-
1
-
-
85015803917
-
Autologous induced stem-cell–derived retinal cells for macular degeneration
-
28296613
-
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. (2017) 376:1038–46. 10.1056/NEJMoa160836828296613
-
(2017)
N Engl J Med
, vol.376
, pp. 1038-1046
-
-
Mandai, M.1
Watanabe, A.2
Kurimoto, Y.3
Hirami, Y.4
Morinaga, C.5
Daimon, T.6
-
2
-
-
84940467026
-
Concise review: cardiac disease modeling using induced pluripotent stem cells
-
26033645
-
Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, et al. Concise review: cardiac disease modeling using induced pluripotent stem cells. Stem Cells (2015) 33:2643–51. 10.1002/stem.207026033645
-
(2015)
Stem Cells
, vol.33
, pp. 2643-2651
-
-
Yang, C.1
Al-Aama, J.2
Stojkovic, M.3
Keavney, B.4
Trafford, A.5
Lako, M.6
-
3
-
-
84975191940
-
Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes
-
25815118
-
Dell'Era P, Benzoni P, Crescini E, Valle M, Xia E, Consiglio A, et al. Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes. World J Stem Cells (2015) 7:329–42. 10.4252/wjsc.v7.i2.32925815118
-
(2015)
World J Stem Cells
, vol.7
, pp. 329-342
-
-
Dell'Era, P.1
Benzoni, P.2
Crescini, E.3
Valle, M.4
Xia, E.5
Consiglio, A.6
-
4
-
-
84939240419
-
Cardiovascular disease modeling using patient-specific induced pluripotent stem cells
-
26274955
-
Tanaka A, Yuasa S, Node K, Fukuda K. Cardiovascular disease modeling using patient-specific induced pluripotent stem cells. Int J Mol Sci. (2015) 16:18894–922. 10.3390/ijms16081889426274955
-
(2015)
Int J Mol Sci
, vol.16
, pp. 18894-18922
-
-
Tanaka, A.1
Yuasa, S.2
Node, K.3
Fukuda, K.4
-
5
-
-
0019826665
-
Establishment in culture of pluripotential cells from mouse embryos
-
7242681
-
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature (1981) 292:154–6. 7242681
-
(1981)
Nature
, vol.292
, pp. 154-156
-
-
Evans, M.J.1
Kaufman, M.H.2
-
6
-
-
0001007610
-
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells
-
6950406
-
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. (1981) 78:7634–8. 6950406
-
(1981)
Proc Natl Acad Sci USA
, vol.78
, pp. 7634-7638
-
-
Martin, G.R.1
-
7
-
-
0032491416
-
Embryonic stem cell lines derived from human blastocysts
-
9804556
-
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science (1998) 282:1145–7. 9804556
-
(1998)
Science
, vol.282
, pp. 1145-1147
-
-
Thomson, J.A.1
Itskovitz-Eldor, J.2
Shapiro, S.S.3
Waknitz, M.A.4
Swiergiel, J.J.5
Marshall, V.S.6
-
8
-
-
0023663888
-
Expression of a single transfected cDNA converts fibroblasts to myoblasts
-
3690668
-
Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell (1987) 51:987–1000. 3690668
-
(1987)
Cell
, vol.51
, pp. 987-1000
-
-
Davis, R.L.1
Weintraub, H.2
Lassar, A.B.3
-
9
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
16904174
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell (2006) 126:663–76. 10.1016/j.cell.2006.07.02416904174
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
10
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
18035408
-
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell (2007) 131:861–72. 10.1016/j.cell.2007.11.01918035408
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
Narita, M.4
Ichisaka, T.5
Tomoda, K.6
-
11
-
-
48149107133
-
Wnt signaling promotes reprogramming of somatic cells to pluripotency
-
18682236
-
Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell (2008) 3:132–5. 10.1016/j.stem.2008.06.01918682236
-
(2008)
Cell Stem Cell
, vol.3
, pp. 132-135
-
-
Marson, A.1
Foreman, R.2
Chevalier, B.3
Bilodeau, S.4
Kahn, M.5
Young, R.A.6
-
12
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
18029452
-
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science (2007) 318:1917–20. 10.1126/science.115152618029452
-
(2007)
Science
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
Vodyanik, M.A.2
Smuga-Otto, K.3
Antosiewicz-Bourget, J.4
Frane, J.L.5
Tian, S.6
-
13
-
-
72849137462
-
Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells
-
19697349
-
Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells (2009) 27:2667–74. 10.1002/stem.20119697349
-
(2009)
Stem Cells
, vol.27
, pp. 2667-2674
-
-
Zhou, W.1
Freed, C.R.2
-
14
-
-
70450265981
-
Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome
-
Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. (2009) 85:348–62. 10.2183/pjab.85.348
-
(2009)
Proc Jpn Acad Ser B Phys Biol Sci
, vol.85
, pp. 348-362
-
-
Fusaki, N.1
Ban, H.2
Nishiyama, A.3
Saeki, K.4
Hasegawa, M.5
-
15
-
-
61349100729
-
Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors
-
19269371
-
Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell (2009) 136:964–77. 10.1016/j.cell.2009.02.01319269371
-
(2009)
Cell
, vol.136
, pp. 964-977
-
-
Soldner, F.1
Hockemeyer, D.2
Beard, C.3
Gao, Q.4
Bell, G.W.5
Cook, E.G.6
-
16
-
-
64749083939
-
piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells
-
19252478
-
Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature (2009) 458:766–70.10.1038/nature0786319252478
-
(2009)
Nature
, vol.458
, pp. 766-770
-
-
Woltjen, K.1
Michael, I.P.2
Mohseni, P.3
Desai, R.4
Mileikovsky, M.5
Hämäläinen, R.6
-
17
-
-
64749111225
-
Virus-free induction of pluripotency and subsequent excision of reprogramming factors
-
19252477
-
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature (2009) 458:771–5. 10.1038/nature0786419252477
-
(2009)
Nature
, vol.458
, pp. 771-775
-
-
Kaji, K.1
Norrby, K.2
Paca, A.3
Mileikovsky, M.4
Mohseni, P.5
Woltjen, K.6
-
18
-
-
77958536106
-
Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
-
20888316
-
Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell (2010) 7:618–30. 10.1016/j.stem.2010.08.01220888316
-
(2010)
Cell Stem Cell
, vol.7
, pp. 618-630
-
-
Warren, L.1
Manos, P.D.2
Ahfeldt, T.3
Loh, Y.-H.4
Li, H.5
Lau, F.6
-
19
-
-
79953881831
-
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
-
21474102
-
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell (2011) 8:376–88. 10.1016/j.stem.2011.03.00121474102
-
(2011)
Cell Stem Cell
, vol.8
, pp. 376-388
-
-
Anokye-Danso, F.1
Trivedi, C.M.2
Juhr, D.3
Gupta, M.4
Cui, Z.5
Tian, Y.6
-
20
-
-
79955780736
-
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells
-
21490602
-
Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. (2011) 29:443–8. 10.1038/nbt.186221490602
-
(2011)
Nat Biotechnol
, vol.29
, pp. 443-448
-
-
Subramanyam, D.1
Lamouille, S.2
Judson, R.L.3
Liu, J.Y.4
Bucay, N.5
Derynck, R.6
-
21
-
-
84946919738
-
Efficient reprogramming of human fibroblasts and blood-derived endothelial progenitor cells using nonmodified RNA for reprogramming and immune evasion
-
26381596
-
Poleganov MA, Eminli S, Beissert T, Herz S, Moon J-I, Goldmann J, et al. Efficient reprogramming of human fibroblasts and blood-derived endothelial progenitor cells using nonmodified RNA for reprogramming and immune evasion. Hum Gene Ther. (2015) 26:751–66. 10.1089/hum.2015.04526381596
-
(2015)
Hum Gene Ther
, vol.26
, pp. 751-766
-
-
Poleganov, M.A.1
Eminli, S.2
Beissert, T.3
Herz, S.4
Moon, J.-I.5
Goldmann, J.6
-
22
-
-
66049143859
-
Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
-
19481515
-
Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell (2009) 4:472–6. 10.1016/j.stem.2009.05.00519481515
-
(2009)
Cell Stem Cell
, vol.4
, pp. 472-476
-
-
Kim, D.1
Kim, C.-H.2
Moon, J.-I.3
Chung, Y.-G.4
Chang, M.-Y.5
Han, B.-S.6
-
23
-
-
84877015046
-
A review of the methods for human iPSC derivation
-
23546745
-
Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol. (2013) 339:823–6. 10.1007/978-1-62703-348-0_323546745
-
(2013)
Methods Mol Biol
, vol.339
, pp. 823-826
-
-
Malik, N.1
Rao, M.S.2
-
24
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
23287722
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science (2013) 339:823–6. 10.1126/science.123203323287722
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
-
25
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
23287718
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (2013) 339:819–23. 10.1126/science.123114323287718
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
-
26
-
-
84903943282
-
Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
-
24996165
-
Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell (2014) 15:12–3.10.1016/j.stem.2014.06.01124996165
-
(2014)
Cell Stem Cell
, vol.15
, pp. 12-13
-
-
Smith, C.1
Gore, A.2
Yan, W.3
Abalde-Atristain, L.4
Li, Z.5
He, C.6
-
27
-
-
84966930890
-
Induced pluripotent stem cells meet genome editing
-
27152442
-
Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell (2016) 18:573–86.10.1016/j.stem.2016.04.013627152442
-
(2016)
Cell Stem Cell
, vol.18
, pp. 573-586
-
-
Hockemeyer, D.1
Jaenisch, R.2
-
28
-
-
84949534786
-
Simultaneous reprogramming and gene correction of patient fibroblasts
-
26584543
-
Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Rep. (2015) 5:1109–18. 10.1016/j.stemcr.2015.10.00926584543
-
(2015)
Stem Cell Rep
, vol.5
, pp. 1109-1118
-
-
Howden, S.E.1
Maufort, J.P.2
Duffin, B.M.3
Elefanty, A.G.4
Stanley, E.G.5
Thomson, J.A.6
-
29
-
-
84903452732
-
Genetic background drives transcriptional variation in human induced pluripotent stem cells
-
24901476
-
Rouhani F, Kumasaka N, de Brito MC, Bradley A, Vallier L, Gaffney D. Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet. (2014) 10:e1004432. 10.1371/journal.pgen.100443224901476
-
(2014)
PLoS Genet
, vol.10
, pp. e1004432
-
-
Rouhani, F.1
Kumasaka, N.2
de, B.M.C.3
Bradley, A.4
Vallier, L.5
Gaffney, D.6
-
30
-
-
84957849512
-
Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential
-
26777058
-
Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy KK, et al. Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Rep. (2016) 6:200–12. 10.1016/j.stemcr.2015.12.00926777058
-
(2016)
Stem Cell Rep
, vol.6
, pp. 200-212
-
-
Kyttälä, A.1
Moraghebi, R.2
Valensisi, C.3
Kettunen, J.4
Andrus, C.5
Pasumarthy, K.K.6
-
31
-
-
25144525014
-
Core transcriptional regulatory circuitry in human embryonic stem cells
-
16153702
-
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell (2005) 122:947–56. 10.1016/j.cell.2005.08.02016153702
-
(2005)
Cell
, vol.122
, pp. 947-956
-
-
Boyer, L.A.1
Lee, T.I.2
Cole, M.F.3
Johnstone, S.E.4
Levine, S.S.5
Zucker, J.P.6
-
32
-
-
33645381936
-
The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells
-
16518401
-
Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. (2006) 38:431–40.10.1038/ng176016518401
-
(2006)
Nat Genet
, vol.38
, pp. 431-440
-
-
Loh, Y.-H.1
Wu, Q.2
Chew, J.-L.3
Vega, V.B.4
Zhang, W.5
Chen, X.6
-
33
-
-
85044618193
-
Systemic evaluation of cellular reprogramming processes exploiting a novel R-tool: eegc
-
28398503
-
Zhou X, Meng G, Nardini C, Mei H. Systemic evaluation of cellular reprogramming processes exploiting a novel R-tool: eegc. Bioinformatics (2017) 33:2532–8. 10.1093/bioinformatics/btx20528398503
-
(2017)
Bioinformatics
, vol.33
, pp. 2532-2538
-
-
Zhou, X.1
Meng, G.2
Nardini, C.3
Mei, H.4
-
34
-
-
70350732790
-
A chemical platform for improved induction of human iPSCs
-
19838168
-
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, et al. A chemical platform for improved induction of human iPSCs. Nat Methods (2009) 6:805–8. 10.1038/nmeth.139319838168
-
(2009)
Nat Methods
, vol.6
, pp. 805-808
-
-
Lin, T.1
Ambasudhan, R.2
Yuan, X.3
Li, W.4
Hilcove, S.5
Abujarour, R.6
-
35
-
-
55749104227
-
Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2
-
18849973
-
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. (2008) 26:1269–75. 10.1038/nbt.150218849973
-
(2008)
Nat Biotechnol
, vol.26
, pp. 1269-1275
-
-
Huangfu, D.1
Osafune, K.2
Maehr, R.3
Guo, W.4
Eijkelenboom, A.5
Chen, S.6
-
36
-
-
69249210977
-
Hypoxia enhances the generation of induced pluripotent stem cells
-
19716359
-
Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell (2009) 5:237–41. 10.1016/j.stem.2009.08.00119716359
-
(2009)
Cell Stem Cell
, vol.5
, pp. 237-241
-
-
Yoshida, Y.1
Takahashi, K.2
Okita, K.3
Ichisaka, T.4
Yamanaka, S.5
-
37
-
-
80053916211
-
Human oocytes reprogram somatic cells to a pluripotent state
-
21979046
-
Noggle S, Fung H-L, Gore A, Martinez H, Satriani KC, Prosser R, et al. Human oocytes reprogram somatic cells to a pluripotent state. Nature (2011) 478:70–5. 10.1038/nature1039721979046
-
(2011)
Nature
, vol.478
, pp. 70-75
-
-
Noggle, S.1
Fung, H.-L.2
Gore, A.3
Martinez, H.4
Satriani, K.C.5
Prosser, R.6
-
38
-
-
78649647814
-
Reprogramming of human primary somatic cells by OCT4 and chemical compounds
-
21112560
-
Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell (2010) 7:651–5.10.1016/j.stem.2010.11.01521112560
-
(2010)
Cell Stem Cell
, vol.7
, pp. 651-655
-
-
Zhu, S.1
Li, W.2
Zhou, H.3
Wei, W.4
Ambasudhan, R.5
Lin, T.6
-
39
-
-
70350536767
-
A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog
-
19818703
-
Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, et al. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell (2009) 5:491–503. 10.1016/j.stem.2009.09.01219818703
-
(2009)
Cell Stem Cell
, vol.5
, pp. 491-503
-
-
Ichida, J.K.1
Blanchard, J.2
Lam, K.3
Son, E.Y.4
Chung, J.E.5
Egli, D.6
-
40
-
-
73049112178
-
Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
-
20036631
-
Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell (2010) 6:71–9. 10.1016/j.stem.2009.12.00120036631
-
(2010)
Cell Stem Cell
, vol.6
, pp. 71-79
-
-
Esteban, M.A.1
Wang, T.2
Qin, B.3
Yang, J.4
Qin, D.5
Cai, J.6
-
41
-
-
4444222522
-
The regenerative potential of the human heart
-
15336841
-
Quaini F, Urbanek K, Graiani G, Lagrasta C, Maestri R, Monica M, et al. The regenerative potential of the human heart. Int J Cardiol. (2004) 95(Suppl. 1):S26–8. 10.1016/S0167-5273(04)90008-315336841
-
(2004)
Int J Cardiol
, vol.95
, pp. S26-S28
-
-
Quaini, F.1
Urbanek, K.2
Graiani, G.3
Lagrasta, C.4
Maestri, R.5
Monica, M.6
-
42
-
-
34547699399
-
Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury
-
17660827
-
Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J, Molkentin JD, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. (2007) 13:970–4. 10.1038/nm161817660827
-
(2007)
Nat Med
, vol.13
, pp. 970-974
-
-
Hsieh, P.C.H.1
Segers, V.F.M.2
Davis, M.E.3
MacGillivray, C.4
Gannon, J.5
Molkentin, J.D.6
-
43
-
-
84876759612
-
Present status and future perspectives of heart transplantation
-
23614963
-
Toyoda Y, Guy TS, Kashem A. Present status and future perspectives of heart transplantation. Circ J. (2013) 77:1097–110. 10.1253/circj.CJ-13-029623614963
-
(2013)
Circ J
, vol.77
, pp. 1097-1110
-
-
Toyoda, Y.1
Guy, T.S.2
Kashem, A.3
-
44
-
-
84902312015
-
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts
-
24776797
-
Chong JJH, Yang X, Don CW, Minami E, Liu Y-W, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature (2014) 510:273–7. 10.1038/nature1323324776797
-
(2014)
Nature
, vol.510
, pp. 273-277
-
-
Chong, J.J.H.1
Yang, X.2
Don, C.W.3
Minami, E.4
Liu, Y.-W.5
Weyers, J.J.6
-
45
-
-
84866150446
-
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts
-
22864415
-
Shiba Y, Fernandes S, Zhu W-Z, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature (2012) 489:322–5. 10.1038/nature1131722864415
-
(2012)
Nature
, vol.489
, pp. 322-325
-
-
Shiba, Y.1
Fernandes, S.2
Zhu, W.-Z.3
Filice, D.4
Muskheli, V.5
Kim, J.6
-
46
-
-
84872611623
-
Mammalian heart renewal by pre-existing cardiomyocytes
-
23222518
-
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature (2012) 493:433–6. 10.1038/nature1168223222518
-
(2012)
Nature
, vol.493
, pp. 433-436
-
-
Senyo, S.E.1
Steinhauser, M.L.2
Pizzimenti, C.L.3
Yang, V.K.4
Cai, L.5
Wang, M.6
-
47
-
-
10744228523
-
Adult cardiac stem cells are multipotent and support myocardial regeneration
-
14505575
-
Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell (2003) 114:763–76. 10.1016/S0092-8674(03)00687-114505575
-
(2003)
Cell
, vol.114
, pp. 763-776
-
-
Beltrami, A.P.1
Barlucchi, L.2
Torella, D.3
Baker, M.4
Limana, F.5
Chimenti, S.6
-
48
-
-
84859220157
-
Cardiac tissue engineering: current state and perspectives
-
22201819
-
Chiu LLY, Iyer RK, Reis LA, Nunes SS, Radisic M. Cardiac tissue engineering: current state and perspectives. Front Biosci. (2012) 17:1533–50. 10.2741/400222201819
-
(2012)
Front Biosci
, vol.17
, pp. 1533-1550
-
-
Chiu, L.L.Y.1
Iyer, R.K.2
Reis, L.A.3
Nunes, S.S.4
Radisic, M.5
-
49
-
-
85049081410
-
Strategies for directing cells into building functional hearts and parts
-
29767196
-
Jafarkhani M, Salehi Z, Kowsari-Esfahan R, Shokrgozar MA, Rezaa Mohammadi M, Rajadas J, et al. Strategies for directing cells into building functional hearts and parts. Biomater Sci. (2018) 6:1664–90. 10.1039/c7bm01176h29767196
-
(2018)
Biomater Sci
, vol.6
, pp. 1664-1690
-
-
Jafarkhani, M.1
Salehi, Z.2
Kowsari-Esfahan, R.3
Shokrgozar, M.A.4
Rezaa, M.M.5
Rajadas, J.6
-
50
-
-
0021891053
-
The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium
-
3897439
-
Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. (1985) 87:27–45. 3897439
-
(1985)
J Embryol Exp Morphol
, vol.87
, pp. 27-45
-
-
Doetschman, T.C.1
Eistetter, H.2
Katz, M.3
Schmidt, W.4
Kemler, R.5
-
51
-
-
49649096192
-
Generation of functional murine cardiac myocytes from induced pluripotent stem cells
-
18625890
-
Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation (2008) 118:507–17. 10.1161/CIRCULATIONAHA.108.77879518625890
-
(2008)
Circulation
, vol.118
, pp. 507-517
-
-
Mauritz, C.1
Schwanke, K.2
Reppel, M.3
Neef, S.4
Katsirntaki, K.5
Maier, L.S.6
-
52
-
-
48649097575
-
Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages
-
18450826
-
Schenke-Layland K, Rhodes KE, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Gekas C, et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells (2008) 26:1537–46. 10.1634/stemcells.2008-003318450826
-
(2008)
Stem Cells
, vol.26
, pp. 1537-1546
-
-
Schenke-Layland, K.1
Rhodes, K.E.2
Angelis, E.3
Butylkova, Y.4
Heydarkhan-Hagvall, S.5
Gekas, C.6
-
53
-
-
49649120250
-
Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells
-
18625891
-
Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation (2008) 118:498–506. 10.1161/CIRCULATIONAHA.108.76956218625891
-
(2008)
Circulation
, vol.118
, pp. 498-506
-
-
Narazaki, G.1
Uosaki, H.2
Teranishi, M.3
Okita, K.4
Kim, B.5
Matsuoka, S.6
-
54
-
-
61949300076
-
Functional cardiomyocytes derived from human induced pluripotent stem cells
-
19213953
-
Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. (2009) 104:e30–41. 10.1161/CIRCRESAHA.108.19223719213953
-
(2009)
Circ Res
, vol.104
, pp. e30-e41
-
-
Zhang, J.1
Wilson, G.F.2
Soerens, A.G.3
Koonce, C.H.4
Yu, J.5
Palecek, S.P.6
-
55
-
-
85020687944
-
Induced pluripotent stem cells 10 years later: for cardiac applications
-
28596174
-
Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later: for cardiac applications. Circ Res. (2017) 120:1958–68. 10.1161/CIRCRESAHA.117.31108028596174
-
(2017)
Circ Res
, vol.120
, pp. 1958-1968
-
-
Yoshida, Y.1
Yamanaka, S.2
-
56
-
-
84964626504
-
Animal models of myocardial infarction: mainstay in clinical translation
-
26988997
-
Kumar M, Kasala ER, Bodduluru LN, Dahiya V, Sharma D, Kumar V, et al. Animal models of myocardial infarction: mainstay in clinical translation. Regul Toxicol Pharmacol. (2016) 76:221–30. 10.1016/j.yrtph.2016.03.00526988997
-
(2016)
Regul Toxicol Pharmacol
, vol.76
, pp. 221-230
-
-
Kumar, M.1
Kasala, E.R.2
Bodduluru, L.N.3
Dahiya, V.4
Sharma, D.5
Kumar, V.6
-
57
-
-
84883770184
-
Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart
-
24030425
-
Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Ito E, et al. Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation (2013) 128(11 Suppl. 1):S87–94. 10.1161/CIRCULATIONAHA.112.00036624030425
-
(2013)
Circulation
, vol.128
, Issue.11
, pp. S87-S94
-
-
Kawamura, M.1
Miyagawa, S.2
Fukushima, S.3
Saito, A.4
Miki, K.5
Ito, E.6
-
58
-
-
84940053268
-
Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience
-
24835485
-
Menasché P, Vanneaux V, Fabreguettes J-R, Bel A, Tosca L, Garcia S, et al. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. (2015) 36:743–50. 10.1093/eurheartj/ehu19224835485
-
(2015)
Eur Heart J
, vol.36
, pp. 743-750
-
-
Menasché, P.1
Vanneaux, V.2
Fabreguettes, J.-R.3
Bel, A.4
Tosca, L.5
Garcia, S.6
-
59
-
-
84939612938
-
Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1
-
25990469
-
Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1. Eur Heart J. (2015) 36:2011–7. 10.1093/eurheartj/ehv18925990469
-
(2015)
Eur Heart J
, vol.36
, pp. 2011-2017
-
-
Menasché, P.1
Vanneaux, V.2
Hagège, A.3
Bel, A.4
Cholley, B.5
Cacciapuoti, I.6
-
60
-
-
66649127942
-
Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors
-
19396158
-
Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature (2009) 459:708–11. 10.1038/nature0803919396158
-
(2009)
Nature
, vol.459
, pp. 708-711
-
-
Takeuchi, J.K.1
Bruneau, B.G.2
-
61
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
20691899
-
Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell (2010) 142:375–86. 10.1016/j.cell.2010.07.00220691899
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
Fu, J.-D.2
Delgado-Olguin, P.3
Vedantham, V.4
Hayashi, Y.5
Bruneau, B.G.6
-
62
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
22522929
-
Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature (2012) 485:593–8.10.1038/nature1104422522929
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
Huang, Y.2
Spencer, C.I.3
Foley, A.4
Vedantham, V.5
Liu, L.6
-
63
-
-
84863626782
-
Heart repair by reprogramming non-myocytes with cardiac transcription factors
-
22660318
-
Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature (2012) 485:599–604. 10.1038/nature1113922660318
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
Nam, Y.-J.2
Luo, X.3
Qi, X.4
Tan, W.5
Huang, G.N.6
-
64
-
-
84867704611
-
Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5
-
22931955
-
Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T, et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res. (2012) 111:1147–56. 10.1161/CIRCRESAHA.112.27114822931955
-
(2012)
Circ Res
, vol.111
, pp. 1147-1156
-
-
Inagawa, K.1
Miyamoto, K.2
Yamakawa, H.3
Muraoka, N.4
Sadahiro, T.5
Umei, T.6
-
65
-
-
84922105989
-
Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming
-
25416133
-
Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y, et al. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ Res. (2015) 116:237–44. 10.1161/CIRCRESAHA.116.30554725416133
-
(2015)
Circ Res
, vol.116
, pp. 237-244
-
-
Wang, L.1
Liu, Z.2
Yin, C.3
Asfour, H.4
Chen, O.5
Li, Y.6
-
66
-
-
84887887555
-
Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain
-
23794713
-
Hirai H, Katoku-Kikyo N, Keirstead SA, Kikyo N. Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovasc Res. (2013) 100:105–13. 10.1093/cvr/cvt16723794713
-
(2013)
Cardiovasc Res
, vol.100
, pp. 105-113
-
-
Hirai, H.1
Katoku-Kikyo, N.2
Keirstead, S.A.3
Kikyo, N.4
-
67
-
-
84965036159
-
Conversion of human fibroblasts into functional cardiomyocytes by small molecules
-
27127239
-
Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu J-D, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science (2016) 352:1216–20. 10.1126/science.aaf150227127239
-
(2016)
Science
, vol.352
, pp. 1216-1220
-
-
Cao, N.1
Huang, Y.2
Zheng, J.3
Spencer, C.I.4
Zhang, Y.5
Fu, J.-D.6
-
68
-
-
84883753931
-
Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state
-
24319660
-
Fu J-D, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. (2013) 1:235–47. 10.1016/j.stemcr.2013.07.00524319660
-
(2013)
Stem Cell Rep
, vol.1
, pp. 235-247
-
-
Fu, J.-D.1
Stone, N.R.2
Liu, L.3
Spencer, C.I.4
Qian, L.5
Hayashi, Y.6
-
69
-
-
84877985001
-
Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming
-
23704920
-
Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, et al. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS ONE (2013)8:e63577. 10.1371/journal.pone.006357723704920
-
(2013)
PLoS ONE
, vol.8
, pp. e63577
-
-
Christoforou, N.1
Chellappan, M.2
Adler, A.F.3
Kirkton, R.D.4
Wu, T.5
Addis, R.C.6
-
70
-
-
84875848994
-
Reprogramming of human fibroblasts toward a cardiac fate
-
23487791
-
Nam Y-J, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA. (2013) 110:5588–93. 10.1073/pnas.130101911023487791
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 5588-5593
-
-
Nam, Y.-J.1
Song, K.2
Luo, X.3
Daniel, E.4
Lambeth, K.5
West, K.6
-
71
-
-
84864696029
-
Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors
-
22826236
-
Islas JF, Liu Y, Weng K-C, Robertson MJ, Zhang S, Prejusa A, et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA. (2012) 109:13016–21. 10.1073/pnas.112029910922826236
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 13016-13021
-
-
Islas, J.F.1
Liu, Y.2
Weng, K.-C.3
Robertson, M.J.4
Zhang, S.5
Prejusa, A.6
-
72
-
-
84895921071
-
Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor
-
24561253
-
Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, et al. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor. Cell Rep. (2014) 6:951–60. 10.1016/j.celrep.2014.01.03824561253
-
(2014)
Cell Rep
, vol.6
, pp. 951-960
-
-
Wang, H.1
Cao, N.2
Spencer, C.I.3
Nie, B.4
Ma, T.5
Xu, T.6
-
73
-
-
84904580766
-
MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures
-
24920580
-
Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. (2014) 33:1565–81. 10.15252/embj.20138760524920580
-
(2014)
EMBO J
, vol.33
, pp. 1565-1581
-
-
Muraoka, N.1
Yamakawa, H.2
Miyamoto, K.3
Sadahiro, T.4
Umei, T.5
Isomi, M.6
-
74
-
-
84861642380
-
MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes
-
22539765
-
Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. (2012) 110:1465–73. 10.1161/CIRCRESAHA.112.26903522539765
-
(2012)
Circ Res
, vol.110
, pp. 1465-1473
-
-
Jayawardena, T.M.1
Egemnazarov, B.2
Finch, E.A.3
Zhang, L.4
Payne, J.A.5
Pandya, K.6
-
75
-
-
85045614363
-
Chemical-induced cardiac reprogramming in vivo
-
29670223
-
Huang C, Tu W, Fu Y, Wang J, Xie X. Chemical-induced cardiac reprogramming in vivo. Cell Res. (2018) 28:686–9.10.1038/s41422-018-0036-429670223
-
(2018)
Cell Res
, vol.28
, pp. 686-689
-
-
Huang, C.1
Tu, W.2
Fu, Y.3
Wang, J.4
Xie, X.5
-
76
-
-
84908700894
-
Endothelial dysfunction in conduit arteries and in microcirculation
-
24928320, novel therapeutic aroaches
-
Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, et al. Endothelial dysfunction in conduit arteries and in microcirculation. novel therapeutic approaches. Pharmacol Ther. (2014) 144:253–67. 10.1016/j.pharmthera.2014.06.00324928320
-
(2014)
Pharmacol Ther
, vol.144
, pp. 253-267
-
-
Tousoulis, D.1
Simopoulou, C.2
Papageorgiou, N.3
Oikonomou, E.4
Hatzis, G.5
Siasos, G.6
-
77
-
-
30744479430
-
Angiogenesis in life, disease and medicine
-
16355210
-
Carmeliet P. Angiogenesis in life, disease and medicine. Nature (2005) 438:932–6.10.1038/nature0447816355210
-
(2005)
Nature
, vol.438
, pp. 932-936
-
-
Carmeliet, P.1
-
78
-
-
84928478759
-
Differentiation of pluripotent stem cells into endothelial cells
-
25767955
-
Yoder MC. Differentiation of pluripotent stem cells into endothelial cells. Curr Opin Hematol. (2015) 22:252–7. 10.1097/MOH.000000000000014025767955
-
(2015)
Curr Opin Hematol
, vol.22
, pp. 252-257
-
-
Yoder, M.C.1
-
79
-
-
84912062630
-
Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells
-
25070152
-
Wilson HK, Canfield SG, Shusta EV, Palecek SP. Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells (2014) 32:3037–45. 10.1002/stem.179725070152
-
(2014)
Stem Cells
, vol.32
, pp. 3037-3045
-
-
Wilson, H.K.1
Canfield, S.G.2
Shusta, E.V.3
Palecek, S.P.4
-
80
-
-
79954670484
-
Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy
-
20554606
-
Medina RJ, O'Neill CL, Humphreys MW, Gardiner TA, Stitt AW. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Investig Opthalmol. Vis Sci. (2010) 51:5906. 10.1167/iovs.09-495120554606
-
(2010)
Investig Opthalmol. Vis Sci
, vol.51
, pp. 5906
-
-
Medina, R.J.1
O'Neill, C.L.2
Humphreys, M.W.3
Gardiner, T.A.4
Stitt, A.W.5
-
81
-
-
78751644881
-
Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke
-
20526754
-
Moubarik C, Guillet B, Youssef B, Codaccioni J-L, Piercecchi M-D, Sabatier F, et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev Rep. (2011) 7:208–20. 10.1007/s12015-010-9157-y20526754
-
(2011)
Stem Cell Rev Rep
, vol.7
, pp. 208-220
-
-
Moubarik, C.1
Guillet, B.2
Youssef, B.3
Codaccioni, J.-L.4
Piercecchi, M.-D.5
Sabatier, F.6
-
82
-
-
84983143261
-
Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony–forming cells
-
25306246
-
Prasain N, Lee MR, Vemula S, Meador JL, Yoshimoto M, Ferkowicz MJ, et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony–forming cells. Nat Biotechnol. (2014) 32:1151–7. 10.1038/nbt.304825306246
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1151-1157
-
-
Prasain, N.1
Lee, M.R.2
Vemula, S.3
Meador, J.L.4
Yoshimoto, M.5
Ferkowicz, M.J.6
-
83
-
-
0023218185
-
Endothelial cell phenotypic diversity: in situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes
-
3554972
-
Turner RR, Beckstead JH, Warnke RA, Wood GS. Endothelial cell phenotypic diversity: in situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am J Clin Pathol. (1987) 87:569–75. 3554972
-
(1987)
Am J Clin Pathol
, vol.87
, pp. 569-575
-
-
Turner, R.R.1
Beckstead, J.H.2
Warnke, R.A.3
Wood, G.S.4
-
84
-
-
84877259309
-
Regulation of endothelial cell differentiation and specification
-
23620236
-
Marcelo KL, Goldie LC, Hirschi KK. Regulation of endothelial cell differentiation and specification. Circ Res. (2013) 112:1272–87. 10.1161/CIRCRESAHA.113.30050623620236
-
(2013)
Circ Res
, vol.112
, pp. 1272-1287
-
-
Marcelo, K.L.1
Goldie, L.C.2
Hirschi, K.K.3
-
85
-
-
84881366718
-
Functional vascular endothelium derived from human induced pluripotent stem cells
-
24052946
-
Adams WJ, Zhang Y, Cloutier J, Kuchimanchi P, Newton G, Sehrawat S, et al. Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Rep. (2013) 1:105–13. 10.1016/j.stemcr.2013.06.00724052946
-
(2013)
Stem Cell Rep
, vol.1
, pp. 105-113
-
-
Adams, W.J.1
Zhang, Y.2
Cloutier, J.3
Kuchimanchi, P.4
Newton, G.5
Sehrawat, S.6
-
86
-
-
84901847622
-
Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells
-
24874816
-
Orlova V V, van den Hil FE, Petrus-Reurer S, Drabsch Y, ten Dijke P, Mummery CL. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc. (2014) 9:1514–31. 10.1038/nprot.2014.10224874816
-
(2014)
Nat Protoc
, vol.9
, pp. 1514-1531
-
-
Orlova, V.V.1
van, D.H.F.E.2
Petrus-Reurer, S.3
Drabsch, Y.4
ten, D.P.5
Mummery, C.L.6
-
87
-
-
84938743523
-
Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells
-
26214132
-
Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol. (2015) 17:994–1003. 10.1038/ncb320526214132
-
(2015)
Nat Cell Biol
, vol.17
, pp. 994-1003
-
-
Patsch, C.1
Challet-Meylan, L.2
Thoma, E.C.3
Urich, E.4
Heckel, T.5
O'Sullivan, J.F.6
-
88
-
-
85014052072
-
Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways
-
28248004
-
Harding A, Cortez-Toledo E, Magner NL, Beegle JR, Coleal-Bergum DP, Hao D, et al. Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells (2017) 35:909–19. 10.1002/stem.257728248004
-
(2017)
Stem Cells
, vol.35
, pp. 909-919
-
-
Harding, A.1
Cortez-Toledo, E.2
Magner, N.L.3
Beegle, J.R.4
Coleal-Bergum, D.P.5
Hao, D.6
-
89
-
-
84865286051
-
Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels
-
22869753
-
Margariti A, Winkler B, Karamariti E, Zampetaki A, Tsai T, Baban D, et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci USA. (2012) 109:13793–8.10.1073/pnas.120552610922869753
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 13793-13798
-
-
Margariti, A.1
Winkler, B.2
Karamariti, E.3
Zampetaki, A.4
Tsai, T.5
Baban, D.6
-
90
-
-
84879074469
-
Conversion of human fibroblasts to functional endothelial cells by defined factors
-
23520160
-
Li J, Huang NF, Zou J, Laurent TJ, Lee JC, Okogbaa J, et al. Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol. (2013) 33:1366–75. 10.1161/ATVBAHA.112.30116723520160
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 1366-1375
-
-
Li, J.1
Huang, N.F.2
Zou, J.3
Laurent, T.J.4
Lee, J.C.5
Okogbaa, J.6
-
91
-
-
84868676758
-
Endothelial cells derived from nuclear reprogramming
-
23104878
-
Wong WT, Huang NF, Botham CM, Sayed N, Cooke JP. Endothelial cells derived from nuclear reprogramming. Circ Res. (2012) 111:1363–75. 10.1161/CIRCRESAHA.111.24721323104878
-
(2012)
Circ Res
, vol.111
, pp. 1363-1375
-
-
Wong, W.T.1
Huang, N.F.2
Botham, C.M.3
Sayed, N.4
Cooke, J.P.5
-
92
-
-
84859511931
-
Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells
-
22232059
-
Kane NM, Howard L, Descamps B, Meloni M, McClure J, Lu R, et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells (2012) 30:643–54. 10.1002/stem.102622232059
-
(2012)
Stem Cells
, vol.30
, pp. 643-654
-
-
Kane, N.M.1
Howard, L.2
Descamps, B.3
Meloni, M.4
McClure, J.5
Lu, R.6
-
93
-
-
84928535431
-
MicroRNA-199b modulates vascular cell fate during iPS cell differentiation by targeting the notch ligand Jagged1 and enhancing VEGF signaling
-
25535084
-
Chen T, Margariti A, Kelaini S, Cochrane A, Guha ST, Hu Y, et al. MicroRNA-199b modulates vascular cell fate during iPS cell differentiation by targeting the notch ligand Jagged1 and enhancing VEGF signaling. Stem Cells (2015) 33:1405–18. 10.1002/stem.193025535084
-
(2015)
Stem Cells
, vol.33
, pp. 1405-1418
-
-
Chen, T.1
Margariti, A.2
Kelaini, S.3
Cochrane, A.4
Guha, S.T.5
Hu, Y.6
-
94
-
-
84893688897
-
Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways
-
24356956
-
Di Bernardini E, Campagnolo P, Margariti A, Zampetaki A, Karamariti E, Hu Y, et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways. J Biol Chem. (2014) 289:3383–93. 10.1074/jbc.M113.49553124356956
-
(2014)
J Biol Chem
, vol.289
, pp. 3383-3393
-
-
Di, B.E.1
Campagnolo, P.2
Margariti, A.3
Zampetaki, A.4
Karamariti, E.5
Hu, Y.6
-
95
-
-
84947919013
-
Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state
-
26540589
-
Ginsberg M, Schachterle W, Shido K, Rafii S. Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state. Nat Protoc. (2015) 10:1975–85. 10.1038/nprot.2015.12626540589
-
(2015)
Nat Protoc
, vol.10
, pp. 1975-1985
-
-
Ginsberg, M.1
Schachterle, W.2
Shido, K.3
Rafii, S.4
-
96
-
-
0242318367
-
Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo
-
14568894
-
Yeh ETH, Zhang S, Wu HD, Körbling M, Willerson JT, Estrov Z. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation (2003) 108:2070–3.10.1161/01.CIR.0000099501.52718.7014568894
-
(2003)
Circulation
, vol.108
, pp. 2070-2073
-
-
Yeh, E.T.H.1
Zhang, S.2
Wu, H.D.3
Körbling, M.4
Willerson, J.T.5
Estrov, Z.6
-
97
-
-
85025135872
-
Transdifferentiated human vascular smooth muscle cells are a new potential cell source for endothelial regeneration
-
28717251
-
Hong X, Margariti A, Le Bras A, Jacquet L, Kong W, Hu Y, et al. Transdifferentiated human vascular smooth muscle cells are a new potential cell source for endothelial regeneration. Sci Rep. (2017) 7:5590.10.1038/s41598-017-05665-728717251
-
(2017)
Sci Rep
, vol.7
, pp. 5590
-
-
Hong, X.1
Margariti, A.2
Le, B.A.3
Jacquet, L.4
Kong, W.5
Hu, Y.6
-
98
-
-
33645241318
-
Visceral endoderm function is regulated byquaking and required for vascular development
-
16470614
-
Bohnsack BL, Lai L, Northrop JL, Justice MJ, Hirschi KK. Visceral endoderm function is regulated byquaking and required for vascular development. Genesis (2006) 44:93–104.10.1002/gene.2018916470614
-
(2006)
Genesis
, vol.44
, pp. 93-104
-
-
Bohnsack, B.L.1
Lai, L.2
Northrop, J.L.3
Justice, M.J.4
Hirschi, K.K.5
-
99
-
-
84959264209
-
The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression
-
26905650
-
de Bruin RG, van der Veer EP, Prins J, Lee DH, Dane MJC, Zhang H, et al. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression. Sci Rep. (2016) 6:21643. 10.1038/srep2164326905650
-
(2016)
Sci Rep
, vol.6
, pp. 21643
-
-
de, B.R.G.1
van, D.V.E.P.2
Prins, J.3
Lee, D.H.4
Dane, M.J.C.5
Zhang, H.6
-
100
-
-
85014495383
-
Quaking is a key regulator of endothelial cell differentiation, neovascularization, and angiogenesis
-
28207177
-
Cochrane A, Kelaini S, Tsifaki M, Bojdo J, Vilà-González M, Drehmer D, et al. Quaking is a key regulator of endothelial cell differentiation, neovascularization, and angiogenesis. Stem Cells (2017) 35:952–66. 10.1002/stem.259428207177
-
(2017)
Stem Cells
, vol.35
, pp. 952-966
-
-
Cochrane, A.1
Kelaini, S.2
Tsifaki, M.3
Bojdo, J.4
Vilà-González, M.5
Drehmer, D.6
-
101
-
-
85044928699
-
ETV2-TET1/TET2 complexes induce endothelial cell-specific Robo4 expression via promoter demethylation
-
29618782
-
Tanaka T, Izawa K, Maniwa Y, Okamura M, Okada A, Yamaguchi T, et al. ETV2-TET1/TET2 complexes induce endothelial cell-specific Robo4 expression via promoter demethylation. Sci Rep. (2018) 8:5653. 10.1038/s41598-018-23937-829618782
-
(2018)
Sci Rep
, vol.8
, pp. 5653
-
-
Tanaka, T.1
Izawa, K.2
Maniwa, Y.3
Okamura, M.4
Okada, A.5
Yamaguchi, T.6
-
102
-
-
84920432079
-
ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells
-
25540418
-
Morita R, Suzuki M, Kasahara H, Shimizu N, Shichita T, Sekiya T, et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci USA. (2015) 112:160–5.10.1073/pnas.141323411225540418
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 160-165
-
-
Morita, R.1
Suzuki, M.2
Kasahara, H.3
Shimizu, N.4
Shichita, T.5
Sekiya, T.6
-
103
-
-
84958058534
-
The ETS Factor, ETV2: a master regulator for vascular endothelial cell development
-
26694034
-
Oh S-Y, Kim JY, Park C. The ETS Factor, ETV2: a master regulator for vascular endothelial cell development. Mol Cells (2015) 38:1029–36. 10.14348/molcells.2015.033126694034
-
(2015)
Mol Cells
, vol.38
, pp. 1029-1036
-
-
Oh, S.-Y.1
Kim, J.Y.2
Park, C.3
-
104
-
-
84984973105
-
Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia
-
27488544
-
Van Pham P, Vu NB, Nguyen HT, Huynh OT, Truong MT-H. Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia. Stem Cell Res Ther. (2016) 7:104. 10.1186/s13287-016-0368-227488544
-
(2016)
Stem Cell Res Ther
, vol.7
, pp. 104
-
-
Van, P.P.1
Vu, N.B.2
Nguyen, H.T.3
Huynh, O.T.4
Truong, M.T.-H.5
-
105
-
-
85046653860
-
Chemical compound-based direct reprogramming for future clinical applications
-
BSR20171650, 29739872
-
Takeda Y, Harada Y, Yoshikawa T, Dai P. Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep. (2018) 38:BSR20171650. 10.1042/BSR2017165029739872
-
(2018)
Biosci Rep
, vol.38
-
-
Takeda, Y.1
Harada, Y.2
Yoshikawa, T.3
Dai, P.4
-
106
-
-
85055602915
-
Large-scale single-cell RNA-seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells
-
29986945
-
Paik DT, Tian L, Lee J, Sayed N, Chen IY, Rhee S, et al. Large-scale single-cell RNA-seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells. Circ Res. (2018) 123:443–50. 10.1161/CIRCRESAHA.118.31291329986945
-
(2018)
Circ Res
, vol.123
, pp. 443-450
-
-
Paik, D.T.1
Tian, L.2
Lee, J.3
Sayed, N.4
Chen, I.Y.5
Rhee, S.6
-
107
-
-
0015829488
-
Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis
-
4350926
-
Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science (1973) 180:1332–9. 4350926
-
(1973)
Science
, vol.180
, pp. 1332-1339
-
-
Ross, R.1
Glomset, J.A.2
-
108
-
-
0017184071
-
The pathogenesis of atherosclerosis
-
Ross R, Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med. (1976) 295:369–77.
-
(1976)
N Engl J Med
, vol.295
, pp. 369-377
-
-
Ross, R.1
Glomset, J.A.2
-
109
-
-
0036105149
-
Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis
-
11927948
-
Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. (2002) 8:403–9.10.1038/nm0402-40311927948
-
(2002)
Nat Med
, vol.8
, pp. 403-409
-
-
Sata, M.1
Saiura, A.2
Kunisato, A.3
Tojo, A.4
Okada, S.5
Tokuhisa, T.6
-
110
-
-
79151478174
-
Circulating smooth muscle progenitor cells in arterial remodeling
-
21047514
-
Daniel J-M, Sedding DG. Circulating smooth muscle progenitor cells in arterial remodeling. J Mol Cell Cardiol. (2011) 50:273–9. 10.1016/j.yjmcc.2010.10.03021047514
-
(2011)
J Mol Cell Cardiol
, vol.50
, pp. 273-279
-
-
Daniel, J.-M.1
Sedding, D.G.2
-
111
-
-
0035054589
-
Circulating bone marrow cells can contribute to neointimal formation
-
11316947
-
Han C, Campbell GR, Campbell JH. Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res. (2001) 38:113–9.10.1159/00005103811316947
-
(2001)
J Vasc Res
, vol.38
, pp. 113-119
-
-
Han, C.1
Campbell, G.R.2
Campbell, J.H.3
-
112
-
-
0034983739
-
Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis
-
11390423
-
Hillebrands JL, Klatter FA, van den Hurk BM, Popa ER, Nieuwenhuis P, Rozing J. Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest. (2001) 107:1411–22. 10.1172/JCI1023311390423
-
(2001)
J Clin Invest
, vol.107
, pp. 1411-1422
-
-
Hillebrands, J.L.1
Klatter, F.A.2
van, D.H.B.M.3
Popa, E.R.4
Nieuwenhuis, P.5
Rozing, J.6
-
113
-
-
84948384866
-
Origin and differentiation of vascular smooth muscle cells
-
25952975
-
Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol. (2015) 593:3013–30. 10.1113/JP27003325952975
-
(2015)
J Physiol
, vol.593
, pp. 3013-3030
-
-
Wang, G.1
Jacquet, L.2
Karamariti, E.3
Xu, Q.4
-
114
-
-
33746132670
-
Stem cells, vascular smooth muscle cells and atherosclerosis
-
16763948
-
Margariti A, Zeng L, Xu Q. Stem cells, vascular smooth muscle cells and atherosclerosis. Histol Histopathol. (2006) 21:979–85. 10.14670/HH-21.97916763948
-
(2006)
Histol Histopathol
, vol.21
, pp. 979-985
-
-
Margariti, A.1
Zeng, L.2
Xu, Q.3
-
115
-
-
0030846293
-
From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model
-
9285489
-
Haller H, Bychkov R, Erdmann B, Lindschau C, Haase H, Morano I, et al. From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. (1997) 11:905–15. 9285489
-
(1997)
FASEB J
, vol.11
, pp. 905-915
-
-
Haller, H.1
Bychkov, R.2
Erdmann, B.3
Lindschau, C.4
Haase, H.5
Morano, I.6
-
116
-
-
33750528746
-
Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture
-
17069765
-
Huang H, Zhao X, Chen L, Xu C, Yao X, Lu Y, et al. Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem Biophys Res Commun. (2006) 351:321–7.10.1016/j.bbrc.2006.09.17117069765
-
(2006)
Biochem Biophys Res Commun
, vol.351
, pp. 321-327
-
-
Huang, H.1
Zhao, X.2
Chen, L.3
Xu, C.4
Yao, X.5
Lu, Y.6
-
117
-
-
39349091570
-
Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells
-
18042803
-
Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, et al. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood (2008) 111:1933–41.10.1182/blood-2007-02-07412018042803
-
(2008)
Blood
, vol.111
, pp. 1933-1941
-
-
Zhang, P.1
Li, J.2
Tan, Z.3
Wang, C.4
Liu, T.5
Chen, L.6
-
118
-
-
8644264026
-
Transforming growth factor-β1 signaling contributes to development of smooth muscle cells from embryonic stem cells
-
15306544
-
Sinha S, Hoofnagle MH, Kingston PA, McCanna ME, Owens GK. Transforming growth factor-β1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Physiol. (2004) 287:C1560–8.10.1152/ajpcell.00221.200415306544
-
(2004)
Am J Physiol Physiol
, vol.287
, pp. C1560-C1568
-
-
Sinha, S.1
Hoofnagle, M.H.2
Kingston, P.A.3
McCanna, M.E.4
Owens, G.K.5
-
119
-
-
77950986580
-
Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells
-
20146266
-
Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, et al. Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells (2010) 28:734–42. 10.1002/stem.31920146266
-
(2010)
Stem Cells
, vol.28
, pp. 734-742
-
-
Kurpinski, K.1
Lam, H.2
Chu, J.3
Wang, A.4
Kim, A.5
Tsay, E.6
-
120
-
-
64749093229
-
Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain
-
19261284
-
Yan Z-Q, Yao Q-P, Zhang M-L, Qi Y-X, Guo Z-Y, Shen B-R, et al. Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain. J Biomech. (2009) 42:945–8. 10.1016/j.jbiomech.2009.01.01219261284
-
(2009)
J Biomech
, vol.42
, pp. 945-948
-
-
Yan, Z.-Q.1
Yao, Q.-P.2
Zhang, M.-L.3
Qi, Y.-X.4
Guo, Z.-Y.5
Shen, B.-R.6
-
121
-
-
79957484652
-
Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis
-
21233251
-
Zhou B, Margariti A, Zeng L, Xu Q. Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. Cardiovasc Res. (2011) 90:413–20. 10.1093/cvr/cvr00321233251
-
(2011)
Cardiovasc Res
, vol.90
, pp. 413-420
-
-
Zhou, B.1
Margariti, A.2
Zeng, L.3
Xu, Q.4
-
122
-
-
84897402053
-
Epigenetics in vascular disease - therapeutic potential of new agents
-
22724461
-
Xu SS, Alam S, Margariti A. Epigenetics in vascular disease - therapeutic potential of new agents. Curr Vasc Pharmacol. (2014) 12:77–86. 22724461
-
(2014)
Curr Vasc Pharmacol
, vol.12
, pp. 77-86
-
-
Xu, S.S.1
Alam, S.2
Margariti, A.3
-
123
-
-
36349013700
-
A highly efficient method to differentiate smooth muscle cells from human embryonic stem cells
-
18029907
-
Xie C-Q, Zhang J, Villacorta L, Cui T, Huang H, Chen YE. A highly efficient method to differentiate smooth muscle cells from human embryonic stem cells. Arterioscler Thromb Vasc Biol. (2007) 27:e311–2.10.1161/ATVBAHA.107.15426018029907
-
(2007)
Arterioscler Thromb Vasc Biol
, vol.27
, pp. e311-e312
-
-
Xie, C.-Q.1
Zhang, J.2
Villacorta, L.3
Cui, T.4
Huang, H.5
Chen, Y.E.6
-
124
-
-
84867007532
-
Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells
-
22914687
-
Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim K-Y, et al. Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation (2012) 126:1695–704. 10.1161/CIRCULATIONAHA.112.11699622914687
-
(2012)
Circulation
, vol.126
, pp. 1695-1704
-
-
Ge, X.1
Ren, Y.2
Bartulos, O.3
Lee, M.Y.4
Yue, Z.5
Kim, K.-Y.6
-
125
-
-
84865270424
-
High-purity enrichment of functional cardiovascular cells from human iPS cells
-
22673369
-
Lin B, Kim J, Li Y, Pan H, Carvajal-Vergara X, Salama G, et al. High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res. (2012) 95:327–35. 10.1093/cvr/cvs18522673369
-
(2012)
Cardiovasc Res
, vol.95
, pp. 327-335
-
-
Lin, B.1
Kim, J.2
Li, Y.3
Pan, H.4
Carvajal-Vergara, X.5
Salama, G.6
-
126
-
-
84872518158
-
Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells
-
23060134
-
Wanjare M, Kuo F, Gerecht S. Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovasc Res. (2013) 97:321–30. 10.1093/cvr/cvs31523060134
-
(2013)
Cardiovasc Res
, vol.97
, pp. 321-330
-
-
Wanjare, M.1
Kuo, F.2
Gerecht, S.3
-
127
-
-
84949665626
-
Vascular smooth muscle cell differentiation from human stem/progenitor cells
-
26678794
-
Steinbach SK, Husain M. Vascular smooth muscle cell differentiation from human stem/progenitor cells. Methods (2016) 101:85–92. 10.1016/j.ymeth.2015.12.00426678794
-
(2016)
Methods
, vol.101
, pp. 85-92
-
-
Steinbach, S.K.1
Husain, M.2
-
128
-
-
84955256208
-
Differentiation of human induced-pluripotent stem cells into smooth-muscle cells: two novel protocols
-
26771193
-
Yang L, Geng Z, Nickel T, Johnson C, Gao L, Dutton J, et al. Differentiation of human induced-pluripotent stem cells into smooth-muscle cells: two novel protocols. PLoS ONE (2016) 11:e0147155. 10.1371/journal.pone.014715526771193
-
(2016)
PLoS ONE
, vol.11
, pp. e0147155
-
-
Yang, L.1
Geng, Z.2
Nickel, T.3
Johnson, C.4
Gao, L.5
Dutton, J.6
-
129
-
-
84878642797
-
Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts
-
23529184
-
Karamariti E, Margariti A, Winkler B, Wang X, Hong X, Baban D, et al. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts. Circ Res. (2013) 112:1433–43. 10.1161/CIRCRESAHA.111.30041523529184
-
(2013)
Circ Res
, vol.112
, pp. 1433-1443
-
-
Karamariti, E.1
Margariti, A.2
Winkler, B.3
Wang, X.4
Hong, X.5
Baban, D.6
-
130
-
-
0035002936
-
Pericyte regulation of renal medullary blood flow
-
11340300
-
Pallone TL, Silldorff EP. Pericyte regulation of renal medullary blood flow. Exp Nephrol. (2001) 9:165–70.10.1159/00005260811340300
-
(2001)
Exp Nephrol
, vol.9
, pp. 165-170
-
-
Pallone, T.L.1
Silldorff, E.P.2
-
131
-
-
0035972251
-
Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis
-
11331305
-
Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. (2001) 153:543–53. 10.1083/jcb.153.3.54311331305
-
(2001)
J Cell Biol
, vol.153
, pp. 543-553
-
-
Hellström, M.1
Gerhardt, H.2
Kalén, M.3
Li, X.4
Eriksson, U.5
Wolburg, H.6
-
132
-
-
85052383405
-
Pericytes: The role of multipotent stem cells in vascular maintenance and regenerative medicine
-
29282647
-
Ahmed TA, El-Badri N. Pericytes: The role of multipotent stem cells in vascular maintenance and regenerative medicine. Adv Exp Med Biol. (2017) 7:452–64. 10.1007/5584_2017_13829282647
-
(2017)
Adv Exp Med Biol
, vol.7
, pp. 452-464
-
-
Ahmed, T.A.1
El-Badri, N.2
-
133
-
-
27644557532
-
The role of pericytes in blood-vessel formation and maintenance
-
16212810
-
Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. (2005) 7:452–64.10.1215/S115285170500023216212810
-
(2005)
Neuro Oncol
, vol.7
, pp. 452-464
-
-
Bergers, G.1
Song, S.2
-
134
-
-
85007550924
-
Pericytes, an overlooked player in vascular pathobiology
-
27916653
-
Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther. (2017) 171:30–42. 10.1016/j.pharmthera.2016.11.00827916653
-
(2017)
Pharmacol Ther
, vol.171
, pp. 30-42
-
-
Ferland-McCollough, D.1
Slater, S.2
Richard, J.3
Reni, C.4
Mangialardi, G.5
-
135
-
-
84855407739
-
Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb
-
22095829
-
Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation (2012) 125:87–99. 10.1161/CIRCULATIONAHA.111.04826422095829
-
(2012)
Circulation
, vol.125
, pp. 87-99
-
-
Dar, A.1
Domev, H.2
Ben-Yosef, O.3
Tzukerman, M.4
Zeevi-Levin, N.5
Novak, A.6
-
136
-
-
84875249915
-
Pericytes from human veins for treatment of myocardial ischemia
-
23313330
-
Katare RG, Madeddu P. Pericytes from human veins for treatment of myocardial ischemia. Trends Cardiovasc Med. (2013) 23:66–70. 10.1016/j.tcm.2012.09.00223313330
-
(2013)
Trends Cardiovasc Med
, vol.23
, pp. 66-70
-
-
Katare, R.G.1
Madeddu, P.2
-
137
-
-
84930812429
-
Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications
-
25858064
-
Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. (2015) 116:1378–91. 10.1161/CIRCRESAHA.116.30537425858064
-
(2015)
Circ Res
, vol.116
, pp. 1378-1391
-
-
Sadahiro, T.1
Yamanaka, S.2
Ieda, M.3
-
138
-
-
84904957526
-
Cellular strategies to promote vascularisation in tissue engineering applications
-
25050838
-
Costa-Almeida R, Granja PL, Soares R, Guerreiro SG. Cellular strategies to promote vascularisation in tissue engineering applications. Eur Cells Mater. (2014) 28:51–66. 10.22203/eCM.v028a0525050838
-
(2014)
Eur Cells Mater
, vol.28
, pp. 51-66
-
-
Costa-Almeida, R.1
Granja, P.L.2
Soares, R.3
Guerreiro, S.G.4
|