메뉴 건너뛰기




Volumn 1417, Issue 1, 2016, Pages 87-103

Group 2 innate lymphocytes at the interface between innate and adaptive immunity

Author keywords

ILC2; Innate lymphoid cells; T helper cells; TH2; Type 2 response

Indexed keywords

CYTOKINE; HORMONE; INTERLEUKIN 33; LIPID; THYMIC STROMAL LYMPHOPOIETIN;

EID: 85057363502     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.13604     Document Type: Review
Times cited : (29)

References (185)
  • 1
    • 75749122181 scopus 로고    scopus 로고
    • Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells
    • Moro, K. et al. 2010. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463: 540–544.
    • (2010) Nature , vol.463 , pp. 540-544
    • Moro, K.1
  • 2
    • 77951817855 scopus 로고    scopus 로고
    • Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
    • Neill, D.R. et al. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464: 1367–1370.
    • (2010) Nature , vol.464 , pp. 1367-1370
    • Neill, D.R.1
  • 3
    • 77954926597 scopus 로고    scopus 로고
    • Systemically dispersed innate IL-13-expressing cells in type 2 immunity
    • Price, A.E. et al. 2010. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 107: 11489–11494.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 11489-11494
    • Price, A.E.1
  • 4
    • 85017167191 scopus 로고    scopus 로고
    • Emerging concepts and future challenges in innate lymphoid cell biology
    • Tait, W.E.D. & D. Artis. 2016. Emerging concepts and future challenges in innate lymphoid cell biology. J. Exp. Med. 213: 2229–2248.
    • (2016) J. Exp. Med. , vol.213 , pp. 2229-2248
    • Tait, W.E.D.1    Artis, D.2
  • 5
    • 84907983938 scopus 로고    scopus 로고
    • Innate lymphoid cells in inflammation and immunity
    • McKenzie, A.N., H. Spits, & G. Eberl. 2014. Innate lymphoid cells in inflammation and immunity. Immunity 41: 366–374.
    • (2014) Immunity , vol.41 , pp. 366-374
    • McKenzie, A.N.1    Spits, H.2    Eberl, G.3
  • 6
    • 84922607138 scopus 로고    scopus 로고
    • The biology of innate lymphoid cells
    • Artis, D. & H. Spits. 2015. The biology of innate lymphoid cells. Nature 517: 293–301.
    • (2015) Nature , vol.517 , pp. 293-301
    • Artis, D.1    Spits, H.2
  • 7
    • 84954290459 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells in disease
    • Halim, T.Y. 2016. Group 2 innate lymphoid cells in disease. Int. Immunol. 28: 13–22.
    • (2016) Int. Immunol. , vol.28 , pp. 13-22
    • Halim, T.Y.1
  • 8
    • 84976314221 scopus 로고    scopus 로고
    • Development of innate lymphoid cells
    • Zook, E.C. & B.L. Kee. 2016. Development of innate lymphoid cells. Nat. Immunol. 17: 775–782.
    • (2016) Nat. Immunol. , vol.17 , pp. 775-782
    • Zook, E.C.1    Kee, B.L.2
  • 9
    • 84964922317 scopus 로고    scopus 로고
    • Developmental acquisition of reg-ulomes underlies innate lymphoid cell functionality
    • Shih, H.-Y. et al. 2016. Developmental acquisition of reg-ulomes underlies innate lymphoid cell functionality. Cell 165: 1120–1133.
    • (2016) Cell , vol.165 , pp. 1120-1133
    • Shih, H.-Y.1
  • 10
    • 78650970845 scopus 로고    scopus 로고
    • Innate or adaptive immunity? The example of natural killer cells
    • Vivier, E. et al. 2011. Innate or adaptive immunity? The example of natural killer cells. Science 331: 44–49.
    • (2011) Science , vol.331 , pp. 44-49
    • Vivier, E.1
  • 12
    • 84985994539 scopus 로고    scopus 로고
    • Innate lymphoid cell regulation of adaptive immunity
    • Withers, D.R. 2016. Innate lymphoid cell regulation of adaptive immunity. Immunology 149: 123–130.
    • (2016) Immunology , vol.149 , pp. 123-130
    • Withers, D.R.1
  • 13
    • 18244405108 scopus 로고    scopus 로고
    • IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo
    • Fort, M.M. et al. 2001. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15: 985–995.
    • (2001) Immunity , vol.15 , pp. 985-995
    • Fort, M.M.1
  • 14
    • 33645888708 scopus 로고    scopus 로고
    • Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion
    • Fallon, P.G. et al. 2006. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203: 1105–1116.
    • (2006) J. Exp. Med. , vol.203 , pp. 1105-1116
    • Fallon, P.G.1
  • 15
    • 44849117539 scopus 로고    scopus 로고
    • Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system
    • Kondo, Y. et al. 2008. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20: 791–800.
    • (2008) Int. Immunol. , vol.20 , pp. 791-800
    • Kondo, Y.1
  • 16
    • 84947709250 scopus 로고    scopus 로고
    • Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs
    • Gasteiger, G., X. Fan, S. Dikiy, et al. 2015. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350: 981–985.
    • (2015) Science , vol.350 , pp. 981-985
    • Gasteiger, G.1    Fan, X.2    Dikiy, S.3
  • 17
    • 84951317602 scopus 로고    scopus 로고
    • Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses
    • Moro, K. et al. 2016. Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat. Immunol. 17: 76–86.
    • (2016) Nat. Immunol. , vol.17 , pp. 76-86
    • Moro, K.1
  • 18
    • 85016163581 scopus 로고    scopus 로고
    • Developmental options and functional plasticity of innate lymphoid cells
    • Lim, A.I., T. Verrier, C.A. Vosshenrich, et al. 2017. Developmental options and functional plasticity of innate lymphoid cells. Curr. Opin. Immunol. 44: 61–68.
    • (2017) Curr. Opin. Immunol. , vol.44 , pp. 61-68
    • Lim, A.I.1    Verrier, T.2    Vosshenrich, C.A.3
  • 19
    • 85003819891 scopus 로고    scopus 로고
    • Deciphering the innate lymphoid cell transcriptional program
    • Seillet, C. et al. 2016. Deciphering the innate lymphoid cell transcriptional program. Cell Rep. 17: 436– 447.
    • (2016) Cell Rep , vol.17 , pp. 436-447
    • Seillet, C.1
  • 20
    • 84941945421 scopus 로고    scopus 로고
    • TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow
    • Yang, Q. et al. 2015. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat. Immunol. 16: 1044–1050.
    • (2015) Nat. Immunol. , vol.16 , pp. 1044-1050
    • Yang, Q.1
  • 22
    • 84929899392 scopus 로고    scopus 로고
    • The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor
    • Seehus, C.R. et al. 2015. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat. Immunol. 16: 599–608.
    • (2015) Nat. Immunol. , vol.16 , pp. 599-608
    • Seehus, C.R.1
  • 23
    • 84898640432 scopus 로고    scopus 로고
    • Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages
    • Klose, C.S.N. et al. 2014. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157: 340–356.
    • (2014) Cell , vol.157 , pp. 340-356
    • Klose, C.S.N.1
  • 24
    • 84957974715 scopus 로고    scopus 로고
    • Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)–deficient mice
    • Verhoef, P.A. et al. 2016. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)–deficient mice. J. Allergy Clin. Immunol. 137: 591–600.e1.
    • (2016) J. Allergy Clin. Immunol. , vol.137 , pp. 591-600
    • Verhoef, P.A.1
  • 25
    • 84967239509 scopus 로고    scopus 로고
    • A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets
    • Scoville, S.D. et al. 2016. A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets. Immunity 44: 1140–1150.
    • (2016) Immunity , vol.44 , pp. 1140-1150
    • Scoville, S.D.1
  • 26
    • 84867769688 scopus 로고    scopus 로고
    • The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells
    • Hoyler, T. et al. 2012. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37: 634–648.
    • (2012) Immunity , vol.37 , pp. 634-648
    • Hoyler, T.1
  • 27
    • 84867773093 scopus 로고    scopus 로고
    • The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells
    • Mjosberg, J. et al. 2012. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37: 649–659.
    • (2012) Immunity , vol.37 , pp. 649-659
    • Mjosberg, J.1
  • 28
    • 84863393407 scopus 로고    scopus 로고
    • Transcription factor RORα is critical for nuocyte development
    • Wong, S.H. et al. 2012. Transcription factor RORα is critical for nuocyte development. Nat. Immunol. 13: 229–236.
    • (2012) Nat. Immunol. , vol.13 , pp. 229-236
    • Wong, S.H.1
  • 29
    • 84866519013 scopus 로고    scopus 로고
    • Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation
    • Halim, T.Y. et al. 2012. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37: 463–474.
    • (2012) Immunity , vol.37 , pp. 463-474
    • Halim, T.Y.1
  • 30
    • 84888000653 scopus 로고    scopus 로고
    • Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1
    • Spooner, C.J. et al. 2013. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14: 1229–1236.
    • (2013) Nat. Immunol. , vol.14 , pp. 1229-1236
    • Spooner, C.J.1
  • 31
    • 84876762753 scopus 로고    scopus 로고
    • T cell factor 1 is required for group 2 innate lymphoid cell generation
    • Yang, Q. et al. 2013. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38: 694–704.
    • (2013) Immunity , vol.38 , pp. 694-704
    • Yang, Q.1
  • 32
    • 84885439404 scopus 로고    scopus 로고
    • + innate lymphocyte differentiation and protection in intestinal inflammation
    • + innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol. 191: 4383–4391.
    • (2013) J. Immunol. , vol.191 , pp. 4383-4391
    • Mielke, L.A.1
  • 33
    • 84969135479 scopus 로고    scopus 로고
    • The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2
    • Zook, E.C. et al. 2016. The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. J. Exp. Med. 213: 687–696.
    • (2016) J. Exp. Med. , vol.213 , pp. 687-696
    • Zook, E.C.1
  • 34
    • 84980319820 scopus 로고    scopus 로고
    • Bcl11b is essential for group 2 innate lymphoid cell development
    • Walker, J.A. et al. 2015. Bcl11b is essential for group 2 innate lymphoid cell development. J. Exp. Med. 212: 875–882.
    • (2015) J. Exp. Med. , vol.212 , pp. 875-882
    • Walker, J.A.1
  • 36
    • 84896396519 scopus 로고    scopus 로고
    • The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells
    • Yagi, R. et al. 2014. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40: 378–388.
    • (2014) Immunity , vol.40 , pp. 378-388
    • Yagi, R.1
  • 37
    • 84893766480 scopus 로고    scopus 로고
    • + group 3 innate lymphoid cells
    • + group 3 innate lymphoid cells. J. Exp. Med. 211: 199–208.
    • (2014) J. Exp. Med. , vol.211 , pp. 199-208
    • Serafini, N.1
  • 38
    • 34447634411 scopus 로고    scopus 로고
    • Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch
    • Amsen, D. et al. 2007. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27: 89–99.
    • (2007) Immunity , vol.27 , pp. 89-99
    • Amsen, D.1
  • 39
    • 80054889051 scopus 로고    scopus 로고
    • Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161
    • Mjosberg, J.M. et al. 2011. Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12: 1055– 1062.
    • (2011) Nat. Immunol. , vol.12 , pp. 1055-1062
    • Mjosberg, J.M.1
  • 40
    • 84919654147 scopus 로고    scopus 로고
    • Type-2 innate lymphoid cells in asthma and allergy
    • Andrew, N.J.M. 2014. Type-2 innate lymphoid cells in asthma and allergy. Ann. Am. Thorac. Soc. 11: S263–S270.
    • (2014) Ann. Am. Thorac. Soc. , vol.11 , pp. S263-S270
    • Andrew, N.J.M.1
  • 41
    • 84872977452 scopus 로고    scopus 로고
    • Innate lymphoid cells—a proposal for uniform nomenclature
    • Spits, H. et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13: 145– 149.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 145-149
    • Spits, H.1
  • 42
    • 84977605156 scopus 로고    scopus 로고
    • G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program
    • Antignano, F. et al. 2016. G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program. J. Exp. Med. 213: 1153– 1162.
    • (2016) J. Exp. Med. , vol.213 , pp. 1153-1162
    • Antignano, F.1
  • 43
    • 84994112536 scopus 로고    scopus 로고
    • MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation
    • Johansson, K., C. Malmhäll, P. Ramos-Ramírez, & M. Rådinger. 2017. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol. 139: 1007–1016.e9.
    • (2017) J. Allergy Clin. Immunol. , vol.139 , pp. 1007-1016
    • Johansson, K.1    Malmhäll, C.2    Ramos-Ramírez, P.3    Rådinger, M.4
  • 44
    • 85036562813 scopus 로고    scopus 로고
    • MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation
    • Singh, P.B. et al. 2017. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J. Exp. Med. 214: 3627–3643.
    • (2017) J. Exp. Med. , vol.214 , pp. 3627-3643
    • Singh, P.B.1
  • 45
    • 84991716850 scopus 로고    scopus 로고
    • A tissue checkpoint regulates type 2 immunity
    • Van Dyken, S.J. et al. 2016. A tissue checkpoint regulates type 2 immunity. Nat. Immunol. 17: 1381–1387.
    • (2016) Nat. Immunol. , vol.17 , pp. 1381-1387
    • van Dyken, S.J.1
  • 46
    • 84930454789 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells in health and disease
    • Kim, B.S. & D. Artis. 2015. Group 2 innate lymphoid cells in health and disease. Cold Spring Harb. Perspect. Biol. 7. https://doi.org/10.1101/cshperspect.a016337.
    • (2015) Cold Spring Harb. Perspect. Biol. , vol.7
    • Kim, B.S.1    Artis, D.2
  • 47
    • 84937690389 scopus 로고    scopus 로고
    • Barrier epithelial cells and the control of type 2 immunity
    • Hammad, H. & B.N. Lambrecht. 2015. Barrier epithelial cells and the control of type 2 immunity. Immunity 43: 29–40.
    • (2015) Immunity , vol.43 , pp. 29-40
    • Hammad, H.1    Lambrecht, B.N.2
  • 48
    • 84922857734 scopus 로고    scopus 로고
    • IL-25-responsive, lineage-negative KLRG1(Hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells
    • Huang, Y. et al. 2015. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16: 161–169.
    • (2015) Nat. Immunol , vol.16 , pp. 161-169
    • Huang, Y.1
  • 49
    • 84884905739 scopus 로고    scopus 로고
    • IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (Type 2 innate lymphoid cells) and airway contraction
    • Barlow, J.L. et al. 2013. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J. Allergy Clin. Immunol. 132: 933–941.
    • (2013) J. Allergy Clin. Immunol. , vol.132 , pp. 933-941
    • Barlow, J.L.1
  • 50
    • 84961198658 scopus 로고    scopus 로고
    • Tuft cell-derived IL-25 activates and maintains ILC2
    • Gronke, K. & A. Diefenbach. 2016. Tuft cell-derived IL-25 activates and maintains ILC2. Immunol. Cell Biol. 94: 221–223.
    • (2016) Immunol. Cell Biol. , vol.94 , pp. 221-223
    • Gronke, K.1    Diefenbach, A.2
  • 51
    • 84976334369 scopus 로고    scopus 로고
    • Innate lymphoid cell function in the context of adaptive immunity
    • Bando, J.K. & M. Colonna. 2016. Innate lymphoid cell function in the context of adaptive immunity. Nat. Immunol. 17: 783–789.
    • (2016) Nat. Immunol. , vol.17 , pp. 783-789
    • Bando, J.K.1    Colonna, M.2
  • 52
    • 84954286513 scopus 로고    scopus 로고
    • Tuft-cell-derived IL-25 regulates an intestinal ILC2– epithelial response circuit
    • von Moltke, J., M. Ji, H.-E. Liang, & R.M. Locksley. 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2– epithelial response circuit. Nature 529: 221–225.
    • (2016) Nature , vol.529 , pp. 221-225
    • von Moltke, J.1    Ji, M.2    Liang, H.-E.3    Locksley, R.M.4
  • 53
    • 84954561117 scopus 로고    scopus 로고
    • Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites
    • Gerbe, F. et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529: 226–230.
    • (2016) Nature , vol.529 , pp. 226-230
    • Gerbe, F.1
  • 54
    • 84958767810 scopus 로고    scopus 로고
    • Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut
    • Howitt, M.R. et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351: 1329–1333.
    • (2016) Science , vol.351 , pp. 1329-1333
    • Howitt, M.R.1
  • 55
    • 84896332584 scopus 로고    scopus 로고
    • Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and γδ T cells
    • Van Dyken, S.J. et al. 2014. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and γδ T cells. Immunity 40: 414– 424.
    • (2014) Immunity , vol.40 , pp. 414-424
    • van Dyken, S.J.1
  • 56
    • 85021351886 scopus 로고    scopus 로고
    • Are ILC2s Jekyll and Hyde in airway inflammation?
    • Ealey, K.N., K. Moro, & S. Koyasu. 2017. Are ILC2s Jekyll and Hyde in airway inflammation? Immunol. Rev. 278: 207– 218.
    • (2017) Immunol. Rev. , vol.278 , pp. 207-218
    • Ealey, K.N.1    Moro, K.2    Koyasu, S.3
  • 57
    • 84920950343 scopus 로고    scopus 로고
    • IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy
    • Cayrol, C. & J.-P. Girard. 2014. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 31: 31–37.
    • (2014) Curr. Opin. Immunol. , vol.31 , pp. 31-37
    • Cayrol, C.1    Girard, J.-P.2
  • 58
    • 68249137289 scopus 로고    scopus 로고
    • Suppression of interleukin-33 bioac-tivity through proteolysis by apoptotic caspases
    • Luthi, A.U. et al. 2009. Suppression of interleukin-33 bioac-tivity through proteolysis by apoptotic caspases. Immunity 31: 84–98.
    • (2009) Immunity , vol.31 , pp. 84-98
    • Luthi, A.U.1
  • 59
    • 84982684032 scopus 로고    scopus 로고
    • Alternative splicing of interleukin-33 and type 2 inflammation in asthma
    • Gordon, E.D. et al. 2016. Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc. Natl. Acad. Sci. USA 113: 8765–8770.
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 8765-8770
    • Gordon, E.D.1
  • 60
    • 84930260934 scopus 로고    scopus 로고
    • New dog and new tricks: Evolving roles for IL-33 in type 2 immunity
    • Lott, J.M., T.L. Sumpter, & H.R. Turnquist. 2015. New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J. Leukoc. Biol. 97: 1037–1048.
    • (2015) J. Leukoc. Biol. , vol.97 , pp. 1037-1048
    • Lott, J.M.1    Sumpter, T.L.2    Turnquist, H.R.3
  • 61
    • 84857768885 scopus 로고    scopus 로고
    • Contribution of IL-33–activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice
    • Yasuda, K. et al. 2012. Contribution of IL-33–activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc. Natl. Acad. Sci. USA 109: 3451–3456.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 3451-3456
    • Yasuda, K.1
  • 62
    • 84873747719 scopus 로고    scopus 로고
    • IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation
    • Hardman, C.S., V. Panova, & A.N. McKenzie. 2013. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur. J. Immunol. 43: 488–498.
    • (2013) Eur. J. Immunol. , vol.43 , pp. 488-498
    • Hardman, C.S.1    Panova, V.2    McKenzie, A.N.3
  • 64
    • 84858775590 scopus 로고    scopus 로고
    • Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation
    • Halim, T.Y., R.H. Krauss, A.C. Sun, & F. Takei. 2012. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36: 451–463.
    • (2012) Immunity , vol.36 , pp. 451-463
    • Halim, T.Y.1    Krauss, R.H.2    Sun, A.C.3    Takei, F.4
  • 65
    • 84896343916 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation
    • Halim, T. et al. 2014. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40: 425–435.
    • (2014) Immunity , vol.40 , pp. 425-435
    • Halim, T.1
  • 66
    • 84973631241 scopus 로고    scopus 로고
    • T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice
    • Li, B.W.S. et al. 2016. T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice. Eur. J. Immunol. 46: 1392–1403.
    • (2016) Eur. J. Immunol. , vol.46 , pp. 1392-1403
    • Li, B.W.S.1
  • 67
    • 84881464799 scopus 로고    scopus 로고
    • Critical role of p38 and GATA3 in natural helper cell function
    • Furusawa, J.-I. et al. 2013. Critical role of p38 and GATA3 in natural helper cell function. J. Immunol. 191: 1818–1826.
    • (2013) J. Immunol. , vol.191 , pp. 1818-1826
    • Furusawa, J.-I.1
  • 68
    • 85006802684 scopus 로고    scopus 로고
    • Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung
    • de Kleer, I.M. et al. 2016. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45: 1285–1298.
    • (2016) Immunity , vol.45 , pp. 1285-1298
    • de Kleer, I.M.1
  • 69
    • 84928958134 scopus 로고    scopus 로고
    • ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms
    • Bouchery, T. et al. 2015. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat. Commun. 6: 6970.
    • (2015) Nat. Commun. , vol.6 , pp. 6970
    • Bouchery, T.1
  • 70
    • 84964297369 scopus 로고    scopus 로고
    • IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs
    • Bal, S.M. et al. 2016. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17: 636–645.
    • (2016) Nat. Immunol. , vol.17 , pp. 636-645
    • Bal, S.M.1
  • 71
    • 84964300561 scopus 로고    scopus 로고
    • IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity
    • Ohne, Y. et al. 2016. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17: 646–655.
    • (2016) Nat. Immunol. , vol.17 , pp. 646-655
    • Ohne, Y.1
  • 72
    • 85019408499 scopus 로고    scopus 로고
    • Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections
    • Shimokawa, C. et al. 2017. Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections. Immunity 46: 863–874.e4.
    • (2017) Immunity , vol.46 , pp. 863-874
    • Shimokawa, C.1
  • 73
    • 84945188593 scopus 로고    scopus 로고
    • The prostaglandin D receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung
    • Tait, W.E.D. et al. 2015. The prostaglandin D receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 8: 1313– 1323.
    • (2015) Mucosal Immunol , vol.8 , pp. 1313-1323
    • Tait, W.E.D.1
  • 74
    • 84937696974 scopus 로고    scopus 로고
    • Spred1, a suppressor of the Ras–ERK pathway, negatively regulates expansion and function of group 2 innate lymphoid cells
    • Suzuki, M., R. Morita, Y. Hirata, et al. 2015. Spred1, a suppressor of the Ras–ERK pathway, negatively regulates expansion and function of group 2 innate lymphoid cells. J. Immunol. 195: 1273–1281.
    • (2015) J. Immunol. , vol.195 , pp. 1273-1281
    • Suzuki, M.1    Morita, R.2    Hirata, Y.3
  • 75
    • 84953284110 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis
    • Mohapatra, A. et al. 2016. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol. 9: 275–286.
    • (2016) Mucosal Immunol , vol.9 , pp. 275-286
    • Mohapatra, A.1
  • 76
    • 80054927155 scopus 로고    scopus 로고
    • An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation
    • Wilhelm, C. et al. 2011. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12: 1071–1077.
    • (2011) Nat. Immunol. , vol.12 , pp. 1071-1077
    • Wilhelm, C.1
  • 77
    • 84890852091 scopus 로고    scopus 로고
    • IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation
    • Turner, J.E. et al. 2013. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210: 2951–2965.
    • (2013) J. Exp. Med. , vol.210 , pp. 2951-2965
    • Turner, J.E.1
  • 79
    • 85034439213 scopus 로고    scopus 로고
    • A single-cell survey of the small intestinal epithelium
    • Haber, A.L. et al. 2017. A single-cell survey of the small intestinal epithelium. Nature 551: 333–339.
    • (2017) Nature , vol.551 , pp. 333-339
    • Haber, A.L.1
  • 80
    • 77949784970 scopus 로고    scopus 로고
    • Sensing the outside world: TSLP regulates barrier immunity
    • Ziegler, S.F. & D. Artis. 2010. Sensing the outside world: TSLP regulates barrier immunity. Nat. Immunol. 11: 289– 293.
    • (2010) Nat. Immunol. , vol.11 , pp. 289-293
    • Ziegler, S.F.1    Artis, D.2
  • 81
    • 84874055169 scopus 로고    scopus 로고
    • TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation
    • Kim, B.S. et al. 2013. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5: 170ra116.
    • (2013) Sci. Transl. Med. , vol.5 , pp. 170
    • Kim, B.S.1
  • 82
    • 84896849811 scopus 로고    scopus 로고
    • Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation
    • Kabata, H. et al. 2013. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat. Commun. 4: 2675.
    • (2013) Nat. Commun. , vol.4 , pp. 2675
    • Kabata, H.1
  • 83
    • 85019740109 scopus 로고    scopus 로고
    • Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin
    • Liu, S. et al. 2018. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 141: 257–268.e6.
    • (2018) J. Allergy Clin. Immunol. , vol.141 , pp. 257-268
    • Liu, S.1
  • 84
    • 84901759301 scopus 로고    scopus 로고
    • Effects of an anti-TSLP antibody on allergen-induced asthmatic responses
    • Gauvreau, G.M. et al. 2014. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 370: 2102–2110.
    • (2014) N. Engl. J. Med. , vol.370 , pp. 2102-2110
    • Gauvreau, G.M.1
  • 85
    • 84946056259 scopus 로고    scopus 로고
    • IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation
    • Roediger, B. et al. 2015. IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. J. Allergy Clin. Immunol. 136: 1653–1663.e7.
    • (2015) J. Allergy Clin. Immunol. , vol.136 , pp. 1653-1663
    • Roediger, B.1
  • 86
    • 84907370454 scopus 로고    scopus 로고
    • + T cells potentiates type 2 immunity and promotes parasitic helminth expulsion
    • + T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41: 283–295.
    • (2014) Immunity , vol.41 , pp. 283-295
    • Oliphant, C.J.1
  • 87
    • 84885572626 scopus 로고    scopus 로고
    • Type 2 innate lymphoid cells control eosinophil homeostasis
    • Nussbaum, J.C. et al. 2013. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502: 245– 248.
    • (2013) Nature , vol.502 , pp. 245-248
    • Nussbaum, J.C.1
  • 88
    • 84962725574 scopus 로고    scopus 로고
    • Common-lymphoid-progenitor-independent pathways of innate and T lymphocyte development
    • Ghaedi, M. et al. 2016. Common-lymphoid-progenitor-independent pathways of innate and T lymphocyte development. Cell Rep. 15: 471–480.
    • (2016) Cell Rep , vol.15 , pp. 471-480
    • Ghaedi, M.1
  • 89
    • 84900397775 scopus 로고    scopus 로고
    • Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation
    • Motomura, Y. et al. 2014. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40: 758–771.
    • (2014) Immunity , vol.40 , pp. 758-771
    • Motomura, Y.1
  • 90
    • 84987619415 scopus 로고    scopus 로고
    • Evidence of innate lymphoid cell redundancy in humans
    • Vely, F. et al. 2016. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17: 1291–1299.
    • (2016) Nat. Immunol. , vol.17 , pp. 1291-1299
    • Vely, F.1
  • 91
    • 84937618997 scopus 로고    scopus 로고
    • Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation
    • Molofsky, A.B. et al. 2015. Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43: 161–174.
    • (2015) Immunity , vol.43 , pp. 161-174
    • Molofsky, A.B.1
  • 92
    • 84951317601 scopus 로고    scopus 로고
    • Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells
    • Duerr, C.U. et al. 2015. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat. Immunol. 17: 65.
    • (2015) Nat. Immunol. , vol.17 , pp. 65
    • Duerr, C.U.1
  • 93
    • 85038848149 scopus 로고    scopus 로고
    • IFN-γ increases susceptibility to influenza A infection through suppression of group II innate lymphoid cells
    • Califano, D. et al. 2018. IFN-γ increases susceptibility to influenza A infection through suppression of group II innate lymphoid cells. Mucosal Immunol. 11: 209–219.
    • (2018) Mucosal Immunol , vol.11 , pp. 209-219
    • Califano, D.1
  • 94
    • 85023169107 scopus 로고    scopus 로고
    • STAT1 represses cytokine-producing group 2 and group 3 innate lymphoid cells during viral infection
    • Stier, M.T. et al. 2017. STAT1 represses cytokine-producing group 2 and group 3 innate lymphoid cells during viral infection. J. Immunol. 199: 510–519.
    • (2017) J. Immunol. , vol.199 , pp. 510-519
    • Stier, M.T.1
  • 95
    • 84994879643 scopus 로고    scopus 로고
    • IL-12 drives functional plasticity of human group 2 innate lymphoid cells
    • Lim, A.I. et al. 2016. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213: 569–583.
    • (2016) J. Exp. Med. , vol.213 , pp. 569-583
    • Lim, A.I.1
  • 96
    • 84964206614 scopus 로고    scopus 로고
    • Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs
    • Silver, J.S. et al. 2016. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17: 626– 635.
    • (2016) Nat. Immunol. , vol.17 , pp. 626-635
    • Silver, J.S.1
  • 97
    • 84902210026 scopus 로고    scopus 로고
    • The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells
    • Meylan, F. et al. 2014. The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol. 7: 958–968.
    • (2014) Mucosal Immunol , vol.7 , pp. 958-968
    • Meylan, F.1
  • 98
    • 84899579332 scopus 로고    scopus 로고
    • TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers
    • Yu, X. et al. 2014. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 7: 730–740.
    • (2014) Mucosal Immunol , vol.7 , pp. 730-740
    • Yu, X.1
  • 99
    • 84953298665 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production
    • Salimi, M. et al. 2016. Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production. J. Immunol. 196: 45–54.
    • (2016) J. Immunol. , vol.196 , pp. 45-54
    • Salimi, M.1
  • 100
    • 84925121085 scopus 로고    scopus 로고
    • ICOS:ICOS–ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity
    • Maazi, H. et al. 2015. ICOS:ICOS–ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42: 538–551.
    • (2015) Immunity , vol.42 , pp. 538-551
    • Maazi, H.1
  • 101
    • 84943198767 scopus 로고    scopus 로고
    • ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice
    • Paclik, D., C. Stehle, A. Lahmann, et al. 2015. ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice. Eur. J. Immunol. 45: 2766–2772.
    • (2015) Eur. J. Immunol. , vol.45 , pp. 2766-2772
    • Paclik, D.1    Stehle, C.2    Lahmann, A.3
  • 102
    • 84890825282 scopus 로고    scopus 로고
    • A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis
    • Salimi, M. et al. 2013. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210: 2939–2950.
    • (2013) J. Exp. Med. , vol.210 , pp. 2939-2950
    • Salimi, M.1
  • 103
    • 38549152194 scopus 로고    scopus 로고
    • Principles of bioactive lipid signalling: Lessons from sphingolipids
    • Hannun, Y.A. & L.M. Obeid. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9: 139–150.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 139-150
    • Hannun, Y.A.1    Obeid, L.M.2
  • 104
    • 84882778526 scopus 로고    scopus 로고
    • Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production
    • Doherty, T.A. et al. 2013. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132: 205–213.
    • (2013) J. Allergy Clin. Immunol. , vol.132 , pp. 205-213
    • Doherty, T.A.1
  • 105
    • 85026261120 scopus 로고    scopus 로고
    • Leukotriene C4 potentiates IL-33– induced group 2 innate lymphoid cell activation and lung inflammation
    • Lund, S.J. et al. 2017. Leukotriene C4 potentiates IL-33– induced group 2 innate lymphoid cell activation and lung inflammation. J. Immunol. 199: 1096–1104.
    • (2017) J. Immunol. , vol.199 , pp. 1096-1104
    • Lund, S.J.1
  • 106
    • 84876008998 scopus 로고    scopus 로고
    • Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma
    • Barnig, C. et al. 2013. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5: 174ra126.
    • (2013) Sci. Transl. Med. , vol.5 , pp. 174
    • Barnig, C.1
  • 107
    • 84897402119 scopus 로고    scopus 로고
    • Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells
    • Xue, L. et al. 2014. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133: 1184–1194.
    • (2014) J. Allergy Clin. Immunol. , vol.133 , pp. 1184-1194
    • Xue, L.1
  • 108
    • 0036790654 scopus 로고    scopus 로고
    • Augmentation of allergic inflammation in prostanoid IP receptor deficient mice
    • Takahashi, Y. et al. 2002. Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br. J. Pharmacol. 137: 315–322.
    • (2002) Br. J. Pharmacol. , vol.137 , pp. 315-322
    • Takahashi, Y.1
  • 109
    • 84988878696 scopus 로고    scopus 로고
    • Prostaglandin I2 signaling and inhibition of group 2 innate lymphoid cell responses
    • Weisong, Z. et al. 2016. Prostaglandin I2 signaling and inhibition of group 2 innate lymphoid cell responses. Am. J. Respir. Crit. Care Med. 193: 31–42.
    • (2016) Am. J. Respir. Crit. Care Med. , vol.193 , pp. 31-42
    • Weisong, Z.1
  • 110
    • 85008471567 scopus 로고    scopus 로고
    • Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s
    • von Moltke, J. et al. 2017. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J. Exp. Med. 214: 27–37.
    • (2017) J. Exp. Med. , vol.214 , pp. 27-37
    • von Moltke, J.1
  • 111
    • 85030777338 scopus 로고    scopus 로고
    • Neuronal regulation of type 2 innate lymphoid cells via neuromedin U
    • Cardoso, V. et al. 2017. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549: 277–281.
    • (2017) Nature , vol.549 , pp. 277-281
    • Cardoso, V.1
  • 112
    • 84923436228 scopus 로고    scopus 로고
    • Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets
    • Robinette, M.L. et al. 2015. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16: 306–317.
    • (2015) Nat. Immunol. , vol.16 , pp. 306-317
    • Robinette, M.L.1
  • 113
    • 85021855365 scopus 로고    scopus 로고
    • Androgen signaling negatively controls group 2 innate lymphoid cells
    • Laffont, S. et al. 2017. Androgen signaling negatively controls group 2 innate lymphoid cells. J. Exp. Med. 214: 1581– 1592.
    • (2017) J. Exp. Med. , vol.214 , pp. 1581-1592
    • Laffont, S.1
  • 114
    • 34547630301 scopus 로고    scopus 로고
    • The impact of sex and sex hormones on lung physiology and disease: Lessons from animal studies
    • Carey, M.A. et al. 2007. The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies. Am. J. Physiol. Lung Cell. Mol. Physiol. 293: L272– L278.
    • (2007) Am. J. Physiol. Lung Cell. Mol. Physiol. , vol.293 , pp. L272-L278
    • Carey, M.A.1
  • 115
    • 85041689902 scopus 로고    scopus 로고
    • Adenosine receptors differentially regulate type 2 cytokine production by IL-33–activated bone marrow cells, ILC2s, and macrophages
    • Csóka, B. et al. 2017. Adenosine receptors differentially regulate type 2 cytokine production by IL-33–activated bone marrow cells, ILC2s, and macrophages. FASEB J. https://doi.org/10.1096/fj.201700770R.
    • (2017) FASEB J
    • Csóka, B.1
  • 116
    • 85030777783 scopus 로고    scopus 로고
    • The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation
    • Klose, C.S.N. et al. 2017. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549: 282–286.
    • (2017) Nature , vol.549 , pp. 282-286
    • Klose, C.S.N.1
  • 117
    • 84978128198 scopus 로고    scopus 로고
    • Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence
    • Ibiza, S. et al. 2016. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535: 440–443.
    • (2016) Nature , vol.535 , pp. 440-443
    • Ibiza, S.1
  • 118
    • 85029745241 scopus 로고    scopus 로고
    • The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation
    • Wallrapp, A. et al. 2017. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549: 351– 356.
    • (2017) Nature , vol.549 , pp. 351-356
    • Wallrapp, A.1
  • 119
    • 84924969384 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity
    • Brestoff, J.R. et al. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519: 242–246.
    • (2015) Nature , vol.519 , pp. 242-246
    • Brestoff, J.R.1
  • 120
    • 84991608456 scopus 로고    scopus 로고
    • IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection
    • Pelly, V.S. et al. 2016. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 9: 1407–1417.
    • (2016) Mucosal Immunol , vol.9 , pp. 1407-1417
    • Pelly, V.S.1
  • 121
    • 84975127155 scopus 로고    scopus 로고
    • IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function
    • Noval, R.M., O.T. Burton, H.C. Oettgen, & T. Chatila. 2016. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J. Allergy Clin. Immunol. 138: 801–811.e9.
    • (2016) J. Allergy Clin. Immunol. , vol.138 , pp. 801-811
    • Noval, R.M.1    Burton, O.T.2    Oettgen, H.C.3    Chatila, T.4
  • 122
    • 84928583743 scopus 로고    scopus 로고
    • Type 2 cytokines: Mechanisms and therapeutic strategies
    • Wynn, T.A. 2015. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 15: 271–282.
    • (2015) Nat. Rev. Immunol. , vol.15 , pp. 271-282
    • Wynn, T.A.1
  • 123
    • 85027962739 scopus 로고    scopus 로고
    • Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells
    • Rauber, S. et al. 2017. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23: 938–944.
    • (2017) Nat. Med. , vol.23 , pp. 938-944
    • Rauber, S.1
  • 124
    • 84961801675 scopus 로고    scopus 로고
    • Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths
    • Smith, K.A. et al. 2016. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 9: 428– 443.
    • (2016) Mucosal Immunol , vol.9 , pp. 428-443
    • Smith, K.A.1
  • 125
    • 85028348594 scopus 로고    scopus 로고
    • Regulatory innate lymphoid cells control innate intestinal inflammation
    • Wang, S. et al. 2017. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171: 201–216.e18.
    • (2017) Cell , vol.171 , pp. 201-216
    • Wang, S.1
  • 126
    • 85036615149 scopus 로고    scopus 로고
    • Alternative activation generates IL-10 producing type 2 innate lymphoid cells
    • Seehus, C.R. et al. 2017. Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat. Commun. 8: 1900.
    • (2017) Nat. Commun. , vol.8 , pp. 1900
    • Seehus, C.R.1
  • 127
    • 85027948313 scopus 로고    scopus 로고
    • Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus
    • Monticelli, L.A. et al. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12: 1045–1054.
    • (2011) Nat. Immunol. , vol.12 , pp. 1045-1054
    • Monticelli, L.A.1
  • 128
    • 84907953760 scopus 로고    scopus 로고
    • + T cells cooperate to mediate type 2 immune response in mice
    • + T cells cooperate to mediate type 2 immune response in mice. Allergy 69: 1300–1307.
    • (2014) Allergy , vol.69 , pp. 1300-1307
    • Drake, L.Y.1    Iijima, K.2    Kita, H.3
  • 129
    • 77952311199 scopus 로고    scopus 로고
    • Control of immunity by the TNFR-related molecule OX40 (CD134)
    • Michael, C. 2010. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 28: 57–78.
    • (2010) Annu. Rev. Immunol. , vol.28 , pp. 57-78
    • Michael, C.1
  • 131
    • 84994551721 scopus 로고    scopus 로고
    • Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway
    • Yu, Y. et al. 2016. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 539: 102–106.
    • (2016) Nature , vol.539 , pp. 102-106
    • Yu, Y.1
  • 132
    • 85028880916 scopus 로고    scopus 로고
    • ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control
    • Schwartz, C. et al. 2017. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J. Exp. Med. 214: 2507–2521.
    • (2017) J. Exp. Med , vol.214 , pp. 2507-2521
    • Schwartz, C.1
  • 133
    • 84876746655 scopus 로고    scopus 로고
    • Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages
    • Molofsky, A.B. et al. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210: 535–549.
    • (2013) J. Exp. Med. , vol.210 , pp. 535-549
    • Molofsky, A.B.1
  • 134
    • 82555186955 scopus 로고    scopus 로고
    • Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
    • Nguyen, K.D. et al. 2011. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480: 104–108.
    • (2011) Nature , vol.480 , pp. 104-108
    • Nguyen, K.D.1
  • 135
    • 84902094655 scopus 로고    scopus 로고
    • Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat
    • Qiu, Y. et al. 2014. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157: 1292–1308.
    • (2014) Cell , vol.157 , pp. 1292-1308
    • Qiu, Y.1
  • 136
    • 85017520090 scopus 로고    scopus 로고
    • Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis
    • Fischer, K. et al. 2017. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat. Med. 23: 623.
    • (2017) Nat. Med. , vol.23 , pp. 623
    • Fischer, K.1
  • 137
    • 84920940721 scopus 로고    scopus 로고
    • Activated type 2 innate lymphoid cells regulate beige fat biogenesis
    • Lee, M.W. et al. 2015. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160: 74–87.
    • (2015) Cell , vol.160 , pp. 74-87
    • Lee, M.W.1
  • 138
    • 84922934617 scopus 로고    scopus 로고
    • Adipose tissue: ILC2 crank up the heat
    • Flach, M. & A. Diefenbach. 2015. Adipose tissue: ILC2 crank up the heat. Cell Metab. 21: 152–153.
    • (2015) Cell Metab , vol.21 , pp. 152-153
    • Flach, M.1    Diefenbach, A.2
  • 139
    • 84892928571 scopus 로고    scopus 로고
    • Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity
    • Spencer, S.P. et al. 2014. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343: 432–437.
    • (2014) Science , vol.343 , pp. 432-437
    • Spencer, S.P.1
  • 140
  • 141
    • 77957113600 scopus 로고    scopus 로고
    • A large-scale, consortium-based genomewide association study of asthma
    • Moffatt, M.F. et al. 2010. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363: 1211–1221.
    • (2010) N. Engl. J. Med. , vol.363 , pp. 1211-1221
    • Moffatt, M.F.1
  • 142
    • 84897130315 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures
    • Gold, M.J. et al. 2014. Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J. Allergy Clin. Immunol. 133: 1142– 1148.
    • (2014) J. Allergy Clin. Immunol. , vol.133 , pp. 1142-1148
    • Gold, M.J.1
  • 143
    • 85006412427 scopus 로고    scopus 로고
    • Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses
    • De Grove, K.C. et al. 2017. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses. J. Allergy Clin. Immunol. 139: 246–257.e4.
    • (2017) J. Allergy Clin. Immunol. , vol.139 , pp. 246-257
    • de Grove, K.C.1
  • 144
    • 84860343753 scopus 로고    scopus 로고
    • Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma
    • Klein, W.R.G. et al. 2012. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol. 42: 1106– 1116.
    • (2012) Eur. J. Immunol. , vol.42 , pp. 1106-1116
    • Klein, W.R.G.1
  • 145
    • 84905968184 scopus 로고    scopus 로고
    • Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations
    • Snelgrove, R.J. et al. 2014. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations. J. Allergy Clin. Immunol. 134: 583–592.e6.
    • (2014) J. Allergy Clin. Immunol. , vol.134 , pp. 583-592
    • Snelgrove, R.J.1
  • 146
    • 84990831235 scopus 로고    scopus 로고
    • Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation
    • Martinez-Gonzalez, I. et al. 2016. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45: 198–208.
    • (2016) Immunity , vol.45 , pp. 198-208
    • Martinez-Gonzalez, I.1
  • 147
    • 84863011729 scopus 로고    scopus 로고
    • + CD44(Hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs
    • + CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J. Immunol. 188: 1503–1513.
    • (2012) J. Immunol. , vol.188 , pp. 1503-1513
    • Bartemes, K.R.1
  • 148
    • 84869099631 scopus 로고    scopus 로고
    • IL-33 induces innate lymphoid cell-mediated airway inflammation by activating mammalian target of rapamycin
    • Salmond, R.J. et al. 2012. IL-33 induces innate lymphoid cell-mediated airway inflammation by activating mammalian target of rapamycin. J. Allergy Clin. Immunol. 130: 1159–1166.e6.
    • (2012) J. Allergy Clin. Immunol. , vol.130 , pp. 1159-1166
    • Salmond, R.J.1
  • 149
    • 84872003060 scopus 로고    scopus 로고
    • IL-33 drives biphasic IL-13 production for noncanonical type 2 immunity against hookworms
    • Hung, L.Y. et al. 2013. IL-33 drives biphasic IL-13 production for noncanonical type 2 immunity against hookworms. Proc. Natl. Acad. Sci. USA 110: 282–287.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 282-287
    • Hung, L.Y.1
  • 150
    • 84941994329 scopus 로고    scopus 로고
    • Innate immunological function of TH2 cells in vivo
    • Guo, L. et al. 2015. Innate immunological function of TH2 cells in vivo. Nat. Immunol. 16: 1051–1059.
    • (2015) Nat. Immunol. , vol.16 , pp. 1051-1059
    • Guo, L.1
  • 151
    • 84894736115 scopus 로고    scopus 로고
    • + Th2 cell responses
    • + Th2 cell responses. J. Immunol. 192: 2442– 2448.
    • (2014) J. Immunol. , vol.192 , pp. 2442-2448
    • Mirchandani, A.S.1
  • 152
    • 84938537267 scopus 로고    scopus 로고
    • Maintenance of immune homeostasis through ILC/T cell interactions
    • von Burg, N., G. Turchinovich, & D. Finke. 2015. Maintenance of immune homeostasis through ILC/T cell interactions. Front. Immunol. 6: 416.
    • (2015) Front. Immunol. , vol.6 , pp. 416
    • von Burg, N.1    Turchinovich, G.2    Finke, D.3
  • 153
    • 84952637013 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses
    • Halim, T.Y.F. et al. 2016. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17: 57–64.
    • (2016) Nat. Immunol. , vol.17 , pp. 57-64
    • Halim, T.Y.F.1
  • 154
    • 85018394725 scopus 로고    scopus 로고
    • Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction
    • Rigas, D. et al. 2017. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J. Allergy Clin. Immunol. 139: 1468–1477.e2.
    • (2017) J. Allergy Clin. Immunol. , vol.139 , pp. 1468-1477
    • Rigas, D.1
  • 155
    • 85019159369 scopus 로고    scopus 로고
    • Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients
    • Sugita, K. et al. 2018. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J. Allergy Clin. Immunol. 141: 300–310.e11.
    • (2018) J. Allergy Clin. Immunol. , vol.141 , pp. 300-310
    • Sugita, K.1
  • 156
    • 85019710609 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization
    • Steer, C.A. et al. 2017. Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J. Allergy Clin. Immunol. 140: 593– 595.e3.
    • (2017) J. Allergy Clin. Immunol. , vol.140 , pp. 593-595
    • Steer, C.A.1
  • 157
    • 85013921443 scopus 로고    scopus 로고
    • First-breath-induced type 2 pathways shape the lung immune environment
    • Saluzzo, S. et al. 2017. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 18: 1893– 1905.
    • (2017) Cell Rep , vol.18 , pp. 1893-1905
    • Saluzzo, S.1
  • 158
    • 84962062339 scopus 로고    scopus 로고
    • Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation
    • Monticelli, L.A. et al. 2016. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat. Immunol. 17: 656–665.
    • (2016) Nat. Immunol. , vol.17 , pp. 656-665
    • Monticelli, L.A.1
  • 159
    • 84953639674 scopus 로고    scopus 로고
    • Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia
    • Smith, S.G. et al. 2016. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137: 75–86.e8.
    • (2016) J. Allergy Clin. Immunol. , vol.137 , pp. 75-86
    • Smith, S.G.1
  • 160
    • 84994072631 scopus 로고    scopus 로고
    • Human circulating group 2 innate lymphoid cells can express CD154 and promote IgE production
    • Maggi, L. et al. 2017. Human circulating group 2 innate lymphoid cells can express CD154 and promote IgE production. J. Allergy Clin. Immunol. 139: 964–976.e4.
    • (2017) J. Allergy Clin. Immunol. , vol.139 , pp. 964-976
    • Maggi, L.1
  • 161
    • 84959491386 scopus 로고    scopus 로고
    • Circulating innate lymphoid cells are differentially regulated in allergic and nonallergic subjects
    • Lombardi, V. et al. 2016. Circulating innate lymphoid cells are differentially regulated in allergic and nonallergic subjects. J. Allergy Clin. Immunol. 138: 305–308.
    • (2016) J. Allergy Clin. Immunol. , vol.138 , pp. 305-308
    • Lombardi, V.1
  • 162
    • 84994430962 scopus 로고    scopus 로고
    • + type 2 innate lymphoid cells correlate with asthma control status and treatment response
    • + type 2 innate lymphoid cells correlate with asthma control status and treatment response. Am. J. Respir. Cell Mol. Biol. 55: 675–683.
    • (2016) Am. J. Respir. Cell Mol. Biol. , vol.55 , pp. 675-683
    • Yi, J.1
  • 163
    • 85029587825 scopus 로고    scopus 로고
    • Allergen-induced increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma
    • Ruchong, C. et al. 2017. Allergen-induced increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma. Am. J. Respir. Crit. Care Med. 196: 700–712.
    • (2017) Am. J. Respir. Crit. Care Med. , vol.196 , pp. 700-712
    • Ruchong, C.1
  • 164
    • 84989904460 scopus 로고    scopus 로고
    • Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: A single-centre, randomised, double-blind, parallel-group, placebo-controlled trial
    • Gonem, S. et al. 2016. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir. Med. 4: 699–707.
    • (2016) Lancet Respir. Med. , vol.4 , pp. 699-707
    • Gonem, S.1
  • 165
    • 79959380307 scopus 로고    scopus 로고
    • Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity
    • Chang, Y.J. et al. 2011. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12: 631–638.
    • (2011) Nat. Immunol. , vol.12 , pp. 631-638
    • Chang, Y.J.1
  • 166
    • 84905563278 scopus 로고    scopus 로고
    • Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells
    • Hong, J.Y. et al. 2014. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J. Allergy Clin. Immunol. 134: 429–439.
    • (2014) J. Allergy Clin. Immunol. , vol.134 , pp. 429-439
    • Hong, J.Y.1
  • 167
    • 84908374296 scopus 로고    scopus 로고
    • Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation
    • Beale, J. et al. 2014. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 6: 256ra134.
    • (2014) Sci. Transl. Med. , vol.6 , pp. 256
    • Beale, J.1
  • 168
    • 84983160238 scopus 로고    scopus 로고
    • Pandemic influenza virus, pH1N1, induces asthmatic symptoms via activation of innate lymphoid cells
    • Shim, D.H. et al. 2015. Pandemic influenza virus, pH1N1, induces asthmatic symptoms via activation of innate lymphoid cells. Pediatr. Allergy Immunol. 26: 780– 788.
    • (2015) Pediatr. Allergy Immunol. , vol.26 , pp. 780-788
    • Shim, D.H.1
  • 169
    • 85013031065 scopus 로고    scopus 로고
    • IFN-γ blocks development of an asthma phenotype in rhinovirus-infected baby mice by inhibiting type 2 innate lymphoid cells
    • Han, M. et al. 2017. IFN-γ blocks development of an asthma phenotype in rhinovirus-infected baby mice by inhibiting type 2 innate lymphoid cells. Am. J. Respir. Cell Mol. Biol. 56: 242–251.
    • (2017) Am. J. Respir. Cell Mol. Biol. , vol.56 , pp. 242-251
    • Han, M.1
  • 170
    • 84964794103 scopus 로고    scopus 로고
    • Respiratory syncytial virus infection activates IL-13–producing group 2 innate lymphoid cells through thymic stromal lymphopoietin
    • Stier, M.T. et al. 2016. Respiratory syncytial virus infection activates IL-13–producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 138: 814–824.e11.
    • (2016) J. Allergy Clin. Immunol. , vol.138 , pp. 814-824
    • Stier, M.T.1
  • 171
    • 84946055529 scopus 로고    scopus 로고
    • Respiratory syncytial virus disease is mediated by age-variable IL-33
    • Saravia, J. et al. 2015. Respiratory syncytial virus disease is mediated by age-variable IL-33. PLoS Pathog. 11: e1005217.
    • (2015) Plos Pathog , vol.11
    • Saravia, J.1
  • 173
    • 84992021884 scopus 로고    scopus 로고
    • Genetic and epigenetic studies of atopic dermatitis
    • Bin, L. & D.Y.M. Leung. 2016. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin. Immunol. 12: 52.
    • (2016) Allergy Asthma Clin. Immunol. , vol.12 , pp. 52
    • Bin, L.1    Leung, D.Y.M.2
  • 174
    • 84878257969 scopus 로고    scopus 로고
    • Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells
    • Roediger, B. et al. 2013. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14: 564–573.
    • (2013) Nat. Immunol. , vol.14 , pp. 564-573
    • Roediger, B.1
  • 175
    • 84882750151 scopus 로고    scopus 로고
    • Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice
    • Imai, Y. et al. 2013. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc. Natl. Acad. Sci. USA 110: 13921–13926.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 13921-13926
    • Imai, Y.1
  • 176
    • 84973633011 scopus 로고    scopus 로고
    • IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing
    • Rak, G.D. et al. 2016. IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J. Invest. Dermatol. 136: 487–496.
    • (2016) J. Invest. Dermatol. , vol.136 , pp. 487-496
    • Rak, G.D.1
  • 177
    • 85025084792 scopus 로고    scopus 로고
    • Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis
    • Mashiko, S., H. Mehta, R. Bissonnette, & M. Sarfati. 2017. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. J. Dermatol. Sci. 88: 167–174.
    • (2017) J. Dermatol. Sci. , vol.88 , pp. 167-174
    • Mashiko, S.1    Mehta, H.2    Bissonnette, R.3    Sarfati, M.4
  • 178
    • 41449089071 scopus 로고    scopus 로고
    • The burden of disease associated with filaggrin mutations: A population-based, longitudinal birth cohort study
    • Henderson, J. et al. 2008. The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J. Allergy Clin. Immunol. 121: 872–877 e879.
    • (2008) J. Allergy Clin. Immunol , vol.121 , pp. 872-877
    • Henderson, J.1
  • 179
    • 80053517839 scopus 로고    scopus 로고
    • Filaggrin mutations associated with skin and allergic diseases
    • Irvine, A.D., W.H. McLean, & D.Y. Leung. 2011. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365: 1315–1327.
    • (2011) N. Engl. J. Med. , vol.365 , pp. 1315-1327
    • Irvine, A.D.1    McLean, W.H.2    Leung, D.Y.3
  • 180
    • 84882580383 scopus 로고    scopus 로고
    • Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis
    • McHedlidze, T. et al. 2013. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39: 357–371.
    • (2013) Immunity , vol.39 , pp. 357-371
    • McHedlidze, T.1
  • 181
    • 84956782591 scopus 로고    scopus 로고
    • Immunology in the liver— from homeostasis to disease
    • Heymann, F. & F. Tacke. 2016. Immunology in the liver— from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13: 88–110.
    • (2016) Nat. Rev. Gastroenterol. Hepatol. , vol.13 , pp. 88-110
    • Heymann, F.1    Tacke, F.2
  • 182
    • 84878060996 scopus 로고    scopus 로고
    • IL-33 induces nuocytes and modulates liver injury in viral hepatitis
    • Liang, Y. et al. 2013. IL-33 induces nuocytes and modulates liver injury in viral hepatitis. J. Immunol. 190: 5666– 5675.
    • (2013) J. Immunol. , vol.190 , pp. 5666-5675
    • Liang, Y.1
  • 183
    • 85012254755 scopus 로고    scopus 로고
    • Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury
    • Gadani, S.P., I. Smirnov, A.T. Smith, et al. 2017. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J. Exp. Med. 214: 285–296.
    • (2017) J. Exp. Med. , vol.214 , pp. 285-296
    • Gadani, S.P.1    Smirnov, I.2    Smith, A.T.3
  • 184
    • 84924351875 scopus 로고    scopus 로고
    • IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells
    • Besnard, A.G. et al. 2015. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells. PLoS Pathog. 11: e1004607.
    • (2015) Plos Pathog , vol.11
    • Besnard, A.G.1
  • 185
    • 84864002777 scopus 로고    scopus 로고
    • IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages
    • Jiang, H.R. et al. 2012. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur. J. Immunol. 42: 1804– 1814.
    • (2012) Eur. J. Immunol. , vol.42 , pp. 1804-1814
    • Jiang, H.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.