , pp. 19-25
    • Lakshmanan, J.1    Mosley, A.L.2    Ozcan, S.3
  • 44
    • 0033962922 scopus 로고    scopus 로고
    • Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae
    • DOI 10.1046/j.1365-2958.2000.01688.x
    • Lafuente, M. J., C. Gancedo, J. C. Jauniaux & J. M. Gancedo: Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol Microbiol, 35, 161-172. (2000) (Pubitemid 30032279)
    • (2000) Molecular Microbiology , vol.35 , Issue.1 , pp. 161-172
    • Lafuente, M.J.1    Gancedo, C.2    Jauniaux, J.-C.3    Gancedo, J.M.4
  • 47
    • 0042592912 scopus 로고    scopus 로고
    • Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1
    • DOI 10.1128/MCB.23.15.5208-5216.2003
    • Kim, J. H., J. Polish & M. Johnston: Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol, 23, 5208-5216 (2003) (Pubitemid 36950876)
    • (2003) Molecular and Cellular Biology , vol.23 , Issue.15 , pp. 5208-5216
    • Kim, J.-H.1    Polish, J.2    Johnston, M.3
  • 49
    • 4744373127 scopus 로고    scopus 로고
    • Grr1 targets in the glucose and amino acid signaling pathways
    • DOI 10.1128/MCB.24.20.8994-9005.2004
    • Spielewoy, N., K. Flick, T. I. Kalashnikova, J. R. Walker & C. Wittenberg: Regulation and Recognition of SCFGrr1 Targets in the Glucose and Amino Acid Signaling Pathways. Mol Cell Biol, 24, 8994-9005 (2004) (Pubitemid 39313904)
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.20 , pp. 8994-9005
    • Spielewoy, N.1    Flick, K.2    Kalashnikova, T.I.3    Walker, J.R.4    Wittenberg, C.5
  • 50
    • 30944448623 scopus 로고    scopus 로고
    • Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae
    • DOI 10.1128/EC.5.1.167-173.2006
    • Kim, J. H., V. Brachet, H. Moriya & M. Johnston: Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell, 5, 167-173 (2006) (Pubitemid 43113462)
    • (2006) Eukaryotic Cell , vol.5 , Issue.1 , pp. 167-173
    • Kim, J.-H.1    Brachet, V.2    Moriya, H.3    Johnston, M.4
  • 51
    • 18944364398 scopus 로고    scopus 로고
    • TOR kinase pathway and 14-3-3 proteins regulate glucose-induced expression of HXT1, a yeast low-affinity glucose transporter
    • DOI 10.1002/yea.1224
    • Tomas-Cobos, L., R. Viana & P. Sanz: TOR kinase pathway and 14-3-3 proteins regulate glucose-induced expression of HXT1, a yeast low-affinity glucose transporter. Yeast, 22, 471-479 (2005) (Pubitemid 40704323)
    • (2005) Yeast , vol.22 , Issue.6 , pp. 471-479
    • Tomas-Cobos, L.1    Viana, R.2    Sanz, P.3
  • 52
    • 18544411034 scopus 로고    scopus 로고
    • Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways
    • DOI 10.1074/jbc.M400609200
    • Tomas-Cobos, L., L. Casadome, G. Mas, P. Sanz & F. Posas: Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem, 279, 22010-22019 (2004) (Pubitemid 38679392)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.21 , pp. 22010-22019
    • Tomas-Cobos, L.1    Casadome, L.2    Mas, G.3    Sanz, P.4    Posas, F.5
  • 53
    • 1242300132 scopus 로고    scopus 로고
    • Regulatory Network Connecting Two Glucose Signal Transduction Pathways in Saccharomyces cerevisiae
    • DOI 10.1128/EC.3.1.221-231.2004
    • Kaniak, A., Z. Xue, D. Macool, J. H. Kim & M. Johnston: Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell, 3, 221-231 (2004) (Pubitemid 38237312)
    • (2004) Eukaryotic Cell , vol.3 , Issue.1 , pp. 221-231
    • Kaniak, A.1    Xue, Z.2    Macool, D.3    Kim, J.-H.4    Johnston, M.5
  • 54
    • 0030067124 scopus 로고    scopus 로고
    • A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm
    • Matschinsky, F. M.: A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes, 45, 223-241 (1996) (Pubitemid 26045806)
    • (1996) Diabetes , vol.45 , Issue.2 , pp. 223-241
    • Matschinsky, F.M.1
  • 55
    • 0031892853 scopus 로고    scopus 로고
    • Pancreatic β-cell glucokinase: Closing the gap between theoretical concepts and experimental realities
    • DOI 10.2337/diabetes.47.3.307
    • Matschinsky, F. M., B. Glaser & M. A. Magnuson: Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes, 47, 307-315. (1998) (Pubitemid 28104189)
    • (1998) Diabetes , vol.47 , Issue.3 , pp. 307-315
    • Matschinsky, F.M.1    Glaser, B.2    Magnuson, M.A.3
  • 56
    • 0036896635 scopus 로고    scopus 로고
    • Regulation of pancreatic β-cell glucokinase: From basics to therapeutics
    • Matschinsky, F. M.: Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes, 51 Suppl 3, S394-404 (2002) (Pubitemid 35403423)
    • (2002) Diabetes , vol.51 , Issue.SUPPL. 3
    • Matschinsky, F.M.1
  • 57
    • 0033534620 scopus 로고    scopus 로고
    • Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells
    • Macfarlane, W. M., C. M. McKinnon, Z. A. Felton- Edkins, H. Cragg, R. F. James & K. Docherty: Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem, 274, 1011-1016 (1999)
    • (1999) J Biol Chem , vol.274 , pp. 1011-1016
    • MacFarlane, W.M.1    McKinnon, C.M.2    Felton- Edkins, Z.A.3    Cragg, H.4    James, R.F.5    Docherty, K.6
  • 61
    • 0030753971 scopus 로고    scopus 로고
    • Regulation of the expression of lipogenic enzyme genes by carbohydrate
    • DOI 10.1146/annurev.nutr.17.1.405
    • Towle, H. C., E. N. Kaytor & H. M. Shih: Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr, 17, 405-433 (1997) (Pubitemid 27328807)
    • (1997) Annual Review of Nutrition , vol.17 , pp. 405-433
    • Towle, H.C.1    Kaytor, E.N.2    Shih, H.-M.3
  • 62
    • 0030877118 scopus 로고    scopus 로고
    • Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes
    • DOI 10.1146/annurev.nutr.17.1.325
    • Girard, J., P. Ferre & F. Foufelle: Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr, 17, 325-352 (1997) (Pubitemid 27328804)
    • (1997) Annual Review of Nutrition , vol.17 , pp. 325-352
    • Girard, J.1    Ferre, P.2    Foufelle, F.3
  • 64
    • 0034644780 scopus 로고    scopus 로고
    • Glucose regulation of gene transcription
    • Vaulont, S., M. Vasseur-Cognet & A. Kahn: Glucose regulation of gene transcription. J Biol Chem, 275, 31555-31558 (2000)
    • (2000) J Biol Chem , vol.275 , pp. 31555-31558
    • Vaulont, S.1    Vasseur-Cognet, M.2    Kahn, A.3
  • 65
    • 0029094172 scopus 로고
    • Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription
    • Shih, H. M., Z. Liu & H. C. Towle: Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem, 270, 21991-21997 (1995)
    • (1995) J Biol Chem , vol.270 , pp. 21991-21997
    • Shih, H.M.1    Liu, Z.2    Towle, H.C.3
  • 67
    • 0037040185 scopus 로고    scopus 로고
    • Mechanism for fatty acid 'sparing' effect on glucose-induced transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase
    • DOI 10.1074/jbc.M107895200
    • Kawaguchi, T., K. Osatomi, H. Yamashita, T. Kabashima & K. Uyeda: Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrateresponsive element-binding protein by AMP-activated protein kinase. J Biol Chem, 277, 3829-3835. (2002) (Pubitemid 34968632)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.6 , pp. 3829-3835
    • Kawaguchi, T.1    Osatomi, K.2    Yamashita, H.3    Kabashima, T.4    Uyeda, K.5
  • 68
    • 0037098291 scopus 로고    scopus 로고
    • Carbohydrate responsive element-binding protein (ChREBP): A key regulator of glucose metabolism and fat storage
    • DOI 10.1016/S0006-2952(02)01012-2, PII S0006295202010122
    • Uyeda, K., H. Yamashita & T. Kawaguchi: Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol, 63, 2075-2080 (2002) (Pubitemid 34756672)
    • (2002) Biochemical Pharmacology , vol.63 , Issue.12 , pp. 2075-2080
    • Uyeda, K.1    Yamashita, H.2    Kawaguchi, T.3
  • 71
    • 2442614148 scopus 로고    scopus 로고
    • Mlx Is the Functional Heteromeric Partner of the Carbohydrate Response Element-binding Protein in Glucose Regulation of Lipogenic Enzyme Genes
    • DOI 10.1074/jbc.M311301200
    • Stoeckman, A. K., L. Ma & H. C. Towle: Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem, 279, 15662-15669 (2004) (Pubitemid 38618968)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.15 , pp. 15662-15669
    • Stoeckman, A.K.1    Ma, L.2    Towle, H.C.3
  • 72
    • 0033118209 scopus 로고    scopus 로고
    • Glucose repression in yeast
    • DOI 10.1016/S1369-5274(99)80035-6
    • Carlson, M.: Glucose repression in yeast. Curr. Opin. Microbiol., 2, 202-207 (1999) (Pubitemid 29176946)
    • (1999) Current Opinion in Microbiology , vol.2 , Issue.2 , pp. 202-207
    • Carlson, M.1
  • 74
    • 0031717105 scopus 로고    scopus 로고
    • The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
    • DOI 10.1146/annurev.biochem.67.1.821
    • Hardie, D. G., D. Carling & M. Carlson: The AMPactivated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann. Rev. Biochem., 67, 821-855 (1998) (Pubitemid 28411146)
    • (1998) Annual Review of Biochemistry , vol.67 , pp. 821-855
    • Hardie, D.G.1    Carling, D.2    Carlson, M.3
  • 75
    • 0030953974 scopus 로고    scopus 로고
    • The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex
    • Jiang, R. & M. Carlson: The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol., 17, 2099-2106 (1997) (Pubitemid 27133295)
    • (1997) Molecular and Cellular Biology , vol.17 , Issue.4 , pp. 2099-2106
    • Jiang, R.1    Carlson, M.2
  • 76
    • 0030468365 scopus 로고    scopus 로고
    • Glucose regulates protein interactions within the yeast SNF1 protein kinase complex
    • Jiang, R. & M. Carlson: Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Develop., 10, 3105-3115 (1996) (Pubitemid 27020539)
    • (1996) Genes and Development , vol.10 , Issue.24 , pp. 3105-3115
    • Jiang, R.1    Carlson, M.2
  • 77
    • 0035965277 scopus 로고    scopus 로고
    • Regulation of Snf1 Kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
    • DOI 10.1074/jbc.M104418200
    • McCartney, R. R. & M. C. Schmidt: Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem, 276, 36460-36466. (2001) (Pubitemid 37384256)
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.39 , pp. 36460-36466
    • McCartney, R.R.1    Schmidt, M.C.2
  • 78
    • 0037184937 scopus 로고    scopus 로고
    • Purification and characterization of Snf1 kinase complexes containing a defined β subunit composition
    • DOI 10.1074/jbc.M207058200
    • Nath, N., R. R. McCartney & M. C. Schmidt: Purification and characterization of Snf1 kinase complexes containing a defined Beta subunit composition. J Biol Chem, 277, 50403-50408 (2002) (Pubitemid 36042191)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.52 , pp. 50403-50408
    • Nath, N.1    McCartney, R.R.2    Schmidt, M.C.3
  • 80
    • 0041700137 scopus 로고    scopus 로고
    • Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
    • DOI 10.1016/S0960-9822(03)00459-7
    • Sutherland, C. M., S. A. Hawley, R. R. McCartney, A. Leech, M. J. Stark, M. C. Schmidt & D. G. Hardie: Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol, 13, 1299-1305 (2003) (Pubitemid 36953302)
    • (2003) Current Biology , vol.13 , Issue.15 , pp. 1299-1305
    • Sutherland, C.M.1    Hawley, S.A.2    McCartney, R.R.3    Leech, A.4    Stark, M.J.R.5    Schmidt, M.C.6    Hardie, D.G.7
  • 81
    • 4444311163 scopus 로고    scopus 로고
    • Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase
    • DOI 10.1128/MCB.24.18.8255-8263.2004
    • Hedbacker, K., S. P. Hong & M. Carlson: Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol Cell Biol, 24, 8255-8263 (2004) (Pubitemid 39167473)
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.18 , pp. 8255-8263
    • Hedbacker, K.1    Hong, S.-P.2    Carlson, M.3
  • 82
    • 21344472380 scopus 로고    scopus 로고
    • Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases
    • DOI 10.1007/s00294-005-0576-2
    • McCartney, R. R., E. M. Rubenstein & M. C. Schmidt: Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr Genet, 47, 335-344 (2005) (Pubitemid 40909172)
    • (2005) Current Genetics , vol.47 , Issue.6 , pp. 335-344
    • McCartney, R.R.1    Rubenstein, E.M.2    Schmidt, M.C.3
  • 83
    • 0030293885 scopus 로고    scopus 로고
    • Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
    • Wilson, W. A., S. A. Hawley & D. G. Hardie: Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol., 6, 1426-1434 (1996) (Pubitemid 27012241)
    • (1996) Current Biology , vol.6 , Issue.11 , pp. 1426-1434
    • Wilson, W.A.1    Hawley, S.A.2    Hardie, D.G.3
  • 84
    • 0032568542 scopus 로고    scopus 로고
    • Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
    • DOI 10.1073/pnas.95.11.6245
    • Ludin, K., R. Jiang & M. Carlson: Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 95, 6245-6250 (1998) (Pubitemid 28248997)
    • (1998) Proceedings of the National Academy of Sciences of the United States of America , vol.95 , Issue.11 , pp. 6245-6250
    • Ludin, K.1    Jiang, R.2    Carlson, M.3
  • 85
    • 0033974002 scopus 로고    scopus 로고
    • Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snfl protein kinase
    • DOI 10.1128/MCB.20.4.1321-1328.2000
    • Sanz, P., G. R. Alms, T. A. Haystead & M. Carlson: Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol, 20, 1321-1328. (2000) (Pubitemid 30069253)
    • (2000) Molecular and Cellular Biology , vol.20 , Issue.4 , pp. 1321-1328
    • Sanz, P.1    Alms, G.R.2    Haystead, T.A.J.3    Carlson, M.4
  • 86
    • 0142164962 scopus 로고    scopus 로고
    • On the trail of an elusive flux sensor
    • DOI 10.1016/S0923-2508(03)00170-0
    • Bisson, L. F. & V. Kunathigan: On the trail of an elusive flux sensor. Res Microbiol, 154, 603-610 (2003) (Pubitemid 37329967)
    • (2003) Research in Microbiology , vol.154 , Issue.9 , pp. 603-610
    • Bisson, L.F.1    Kunathigan, V.2
  • 87
    • 0030883032 scopus 로고    scopus 로고
    • Regulated nuclear translocation of the Mig1 glucose repressor
    • DeVit, M. J., J. A. Waddle & M. Johnston: Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell, 8, 1603-1618 (1997) (Pubitemid 27385579)
    • (1997) Molecular Biology of the Cell , vol.8 , Issue.8 , pp. 1603-1618
    • Devit, M.J.1    Waddle, J.A.2    Johnston, M.3
  • 88
    • 0033523996 scopus 로고    scopus 로고
    • The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae
    • DeVit, M. J. & M. Johnston: The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol, 9, 1231-1241 (1999) (Pubitemid 29527148)
    • (1999) Current Biology , vol.9 , Issue.21 , pp. 1231-1241
    • DeVit, M.J.1    Johnston, M.2
  • 89
    • 2442486948 scopus 로고    scopus 로고
    • The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor
    • DOI 10.1038/sj.embor.7400120
    • Papamichos-Chronakis, M., T. Gligoris & D. Tzamarias: The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1repressor and the Cyc8-Tup1 co-repressor. EMBO Rep, 5, 368-372 (2004) (Pubitemid 38618278)
    • (2004) EMBO Reports , vol.5 , Issue.4 , pp. 368-372
    • Papamichos-Chronakis, M.1    Gligoris, T.2    Tzamarias, D.3
  • 90
    • 0032870144 scopus 로고    scopus 로고
    • Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae
    • DOI 10.1046/j.1365-2958.1999.01588.x
    • Rahner, A., M. Hiesinger & H. J. Schuller: Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae. Mol Microbiol, 34, 146-156 (1999) (Pubitemid 29460493)
    • (1999) Molecular Microbiology , vol.34 , Issue.1 , pp. 146-156
    • Rahner, A.1    Hiesinger, M.2    Schuller, H.-J.3
  • 91
    • 0032403110 scopus 로고    scopus 로고
    • Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes
    • Vincent, O. & M. Carlson: Sip4, a Snf1 kinasedependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J., 17, 7002-7008 (1998) (Pubitemid 28550294)
    • (1998) EMBO Journal , vol.17 , Issue.23 , pp. 7002-7008
    • Vincent, O.1    Carlson, M.2
  • 92
    • 2942568007 scopus 로고    scopus 로고
    • Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis
    • DOI 10.1128/MCB.24.10.4083-4091.2004
    • Charbon, G., K. D. Breunig, R. Wattiez, J. Vandenhaute & I. Noel-Georis: Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis. Mol Cell Biol, 24, 4083-4091 (2004) (Pubitemid 41070984)
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.10 , pp. 4083-4091
    • Charbon, G.1    Breunig, K.D.2    Wattiez, R.3    Vandenhaute, J.4    Noel-Georis, I.5
  • 93
    • 0021702006 scopus 로고
    • Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II
    • Denis, C. L.: Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics, 108, 833-844 (1984) (Pubitemid 15178604)
    • (1984) Genetics , vol.108 , Issue.4 , pp. 833-844
    • Denis, C.L.1
  • 94
    • 0037064084 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation
    • DOI 10.1074/jbc.M206158200
    • Young, E. T., N. Kacherovsky & K. Van Riper: Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J Biol Chem, 277, 38095-38103 (2002) (Pubitemid 35154661)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.41 , pp. 38095-38103
    • Young, E.T.1    Kacherovsky, N.2    Van Riper, K.3
  • 95
    • 0347318052 scopus 로고    scopus 로고
    • The AMP-activated protein kinase cascade - A unifying system for energy control
    • DOI 10.1016/j.tibs.2003.11.005
    • Carling, D.: The AMP-activated protein kinase cascade - a unifying system for energy control. Trends Biochem Sci, 29, 18-24 (2004) (Pubitemid 38068476)
    • (2004) Trends in Biochemical Sciences , vol.29 , Issue.1 , pp. 18-24
    • Carling, D.1
  • 96
    • 20844451123 scopus 로고    scopus 로고
    • AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism
    • DOI 10.1016/j.cmet.2004.12.003, PII S1550413104000099
    • Kahn, B. B., T. Alquier, D. Carling & D. G. Hardie: AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 1, 15-25 (2005) (Pubitemid 43960587)
    • (2005) Cell Metabolism , vol.1 , Issue.1 , pp. 15-25
    • Kahn, B.B.1    Alquier, T.2    Carling, D.3    Hardie, D.G.4
  • 97
    • 33644943620 scopus 로고    scopus 로고
    • AMPK: A key sensor of fuel and energy status in skeletal muscle
    • DOI 10.1152/physiol.00044.2005
    • Hardie, D. G. & K. Sakamoto: AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda), 21, 48-60 (2006) (Pubitemid 43752517)
    • (2006) Physiology , vol.21 , Issue.1 , pp. 48-60
    • Hardie, D.G.1    Sakamoto, K.2
  • 99
    • 0141457489 scopus 로고    scopus 로고
    • Glucose and type 2A protein phosphatase regulate the interaction between catalytic and regulatory subunits of AMP-activated protein kinase
    • DOI 10.1016/j.jmb.2003.08.022
    • Gimeno-Alcaniz, J. V. & P. Sanz: Glucose and type 2A protein phosphatase regulate the interaction between catalytic and regulatory subunits of AMP-activated protein kinase. J Mol Biol, 333, 201-209 (2003) (Pubitemid 37153275)
    • (2003) Journal of Molecular Biology , vol.333 , Issue.1 , pp. 201-209
    • Gimeno-Alcaniz, J.V.1    Sanz, P.2
  • 101
    • 0038814313 scopus 로고    scopus 로고
    • A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias
    • DOI 10.1016/S0960-9822(03)00249-5
    • Hudson, E. R., D. A. Pan, J. James, J. M. Lucocq, S. A. Hawley, K. A. Green, O. Baba, T. Terashima & D. G. Hardie: A Novel Domain in AMP-Activated Protein Kinase Causes Glycogen Storage Bodies Similar to Those Seen in Hereditary Cardiac Arrhythmias. Curr Biol, 13, 861-866 (2003) (Pubitemid 36573255)
    • (2003) Current Biology , vol.13 , Issue.10 , pp. 861-866
    • Hudson, E.R.1    Pan, D.A.2    James, J.3    Lucocq, J.M.4    Hawley, S.A.5    Green, K.A.6    Baba, O.7    Terashima, T.8    Hardie, D.G.9
  • 103
    • 0031026008 scopus 로고    scopus 로고
    • The protein kinases of budding yeast: Six score and more
    • DOI 10.1016/S0968-0004(96)10068-2, PII S0968000496100682
    • Hunter, T. & G. D. Plowman: The protein kinases of budding yeast: six score and more. Trends Biochem Sci, 22, 18-22 (1997) (Pubitemid 27056092)
    • (1997) Trends in Biochemical Sciences , vol.22 , Issue.1 , pp. 18-22
    • Hunter, T.1    Plowman, G.D.2
  • 104
    • 0345107247 scopus 로고    scopus 로고
    • Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
    • Hawley, S. A., J. Boudeau, J. L. Reid, K. J. Mustard, L. Udd, T. P. Makela, D. R. Alessi & D. G. Hardie: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2, 28 (2003)
    • (2003) J Biol , vol.2 , pp. 28
    • Hawley, S.A.1    Boudeau, J.2    Reid, J.L.3    Mustard, K.J.4    Udd, L.5    Makela, T.P.6    Alessi, D.R.7    Hardie, D.G.8
  • 106
    • 23044437445 scopus 로고    scopus 로고
    • 2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
    • DOI 10.1016/j.cmet.2005.06.005, PII S1550413105001701
    • Woods, A., K. Dickerson, R. Heath, S. P. Hong, M. Momcilovic, S. R. Johnstone, M. Carlson & D. Carling: Ca2+/calmodulin-dependent protein kinase kinase-beta acts u pstream of AMP-activated protein kinase in mammaliancells. Cell Metab, 2, 21-33 (2005) (Pubitemid 43239822)
    • (2005) Cell Metabolism , vol.2 , Issue.1 , pp. 21-33
    • Woods, A.1    Dickerson, K.2    Heath, R.3    Hong, S.-P.4    Momcilovic, M.5    Johnstone, S.R.6    Carlson, M.7    Carling, D.8
  • 107
    • 23844471263 scopus 로고    scopus 로고
    • 2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
    • DOI 10.1074/jbc.M503824200
    • Hurley, R. L., K. A. Anderson, J. M. Franzone, B. E. K emp, A. R. Means & L. A. Witters: The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem, 280, 29060-29066 (2005) (Pubitemid 41161355)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.32 , pp. 29060-29066
    • Hurley, R.L.1    Anderson, K.A.2    Franzone, J.M.3    Kemp, B.E.4    Means, A.R.5    Witters, L.A.6
  • 108
    • 20444468520 scopus 로고    scopus 로고
    • 2+/calmodulin-dependent protein kinase kinase α as Snf1-activating kinases in yeast
    • DOI 10.1074/jbc.M501887200
    • Hong, S. P., M. Momcilovic & M. Carlson: Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast. J Biol Chem, 280, 21804-21809 (2005) (Pubitemid 40827830)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.23 , pp. 21804-21809
    • Hong, S.-P.1    Momcilovic, M.2    Carlson, M.3
  • 110
    • 0029561919 scopus 로고
    • 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2A(C)
    • DOI 10.1016/0014-5793(95)01368-7
    • Davies, S. P., N. R. Helps, P. T. Cohen & D. G. Hardie: 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett, 377, 421-425. (1995) (Pubitemid 26027159)
    • (1995) FEBS Letters , vol.377 , Issue.3 , pp. 421-425
    • Davies, S.P.1    Helps, N.R.2    Cohen, P.T.W.3    Hardie, D.G.4
  • 111
    • 0043210478 scopus 로고    scopus 로고
    • Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis
    • DOI 10.1074/jbc.M303946200
    • Woods, A., D. Vertommen, D. Neumann, R. Turk, J. Bayliss, U. Schlattner, T. Wallimann, D. Carling & M. H. Rider: Identification of phosphorylation sites in AMPactivated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem, 278, 28434-28442 (2003) (Pubitemid 36935745)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.31 , pp. 28434-28442
    • Woods, A.1    Vertommen, D.2    Neumann, D.3    Turk, R.4    Bayliss, J.5    Schlattner, U.6    Wallimannll, T.7    Carling, D.8    Rider, M.H.9
  • 112
    • 14844366592 scopus 로고    scopus 로고
    • Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins
    • DOI 10.1042/BJ20040609
    • Samari, H. R., M. T. Moller, L. Holden, T. Asmyhr & P. O. Seglen: Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagysuppressive toxins. Biochem J, 386, 237-244 (2005) (Pubitemid 40352557)
    • (2005) Biochemical Journal , vol.386 , Issue.2 , pp. 237-244
    • Samari, H.R.1    Moller, M.T.N.2    Holden, L.3    Asmyhr, T.4    Seglen, P.O.5
  • 113
    • 0038584871 scopus 로고    scopus 로고
    • Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression
    • DOI 10.1042/BJ20021812
    • da Silva Xavier, G., I. Leclerc, A. Varadi, T. Tsuboi, S. K. Moule & G. A. Rutter: Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J, 371, 761-774 (2003) (Pubitemid 36578875)
    • (2003) Biochemical Journal , vol.371 , Issue.3 , pp. 761-774
    • Da Silva Xavier, G.1    Leclerc, I.2    Varadi, A.3    Tsuboi, T.4    Moule, S.K.5    Rutter, G.A.6
  • 114
    • 0038015693 scopus 로고    scopus 로고
    • Glucose autoregulates its uptake in skeletal muscle: Involvement of AMP-activated protein kinase
    • Itani, S. I., A. K. Saha, T. G. Kurowski, H. R. Coffin, K. Tornheim & N. B. Ruderman: Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase. Diabetes, 52, 1635-1640 (2003) (Pubitemid 36792450)
    • (2003) Diabetes , vol.52 , Issue.7 , pp. 1635-1640
    • Itani, S.I.1    Saha, A.K.2    Kurowski, T.G.3    Coffin, H.R.4    Tornheim, K.5    Ruderman, N.B.6
  • 116
    • 0032541083 scopus 로고    scopus 로고
    • The 5'-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex
    • DOI 10.1016/S0014-5793(98)00745-5, PII S0014579398007455
    • Leclerc, I., A. Kahn & B. Doiron: The 5'-AMPactivated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett, 431, 180-184. (1998) (Pubitemid 28334212)
    • (1998) FEBS Letters , vol.431 , Issue.2 , pp. 180-184
    • Leclerc, I.1    Kahn, A.2    Doiron, B.3
  • 117
    • 0033815967 scopus 로고    scopus 로고
    • Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase
    • Woods, A., D. Azzout-Marniche, M. Foretz, S. C. Stein, P. Lemarchand, P. Ferre, F. Foufelle & D. Carling: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol, 20, 6704-6711. (2000)
    • (2000) Mol Cell Biol , vol.20 , pp. 6704-6711
    • Woods, A.1    Azzout-Marniche, D.2    Foretz, M.3    Stein, S.C.4    Lemarchand, P.5    Ferre, P.6    Foufelle, F.7    Carling, D.8
  • 119
    • 0034074153 scopus 로고    scopus 로고
    • 5-Aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6- phosphatase
    • Lochhead, P. A., I. P. Salt, K. S. Walker, D. G. Hardie & C. Sutherland: 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes, 49, 896-903. (2000) (Pubitemid 30349410)
    • (2000) Diabetes , vol.49 , Issue.6 , pp. 896-903
    • Lochhead, P.A.1    Salt, I.P.2    Walker, K.S.3    Hardie, D.G.4    Sutherland, C.5
  • 120
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • DOI 10.1016/j.cmet.2005.05.004, PII S1550413105001427
    • Lin, J., C. Handschin & B. M. Spiegelman: Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab, 1, 361-370 (2005) (Pubitemid 43960626)
    • (2005) Cell Metabolism , vol.1 , Issue.6 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 123
    • 33644822480 scopus 로고    scopus 로고
    • TORCs rev up gluconeogenesis
    • Patil, S. & T. G. Unterman: TORCs rev up gluconeogenesis. Cell Metab, 2, 210-212 (2005)
    • (2005) Cell Metab , vol.2 , pp. 210-212
    • Patil, S.1    Unterman, T.G.2
  • 124
    • 33645386113 scopus 로고    scopus 로고
    • More TORC for the gluconeogenic engine
    • Cheng, A. & A. R. Saltiel: More TORC for the gluconeogenic engine. Bioessays, 28, 231-234 (2006)
    • (2006) Bioessays , vol.28 , pp. 231-234
    • Cheng, A.1    Saltiel, A.R.2
  • 128
    • 0041854190 scopus 로고    scopus 로고
    • AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions
    • DOI 10.1113/jphysiol.2003.040691
    • Putman, C. T., M. Kiricsi, J. Pearcey, I. M. MacLean, J. A. Bamford, G. K. Murdoch, W. T. Dixon & D. Pette: AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J Physiol, 551, 169-178 (2003) (Pubitemid 37062920)
    • (2003) Journal of Physiology , vol.551 , Issue.1 , pp. 169-178
    • Putman, C.T.1    Kiricsi, M.2    Pearcey, J.3    MacLean, I.M.4    Bamford, J.A.5    Murdoch, G.K.6    Dixon, W.T.7    Pette, D.8
  • 130
    • 0037033027 scopus 로고    scopus 로고
    • Two different signals regulate repression and induction of gene expression by glucose
    • DOI 10.1074/jbc.M208726200
    • Ozcan, S.: Two different signals regulate repression and induction of gene expression by glucose. J Biol Chem, 277, 46993-46997. (2002) (Pubitemid 36159205)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.49 , pp. 46993-46997
    • Ozcan, S.1
  • 131
    • 0036905343 scopus 로고    scopus 로고
    • Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene
    • DOI 10.1042/BJ20020984
    • Tomas-Cobos, L. & P. Sanz: Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene. Biochem J, 368, 657-663 (2002) (Pubitemid 35454545)
    • (2002) Biochemical Journal , vol.368 , Issue.2 , pp. 657-663
    • Tomas-Cobos, L.1    Sanz, P.2
  • 132
    • 0032511053 scopus 로고    scopus 로고
    • Amp-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes
    • DOI 10.1074/jbc.273.24.14767
    • Foretz, M., D. Carling, C. Guichard, P. Ferre & F. Foufelle: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem, 273, 14767-14771. (1998) (Pubitemid 28272762)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.24 , pp. 14767-14771
    • Foretz, M.1    Carling, D.2    Guichard, C.3    Ferre, P.4    Foufelle, F.5
  • 133
    • 0037295532 scopus 로고    scopus 로고
    • Std1p (Msn3p) positively regulates the Snfl kinase in Saccharomyces cerevisiae
    • Kuchin, S., V. K. Vyas, E. Kanter, S. P. Hong & M. Carlson: Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae. Genetics, 163, 507-514 (2003) (Pubitemid 36314534)
    • (2003) Genetics , vol.163 , Issue.2 , pp. 507-514
    • Kuchin, S.1    Vyas, V.K.2    Kanter, E.3    Hong, S.-P.4    Carlson, M.5
  • 134
    • 0034644525 scopus 로고    scopus 로고
    • TOR a central controller of cell growth
    • Schmelzle, T. & M. N. Hall: TOR, a central controller of cell growth. Cell, 103, 253-262 (2000)
    • (2000) Cell , vol.103 , pp. 253-262
    • Schmelzle, T.1    Hall, M.N.2
  • 135
    • 0035971180 scopus 로고    scopus 로고
    • The TOR kinases links nutrient sensing to cell growth
    • Rohde, J., J. Heitman & M. E. Cardenas: The TOR kinases links nutrient sensing to cell growth. J. Biol. Chem., 276, 9583-9586 (2001)
    • (2001) J. Biol. Chem. , vol.276 , pp. 9583-9586
    • Rohde, J.1    Heitman, J.2    Cardenas, M.E.3
  • 136
    • 0036899644 scopus 로고    scopus 로고
    • Elucidating TOR signaling and rapamycin action: Lessons from Saccharomyces cerevisiae
    • DOI 10.1128/MMBR.66.4.579-591.2002
    • Crespo, J. L. & M. N. Hall: Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 66, 579-591, table of contents (2002) (Pubitemid 35425110)
    • (2002) Microbiology and Molecular Biology Reviews , vol.66 , Issue.4 , pp. 579-591
    • Crespo, J.L.1    Hall, M.N.2
  • 137
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • DOI 10.1016/j.cell.2006.01.016, PII S0092867406001085
    • Wullschleger, S., R. Loewith & M. N. Hall: TOR signaling in growth and metabolism. Cell, 124, 471-484 (2006) (Pubitemid 43199434)
    • (2006) Cell , vol.124 , Issue.3 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 138
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck, T. & M. N. Hall: The TOR signaling pathway controls nuclear localization of nutrient regulated transcription factors. Nature, 402, 689-692 (1999) (Pubitemid 129516342)
    • (1999) Nature , vol.402 , Issue.6762 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 139
    • 0037144584 scopus 로고    scopus 로고
    • Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes
    • Mayordomo, I., F. Estruch & P. Sanz: Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J Biol Chem, 277, 35650-35656 (2002)
    • (2002) J Biol Chem , vol.277 , pp. 35650-35656
    • Mayordomo, I.1    Estruch, F.2    Sanz, P.3
  • 140
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival
    • DOI 10.1016/S0092-8674(03)00929-2
    • Inoki, K., T. Zhu & K. L. Guan: TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577-590 (2003) (Pubitemid 37506046)
    • (2003) Cell , vol.115 , Issue.5 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.-L.3
  • 141
    • 15044358594 scopus 로고    scopus 로고
    • New roles for the LKB1->AMPK pathway
    • Hardie, D. G.: New roles for the LKB1->AMPK pathway. Curr Opin Cell Biol, 17, 167-173 (2005)
    • (2005) Curr Opin Cell Biol , vol.17 , pp. 167-173
    • Hardie, D.G.1
  • 142
    • 0347318056 scopus 로고    scopus 로고
    • TSC2: Filling the GAP in the mTOR signaling pathway
    • DOI 10.1016/j.tibs.2003.11.007
    • Li, Y., M. N. Corradetti, K. Inoki & K. L. Guan: TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci, 29, 32-38 (2004) (Pubitemid 38068478)
    • (2004) Trends in Biochemical Sciences , vol.29 , Issue.1 , pp. 32-38
    • Li, Y.1    Corradetti, M.N.2    Inoki, K.3    Guan, K.-L.4
  • 144
    • 14844363721 scopus 로고    scopus 로고
    • Signaling by target of rapamycin proteins in cell growth control
    • DOI 10.1128/MMBR.69.1.79-100.2005
    • Inoki, K., H. Ouyang, Y. Li & K. L. Guan: Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev, 69, 79-100 (2005) (Pubitemid 40358068)
    • (2005) Microbiology and Molecular Biology Reviews , vol.69 , Issue.1 , pp. 79-100
    • Inoki, K.1    Ouyang, H.2    Li, Y.3    Guan, K.-L.4
  • 145
    • 15044350668 scopus 로고    scopus 로고
    • The expanding TOR signaling network
    • DOI 10.1016/j.ceb.2005.02.008, Cell Regulation
    • Martin, D. E. & M. N. Hall: The expanding TOR signaling network. Curr Opin Cell Biol, 17, 158-166 (2005) (Pubitemid 40380939)
    • (2005) Current Opinion in Cell Biology , vol.17 , Issue.2 , pp. 158-166
    • Martin, D.E.1    Hall, M.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.