-
1
-
-
33947716172
-
Endothelial function and dysfunction: Testing and clinical relevance
-
Deanfield, J. E., Halcox, J. P., Rabelink, T. J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 115, 1285-1295, doi: 10.1161/CIRCULATIONAHA.106.652859 (2007).
-
(2007)
Circulation
, vol.115
, pp. 1285-1295
-
-
Deanfield, J.E.1
Halcox, J.P.2
Rabelink, T.J.3
-
2
-
-
84877265318
-
Cell therapy of peripheral arterial disease: From experimental findings to clinical trials
-
Raval, Z., Losordo, D. W. Cell therapy of peripheral arterial disease: From experimental findings to clinical trials. Circulation research 112, 1288-1302, doi: 10.1161/CIRCRESAHA.113.300565 (2013).
-
(2013)
Circulation Research
, vol.112
, pp. 1288-1302
-
-
Raval, Z.1
Losordo, D.W.2
-
3
-
-
84983134148
-
Reprogramming towards endothelial cells for vascular regeneration
-
Hong, X., Le Bras, A., Margariti, A., & Xu, Q. Reprogramming towards endothelial cells for vascular regeneration. GENES & DISEASES (2016).
-
(2016)
GENES & DISEASES
-
-
Hong, X.1
Le Bras, A.2
Margariti, A.3
Xu, Q.4
-
4
-
-
84862874414
-
Smooth muscle cell phenotypic switching in atherosclerosis
-
Gomez, D., Owens, G. K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovascular research 95, 156-164, doi: 10.1093/cvr/cvs115 (2012).
-
(2012)
Cardiovascular Research
, vol.95
, pp. 156-164
-
-
Gomez, D.1
Owens, G.K.2
-
5
-
-
84930758301
-
KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis
-
Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature medicine 21, 628-637, doi: 10.1038/nm.3866 (2015).
-
(2015)
Nature Medicine
, vol.21
, pp. 628-637
-
-
Shankman, L.S.1
-
6
-
-
84968625044
-
Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective
-
Cherepanova, O. A. et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nature medicine 22, 657-665, doi: 10.1038/nm.4109 (2016).
-
(2016)
Nature Medicine
, vol.22
, pp. 657-665
-
-
Cherepanova, O.A.1
-
7
-
-
34249289023
-
Developmental basis of vascular smooth muscle diversity
-
Majesky, M. W. Developmental basis of vascular smooth muscle diversity. Arteriosclerosis, thrombosis, and vascular biology 27, 1248-1258, doi: 10.1161/ATVBAHA.107.141069 (2007).
-
(2007)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.27
, pp. 1248-1258
-
-
Majesky, M.W.1
-
8
-
-
84948384866
-
Origin and differentiation of vascular smooth muscle cells
-
Wang, G., Jacquet, L., Karamariti, E., Xu, Q. Origin and differentiation of vascular smooth muscle cells. The Journal of physiology 593, 3013-3030, doi: 10.1113/JP270033 (2015).
-
(2015)
The Journal of Physiology
, vol.593
, pp. 3013-3030
-
-
Wang, G.1
Jacquet, L.2
Karamariti, E.3
Xu, Q.4
-
9
-
-
34548335261
-
Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo
-
Ferreira, L. S. et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circulation research 101, 286-294, doi: 10.1161/CIRCRESAHA.107.150201 (2007).
-
(2007)
Circulation Research
, vol.101
, pp. 286-294
-
-
Ferreira, L.S.1
-
10
-
-
0034597798
-
Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors
-
Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92-96, doi: 10.1038/35040568 (2000).
-
(2000)
Nature
, vol.408
, pp. 92-96
-
-
Yamashita, J.1
-
11
-
-
49649120250
-
Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells
-
Narazaki, G. et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118, 498-506, doi: 10.1161/CIRCULATIONAHA.108.769562 (2008).
-
(2008)
Circulation
, vol.118
, pp. 498-506
-
-
Narazaki, G.1
-
12
-
-
84865286051
-
Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels
-
Margariti, A. et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proceedings of the National Academy of Sciences of the United States of America 109, 13793-13798, doi: 10.1073/pnas.1205526109 (2012).
-
(2012)
Proceedings of the National Academy of Sciences of the United States of America
, vol.109
, pp. 13793-13798
-
-
Margariti, A.1
-
13
-
-
84871977315
-
Conversion of human fibroblasts to angioblast-like progenitor cells
-
Kurian, L. et al. Conversion of human fibroblasts to angioblast-like progenitor cells. Nature methods 10, 77-83, doi: 10.1038/nmeth.2255 (2013).
-
(2013)
Nature Methods
, vol.10
, pp. 77-83
-
-
Kurian, L.1
-
14
-
-
84920432079
-
ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells
-
Morita, R. et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 112, 160-165, doi: 10.1073/pnas.1413234112 (2015).
-
(2015)
Proceedings of the National Academy of Sciences of the United States of America
, vol.112
, pp. 160-165
-
-
Morita, R.1
-
15
-
-
84879074469
-
Conversion of human fibroblasts to functional endothelial cells by defined factors
-
Li, J. et al. Conversion of human fibroblasts to functional endothelial cells by defined factors. Arteriosclerosis, thrombosis, and vascular biology 33, 1366-1375, doi: 10.1161/ATVBAHA.112.301167 (2013).
-
(2013)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.33
, pp. 1366-1375
-
-
Li, J.1
-
16
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386, doi: 10.1016/j.cell.2010.07.002 (2010).
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
-
17
-
-
84924906922
-
Direct conversion of adult skin fibroblasts to endothelial cells by defined factors
-
Han, J. K. et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 130, 1168-1178, doi: 10.1161/CIRCULATIONAHA.113.007727 (2014).
-
(2014)
Circulation
, vol.130
, pp. 1168-1178
-
-
Han, J.K.1
-
18
-
-
84958212615
-
Transdifferentiation of human endothelial progenitors into smooth muscle cells
-
Ji, H. et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials 85, 180-194, doi: 10.1016/j.biomaterials.2016.01.066 (2016).
-
(2016)
Biomaterials
, vol.85
, pp. 180-194
-
-
Ji, H.1
-
19
-
-
84908446782
-
Cell Net: Network biology applied to stem cell engineering
-
Cahan, P. et al. CellNet: Network biology applied to stem cell engineering. Cell 158, 903-915, doi: 10.1016/j.cell.2014.07.020 (2014).
-
(2014)
Cell
, vol.158
, pp. 903-915
-
-
Cahan, P.1
-
20
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676, doi: 10.1016/j.cell.2006.07.024 (2006).
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
21
-
-
84924264526
-
Direct lineage reprogramming: Strategies, mechanisms, and applications
-
Xu, J., Du, Y., Deng, H. Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell stem cell 16, 119-134, doi: 10.1016/j.stem.2015.01.013 (2015).
-
(2015)
Cell Stem Cell
, vol.16
, pp. 119-134
-
-
Xu, J.1
Du, Y.2
Deng, H.3
-
22
-
-
79952273710
-
Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy
-
Efe, J. A. et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature cell biology 13, 215-222, doi: 10.1038/ncb2164 (2011).
-
(2011)
Nature Cell Biology
, vol.13
, pp. 215-222
-
-
Efe, J.A.1
-
23
-
-
84878642797
-
Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts
-
Karamariti, E. et al. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts. Circulation research 112, 1433-1443, doi: 10.1161/CIRCRESAHA.111.300415 (2013).
-
(2013)
Circulation Research
, vol.112
, pp. 1433-1443
-
-
Karamariti, E.1
-
24
-
-
3042588831
-
Molecular regulation of vascular smooth muscle cell differentiation in development and disease
-
Owens, G. K., Kumar, M. S., Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological reviews 84, 767-801, doi: 10.1152/physrev.00041.2003 (2004).
-
(2004)
Physiological Reviews
, vol.84
, pp. 767-801
-
-
Owens, G.K.1
Kumar, M.S.2
Wamhoff, B.R.3
-
25
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872, doi: 10.1016/j.cell.2007.11.019 (2007).
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
-
26
-
-
74049159612
-
Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells
-
Lee, T. H. et al. Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circulation research 106, 120-128, doi: 10.1161/CIRCRESAHA.109.207902 (2010).
-
(2010)
Circulation Research
, vol.106
, pp. 120-128
-
-
Lee, T.H.1
-
27
-
-
0031019745
-
Isolation of putative progenitor endothelial cells for angiogenesis
-
Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967 (1997).
-
(1997)
Science
, vol.275
, pp. 964-967
-
-
Asahara, T.1
-
28
-
-
83455163798
-
CD34-positive stem cells: In the treatment of heart and vascular disease in human beings
-
Mackie, A. R., Losordo, D. W. CD34-positive stem cells: In the treatment of heart and vascular disease in human beings. Texas Heart Institute journal/from the Texas Heart Institute of St. Luke's Episcopal Hospital, Texas Children's Hospital 38, 474-485 (2011).
-
(2011)
Texas Heart Institute Journal/from the Texas Heart Institute of St. Luke's Episcopal Hospital, Texas Children's Hospital
, vol.38
, pp. 474-485
-
-
MacKie, A.R.1
Losordo, D.W.2
-
29
-
-
84893688897
-
Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-beta2) pathways
-
Di Bernardini, E. et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-beta2) pathways. The Journal of biological chemistry 289, 3383-3393, doi: 10.1074/jbc.M113.495531 (2014).
-
(2014)
The Journal of Biological Chemistry
, vol.289
, pp. 3383-3393
-
-
Di Bernardini, E.1
-
30
-
-
84930442389
-
C-Kit+ progenitors generate vascular cells for tissue-engineered grafts through modulation of the Wnt/Klf4 pathway
-
Campagnolo, P. et al. c-Kit+ progenitors generate vascular cells for tissue-engineered grafts through modulation of the Wnt/Klf4 pathway. Biomaterials 60, 53-61, doi: 10.1016/j.biomaterials.2015.04.055 (2015).
-
(2015)
Biomaterials
, vol.60
, pp. 53-61
-
-
Campagnolo, P.1
-
31
-
-
84862667453
-
Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model
-
Tsai, T. N. et al. Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model. The American journal of pathology 181, 362-373, doi: 10.1016/j.ajpath.2012.03.021 (2012).
-
(2012)
The American Journal of Pathology
, vol.181
, pp. 362-373
-
-
Tsai, T.N.1
-
32
-
-
84930667054
-
Resveratrol-induced vascular progenitor differentiation towards endothelial lineage via MIR-21/akt/beta-catenin is protective in vessel graft models
-
Campagnolo, P. et al. Resveratrol-Induced Vascular Progenitor Differentiation towards Endothelial Lineage via MiR-21/Akt/beta-Catenin Is Protective in Vessel Graft Models. PloS one 10, e0125122, doi: 10.1371/journal.pone.0125122 (2015).
-
(2015)
PloS One
, vol.10
, pp. 0125122
-
-
Campagnolo, P.1
-
33
-
-
84868192680
-
The mesenchymal-to-epithelial transition in somatic cell reprogramming
-
Esteban, M. A. et al. The mesenchymal-to-epithelial transition in somatic cell reprogramming. Current opinion in genetics & development 22, 423-428, doi: 10.1016/j.gde.2012.09.004 (2012).
-
(2012)
Current Opinion in Genetics & Development
, vol.22
, pp. 423-428
-
-
Esteban, M.A.1
-
34
-
-
77957551870
-
A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
-
Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell stem cell 7, 51-63, doi: 10.1016/j.stem.2010.04.014 (2010).
-
(2010)
Cell Stem Cell
, vol.7
, pp. 51-63
-
-
Li, R.1
-
35
-
-
77956320116
-
Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
-
Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell stem cell 7, 64-77, doi: 10.1016/j.stem.2010.04.015 (2010).
-
(2010)
Cell Stem Cell
, vol.7
, pp. 64-77
-
-
Samavarchi-Tehrani, P.1
-
36
-
-
34548164780
-
Notch signaling in vascular development and physiology
-
Gridley, T. Notch signaling in vascular development and physiology. Development 134, 2709-2718, doi: 10.1242/dev.004184 (2007).
-
(2007)
Development
, vol.134
, pp. 2709-2718
-
-
Gridley, T.1
-
37
-
-
66449123068
-
The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
-
Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124-1135, doi: 10.1016/j.cell.2009.03.025 (2009).
-
(2009)
Cell
, vol.137
, pp. 1124-1135
-
-
Benedito, R.1
-
38
-
-
84900018985
-
Endothelial-specific Notch blockade inhibits vascular function and tumor growth through an eNOS-dependent mechanism
-
Patenaude, A. et al. Endothelial-specific Notch blockade inhibits vascular function and tumor growth through an eNOS-dependent mechanism. Cancer research 74, 2402-2411, doi: 10.1158/0008-5472.CAN-12-4038 (2014).
-
(2014)
Cancer Research
, vol.74
, pp. 2402-2411
-
-
Patenaude, A.1
-
39
-
-
84857604290
-
Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use
-
Fadini, G. P., Losordo, D., Dimmeler, S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circulation research 110, 624-637, doi: 10.1161/CIRCRESAHA.111.243386 (2012).
-
(2012)
Circulation Research
, vol.110
, pp. 624-637
-
-
Fadini, G.P.1
Losordo, D.2
Dimmeler, S.3
-
40
-
-
78649471039
-
Direct conversion of human fibroblasts to multilineage blood progenitors
-
Szabo, E. et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521-526, doi: 10.1038/nature09591 (2010).
-
(2010)
Nature
, vol.468
, pp. 521-526
-
-
Szabo, E.1
-
41
-
-
84866085864
-
Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors
-
Buganim, Y. et al. Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors. Cell stem cell 11, 373-386, doi: 10.1016/j.stem.2012.07.019 (2012).
-
(2012)
Cell Stem Cell
, vol.11
, pp. 373-386
-
-
Buganim, Y.1
-
42
-
-
84904580766
-
MIR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures
-
Muraoka, N. et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. The EMBO journal 33, 1565-1581, doi: 10.15252/embj.201387605 (2014).
-
(2014)
The EMBO Journal
, vol.33
, pp. 1565-1581
-
-
Muraoka, N.1
-
43
-
-
33747623018
-
Notch signalling: A simple pathway becomes complex
-
Bray, S. J. Notch signalling: A simple pathway becomes complex. Nature reviews. Molecular cell biology 7, 678-689, doi: 10.1038/nrm2009 (2006).
-
(2006)
Nature Reviews. Molecular Cell Biology
, vol.7
, pp. 678-689
-
-
Bray, S.J.1
-
44
-
-
34248139757
-
The Hes gene family: Repressors and oscillators that orchestrate embryogenesis
-
Kageyama, R., Ohtsuka, T., Kobayashi, T. The Hes gene family: Repressors and oscillators that orchestrate embryogenesis. Development 134, 1243-1251, doi: 10.1242/dev.000786 (2007).
-
(2007)
Development
, vol.134
, pp. 1243-1251
-
-
Kageyama, R.1
Ohtsuka, T.2
Kobayashi, T.3
-
45
-
-
65249185637
-
Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway American journal of physiology
-
Xu, J. et al. Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. American journal of physiology. Cell physiology 296, C535-543, doi: 10.1152/ajpcell.00310.2008 (2009).
-
(2009)
Cell Physiology
, vol.296
, pp. C535-543
-
-
Xu, J.1
-
46
-
-
84898419690
-
MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1
-
Schober, A. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature medicine 20, 368-376, doi: 10.1038/nm.3487 (2014).
-
(2014)
Nature Medicine
, vol.20
, pp. 368-376
-
-
Schober, A.1
-
47
-
-
47649088849
-
Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization
-
Kwon, S. M. et al. Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation 118, 157-165, doi: 10.1161/CIRCULATIONAHA.107.754978 (2008).
-
(2008)
Circulation
, vol.118
, pp. 157-165
-
-
Kwon, S.M.1
-
48
-
-
84887201460
-
Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells
-
Lee, J. B. et al. Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood 122, 1162-1173, doi: 10.1182/blood-2012-12-471649 (2013).
-
(2013)
Blood
, vol.122
, pp. 1162-1173
-
-
Lee, J.B.1
-
49
-
-
84881114106
-
Therapeutic angiogenesis for critical limb ischaemia Nature reviews
-
Annex, B. H. Therapeutic angiogenesis for critical limb ischaemia. Nature reviews. Cardiology 10, 387-396, doi: 10.1038/nrcardio.2013.70 (2013).
-
(2013)
Cardiology
, vol.10
, pp. 387-396
-
-
Annex, B.H.1
-
50
-
-
84941253569
-
Generation and grafting of tissue-engineered vessels in a mouse model
-
Wong, M. M., Hong, X., Karamariti, E., Hu, Y., Xu, Q. Generation and Grafting of Tissue-engineered Vessels in a Mouse Model. J. Vis. Exp., 10.3791/52565 (2015).
-
(2015)
J. Vis. Exp
-
-
Wong, M.M.1
Hong, X.2
Karamariti, E.3
Hu, Y.4
Xu, Q.5
-
51
-
-
84938324710
-
Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage
-
Bar-Nur, O. et al. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nature biotechnology 33, 761-768, doi: 10.1038/nbt.3247 (2015).
-
(2015)
Nature Biotechnology
, vol.33
, pp. 761-768
-
-
Bar-Nur, O.1
-
52
-
-
84938400166
-
Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors
-
Itay Maza et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nature Biotechnology 33(7), 769-774 (2015).
-
(2015)
Nature Biotechnology
, vol.33
, Issue.7
, pp. 769-774
-
-
Maza, I.1
-
53
-
-
84876566443
-
Vascular endothelial cell growth-activated xbp1 splicing in endothelial cells is crucial for angiogenesis
-
L. Zeng, Q. et al. Vascular Endothelial Cell Growth-Activated XBP1 Splicing in Endothelial Cells Is Crucial for Angiogenesis. Circulation 127(16), 1712-1722 (2013).
-
(2013)
Circulation
, vol.127
, Issue.16
, pp. 1712-1722
-
-
Zeng, Q.L.1
-
54
-
-
84959558362
-
Hyaluronan is crucial for stem cell differentiation into smooth muscle lineage
-
Russell M.L. et al. Hyaluronan Is Crucial for Stem Cell Differentiation into Smooth Muscle Lineage. STEM CELLS 34(5), 1225-1238 (2016).
-
(2016)
STEM CELLS
, vol.34
, Issue.5
, pp. 1225-1238
-
-
Russell, M.L.1
|