-
1
-
-
84907029494
-
The multifaceted roles of Bcl11b in thymic and peripheral T cells: impact on immune diseases
-
Avram, D., and D. Califano. 2014. The multifaceted roles of Bcl11b in thymic and peripheral T cells: impact on immune diseases. J. Immunol. 193:2059-2065. http://dx.doi.org/10.4049/jimmunol.1400930.
-
(2014)
J. Immunol
, vol.193
, pp. 2059-2065
-
-
Avram, D.1
Califano, D.2
-
2
-
-
80052963798
-
Reciprocal expression of IL-25 and IL-17A is important for allergic airways hyperreactivity
-
Barlow, J.L., R.J. Flynn, S.J. Ballantyne, and A.N. McKenzie. 2011. Reciprocal expression of IL-25 and IL-17A is important for allergic airways hyperreactivity. Clin. Exp. Allergy. 41:1447-1455. http://dx.doi.org/10.1111/j.1365-2222.2011.03806.x.
-
(2011)
Clin. Exp. Allergy
, vol.41
, pp. 1447-1455
-
-
Barlow, J.L.1
Flynn, R.J.2
Ballantyne, S.J.3
McKenzie, A.N.4
-
3
-
-
79956269003
-
Identification of the earliest NK-cell precursor in the mouse BM
-
Carotta, S., S.H. Pang, S.L. Nutt, and G.T. Belz. 2011. Identification of the earliest NK-cell precursor in the mouse BM. Blood. 117:5449-5452. http://dx.doi.org/10.1182/blood-2010-11-318956.
-
(2011)
Blood
, vol.117
, pp. 5449-5452
-
-
Carotta, S.1
Pang, S.H.2
Nutt, S.L.3
Belz, G.T.4
-
4
-
-
79959380307
-
Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity
-
Chang, Y.J., H.Y. Kim, L.A. Albacker, N. Baumgarth, A.N. McKenzie, D.E. Smith, R.H. Dekruyff, and D.T. Umetsu. 2011. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12:631-638. http://dx.doi.org/10.1038/ni.2045.
-
(2011)
Nat. Immunol
, vol.12
, pp. 631-638
-
-
Chang, Y.J.1
Kim, H.Y.2
Albacker, L.A.3
Baumgarth, N.4
McKenzie, A.N.5
Smith, D.E.6
Dekruyff, R.H.7
Umetsu, D.T.8
-
5
-
-
0033104742
-
Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation
-
Colucci, F., C. Soudais, E. Rosmaraki, L. Vanes, V.L. Tybulewicz, and J.P. Di Santo. 1999. Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J. Immunol. 162:2761-2765.
-
(1999)
J. Immunol
, vol.162
, pp. 2761-2765
-
-
Colucci, F.1
Soudais, C.2
Rosmaraki, E.3
Vanes, L.4
Tybulewicz, V.L.5
Di Santo, J.P.6
-
6
-
-
84907968021
-
Development, differentiation, and diversity of innate lymphoid cells
-
Diefenbach, A., M. Colonna, and S. Koyasu. 2014. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 41:354-365. http://dx.doi.org/10.1016/j.immuni.2014.09.005.
-
(2014)
Immunity
, vol.41
, pp. 354-365
-
-
Diefenbach, A.1
Colonna, M.2
Koyasu, S.3
-
7
-
-
84866519013
-
Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation
-
Halim, T.Y., A. MacLaren, M.T. Romanish, M.J. Gold, K.M. McNagny, and F. Takei. 2012. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity. 37:463-474. http://dx.doi.org/10.1016/j.immuni.2012.06.012.
-
(2012)
Immunity
, vol.37
, pp. 463-474
-
-
Halim, T.Y.1
MacLaren, A.2
Romanish, M.T.3
Gold, M.J.4
McNagny, K.M.5
Takei, F.6
-
8
-
-
84888346690
-
Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice
-
Hams, E., R.M. Locksley, A.N. McKenzie, and P.G. Fallon. 2013. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191:5349-5353. http://dx.doi.org/10.4049/jimmunol.1301176.
-
(2013)
J. Immunol
, vol.191
, pp. 5349-5353
-
-
Hams, E.1
Locksley, R.M.2
McKenzie, A.N.3
Fallon, P.G.4
-
9
-
-
84867769688
-
The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells
-
Hoyler, T., C.S. Klose, A. Souabni, A. Turqueti-Neves, D. Pfeifer, E.L. Rawlins, D. Voehringer, M. Busslinger, and A. Diefenbach. 2012. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 37:634-648. http://dx.doi.org/10.1016/j.immuni.2012.06.020.
-
(2012)
Immunity
, vol.37
, pp. 634-648
-
-
Hoyler, T.1
Klose, C.S.2
Souabni, A.3
Turqueti-Neves, A.4
Pfeifer, D.5
Rawlins, E.L.6
Voehringer, D.7
Busslinger, M.8
Diefenbach, A.9
-
10
-
-
84978024427
-
The role of BCL11B in hematological malignancy
-
Huang, X., X. Du, and Y. Li. 2012. The role of BCL11B in hematological malignancy. Exp. Hematol. Oncol. 1:22. http://dx.doi.org/10.1186/2162-3619-1-22.
-
(2012)
Exp. Hematol. Oncol
, vol.1
, pp. 22
-
-
Huang, X.1
Du, X.2
Li, Y.3
-
11
-
-
79960050089
-
+ and CD103+ dendritic cell lineages
-
+ and CD103+ dendritic cell lineages. EMBO J. 30:2690-2704. http://dx.doi.org/10.1038/emboj.2011.163.
-
(2011)
EMBO J
, vol.30
, pp. 2690-2704
-
-
Jackson, J.T.1
Hu, Y.2
Liu, R.3
Masson, F.4
D'Amico, A.5
Carotta, S.6
Xin, A.7
Camilleri, M.J.8
Mount, A.M.9
Kallies, A.10
-
12
-
-
77954329976
-
An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b
-
Li, L., M. Leid, and E.V. Rothenberg. 2010a. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science. 329:89-93. http://dx.doi.org/10.1126/science.1188989.
-
(2010)
Science
, vol.329
, pp. 89-93
-
-
Li, L.1
Leid, M.2
Rothenberg, E.V.3
-
13
-
-
77954326626
-
Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion
-
Li, P., S. Burke, J. Wang, X. Chen, M. Ortiz, S.C. Lee, D. Lu, L. Campos, D. Goulding, B.L. Ng, et al. 2010b. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science. 329:85-89. http://dx.doi.org/10.1126/science.1188063.
-
(2010)
Science
, vol.329
, pp. 85-89
-
-
Li, P.1
Burke, S.2
Wang, J.3
Chen, X.4
Ortiz, M.5
Lee, S.C.6
Lu, D.7
Campos, L.8
Goulding, D.9
Ng, B.L.10
-
14
-
-
77958553288
-
Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity
-
Liu, P., P. Li, and S. Burke. 2010. Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol. Rev. 238:138-149. http://dx.doi.org/10.1111/j.1600-065X.2010.00953.x.
-
(2010)
Immunol. Rev
, vol.238
, pp. 138-149
-
-
Liu, P.1
Li, P.2
Burke, S.3
-
15
-
-
84907983938
-
Innate lymphoid cells in inflammation and immunity
-
McKenzie, A.N., H. Spits, and G. Eberl. 2014. Innate lymphoid cells in inflammation and immunity. Immunity. 41:366-374. http://dx.doi.org/10.1016/j.immuni.2014.09.006.
-
(2014)
Immunity
, vol.41
, pp. 366-374
-
-
McKenzie, A.N.1
Spits, H.2
Eberl, G.3
-
16
-
-
80054889051
-
Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161
-
Mjösberg, J.M., S. Trifari, N.K. Crellin, C.P. Peters, C.M. van Drunen, B. Piet, W.J. Fokkens, T. Cupedo, and H. Spits. 2011. Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12:1055-1062. http://dx.doi.org/10.1038/ni.2104.
-
(2011)
Nat. Immunol
, vol.12
, pp. 1055-1062
-
-
Mjösberg, J.M.1
Trifari, S.2
Crellin, N.K.3
Peters, C.P.4
van Drunen, C.M.5
Piet, B.6
Fokkens, W.J.7
Cupedo, T.8
Spits, H.9
-
17
-
-
84876746655
-
Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages
-
Molofsky, A.B., J.C. Nussbaum, H.E. Liang, S.J. Van Dyken, L.E. Cheng, A. Mohapatra, A. Chawla, and R.M. Locksley. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210:535-549. http://dx.doi.org/10.1084/jem.20121964.
-
(2013)
J. Exp. Med
, vol.210
, pp. 535-549
-
-
Molofsky, A.B.1
Nussbaum, J.C.2
Liang, H.E.3
Van Dyken, S.J.4
Cheng, L.E.5
Mohapatra, A.6
Chawla, A.7
Locksley, R.M.8
-
18
-
-
75749122181
-
Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells
-
Moro, K., T. Yamada, M. Tanabe, T. Takeuchi, T. Ikawa, H. Kawamoto, J. Furusawa, M. Ohtani, H. Fujii, and S. Koyasu. 2010. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature. 463:540-544. http://dx.doi.org/10.1038/nature08636.
-
(2010)
Nature
, vol.463
, pp. 540-544
-
-
Moro, K.1
Yamada, T.2
Tanabe, M.3
Takeuchi, T.4
Ikawa, T.5
Kawamoto, H.6
Furusawa, J.7
Ohtani, M.8
Fujii, H.9
Koyasu, S.10
-
19
-
-
77951817855
-
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
-
Neill, D.R., S.H. Wong, A. Bellosi, R.J. Flynn, M. Daly, T.K. Langford, C. Bucks, C.M. Kane, P.G. Fallon, R. Pannell, et al. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 464:1367-1370. http://dx.doi.org/10.1038/nature08900.
-
(2010)
Nature
, vol.464
, pp. 1367-1370
-
-
Neill, D.R.1
Wong, S.H.2
Bellosi, A.3
Flynn, R.J.4
Daly, M.5
Langford, T.K.6
Bucks, C.7
Kane, C.M.8
Fallon, P.G.9
Pannell, R.10
-
20
-
-
84907370454
-
MHCIImediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion
-
Oliphant, C.J., Y.Y. Hwang, J.A. Walker, M. Salimi, S.H. Wong, J.M. Brewer, A. Englezakis, J.L. Barlow, E. Hams, S.T. Scanlon, et al. 2014. MHCIImediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity. 41:283-295. http://dx.doi.org/10.1016/j.immuni.2014.06.016.
-
(2014)
Immunity
, vol.41
, pp. 283-295
-
-
Oliphant, C.J.1
Hwang, Y.Y.2
Walker, J.A.3
Salimi, M.4
Wong, S.H.5
Brewer, J.M.6
Englezakis, A.7
Barlow, J.L.8
Hams, E.9
Scanlon, S.T.10
-
21
-
-
77954926597
-
Systemically dispersed innate IL-13-expressing cells in type 2 immunity
-
Price, A.E., H.E. Liang, B.M. Sullivan, R.L. Reinhardt, C.J. Eisley, D.J. Erle, and R.M. Locksley. 2010. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA. 107:11489-11494. http://dx.doi.org/10.1073/pnas.1003988107.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 11489-11494
-
-
Price, A.E.1
Liang, H.E.2
Sullivan, B.M.3
Reinhardt, R.L.4
Eisley, C.J.5
Erle, D.J.6
Locksley, R.M.7
-
22
-
-
57449118239
-
Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
-
Satoh-Takayama, N., C.A. Vosshenrich, S. Lesjean-Pottier, S. Sawa, M. Lochner, F. Rattis, J.J. Mention, K. Thiam, N. Cerf-Bensussan, O. Mandelboim, et al. 2008. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 29:958-970. http://dx.doi.org/10.1016/j.immuni.2008.11.001.
-
(2008)
Immunity
, vol.29
, pp. 958-970
-
-
Satoh-Takayama, N.1
Vosshenrich, C.A.2
Lesjean-Pottier, S.3
Sawa, S.4
Lochner, M.5
Rattis, F.6
Mention, J.J.7
Thiam, K.8
Cerf-Bensussan, N.9
Mandelboim, O.10
-
23
-
-
77949956058
-
Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus
-
Schlenner, S.M., V. Madan, K. Busch, A. Tietz, C. Läufle, C. Costa, C. Blum, H.J. Fehling, and H.R. Rodewald. 2010. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity. 32:426-436. http://dx.doi.org/10.1016/j.immuni.2010.03.005.
-
(2010)
Immunity
, vol.32
, pp. 426-436
-
-
Schlenner, S.M.1
Madan, V.2
Busch, K.3
Tietz, A.4
Läufle, C.5
Costa, C.6
Blum, C.7
Fehling, H.J.8
Rodewald, H.R.9
-
24
-
-
78751706261
-
CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut
-
Sonnenberg, G.F., L.A. Monticelli, M.M. Elloso, L.A. Fouser, and D. Artis. 2011. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity. 34:122-134. http://dx.doi.org/10.1016/j.immuni.2010.12.009.
-
(2011)
Immunity
, vol.34
, pp. 122-134
-
-
Sonnenberg, G.F.1
Monticelli, L.A.2
Elloso, M.M.3
Fouser, L.A.4
Artis, D.5
-
25
-
-
84873804024
-
Direct control of hepatic glucose production by interleukin-13 in mice
-
Stanya, K.J., D. Jacobi, S. Liu, P. Bhargava, L. Dai, M.R. Gangl, K. Inouye, J.L. Barlow, Y. Ji, J.P. Mizgerd, et al. 2013. Direct control of hepatic glucose production by interleukin-13 in mice. J. Clin. Invest. 123:261-271. http://dx.doi.org/10.1172/JCI64941.
-
(2013)
J. Clin. Invest
, vol.123
, pp. 261-271
-
-
Stanya, K.J.1
Jacobi, D.2
Liu, S.3
Bhargava, P.4
Dai, L.5
Gangl, M.R.6
Inouye, K.7
Barlow, J.L.8
Ji, Y.9
Mizgerd, J.P.10
-
26
-
-
0037502235
-
Bcl11b is required for differentiation and survival of αβ T lymphocytes
-
Wakabayashi, Y., H. Watanabe, J. Inoue, N. Takeda, J. Sakata, Y. Mishima, J. Hitomi, T. Yamamoto, M. Utsuyama, O. Niwa, et al. 2003. Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat. Immunol. 4:533-539. http://dx.doi.org/10.1038/ni927.
-
(2003)
Nat. Immunol
, vol.4
, pp. 533-539
-
-
Wakabayashi, Y.1
Watanabe, H.2
Inoue, J.3
Takeda, N.4
Sakata, J.5
Mishima, Y.6
Hitomi, J.7
Yamamoto, T.8
Utsuyama, M.9
Niwa, O.10
-
27
-
-
84872968300
-
Innate lymphoid cells-how did we miss them?
-
Walker, J.A., J.L. Barlow, and A.N. McKenzie. 2013. Innate lymphoid cells-how did we miss them? Nat. Rev. Immunol. 13:75-87. http://dx.doi.org/10.1038/nri3349.
-
(2013)
Nat. Rev. Immunol
, vol.13
, pp. 75-87
-
-
Walker, J.A.1
Barlow, J.L.2
McKenzie, A.N.3
-
28
-
-
84863393407
-
Transcription factor ROR? is critical for nuocyte development
-
Wong, S.H., J.A. Walker, H.E. Jolin, L.F. Drynan, E. Hams, A. Camelo, J.L. Barlow, D.R. Neill, V. Panova, U. Koch, et al. 2012. Transcription factor ROR? is critical for nuocyte development. Nat. Immunol. 13:229-236. http://dx.doi.org/10.1038/ni.2208.
-
(2012)
Nat. Immunol
, vol.13
, pp. 229-236
-
-
Wong, S.H.1
Walker, J.A.2
Jolin, H.E.3
Drynan, L.F.4
Hams, E.5
Camelo, A.6
Barlow, J.L.7
Neill, D.R.8
Panova, V.9
Koch, U.10
-
29
-
-
84896396519
-
The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells
-
Yagi, R., C. Zhong, D.L. Northrup, F. Yu, N. Bouladoux, S. Spencer, G. Hu, L. Barron, S. Sharma, T. Nakayama, et al. 2014. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity. 40:378-388. http://dx.doi.org/10.1016/j.immuni.2014.01.012.
-
(2014)
Immunity
, vol.40
, pp. 378-388
-
-
Yagi, R.1
Zhong, C.2
Northrup, D.L.3
Yu, F.4
Bouladoux, N.5
Spencer, S.6
Hu, G.7
Barron, L.8
Sharma, S.9
Nakayama, T.10
|