메뉴 건너뛰기




Volumn 37, Issue 3, 2019, Pages 310-324

Deep Learning with Microfluidics for Biotechnology

Author keywords

deep learning; lab on a chip; machine learning; microfluidics

Indexed keywords

BIOTECHNOLOGY; COMPLEX NETWORKS; COMPUTER GRAPHICS; GRAPHICS PROCESSING UNIT; LAB-ON-A-CHIP; LABORATORIES; LEARNING SYSTEMS; MICROFLUIDICS; NEURAL NETWORKS; PROGRAM PROCESSORS;

EID: 85054446719     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2018.08.005     Document Type: Review
Times cited : (176)

References (112)
  • 1
    • 84896284039 scopus 로고    scopus 로고
    • The present and future role of microfluidics in biomedical research
    • Sackmann, E.K., et al. The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189.
    • (2014) Nature , vol.507 , pp. 181-189
    • Sackmann, E.K.1
  • 2
    • 85024409143 scopus 로고    scopus 로고
    • Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding
    • Lan, F., et al. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35 (2017), 640–646.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 640-646
    • Lan, F.1
  • 3
    • 85010710363 scopus 로고    scopus 로고
    • Single-cell barcoding and sequencing using droplet microfluidics
    • Zilionis, R., et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12 (2016), 44–73.
    • (2016) Nat. Protoc. , vol.12 , pp. 44-73
    • Zilionis, R.1
  • 4
    • 85012906748 scopus 로고    scopus 로고
    • Single cell proteomics in biomedicine: high-dimensional data acquisition, visualization, and analysis
    • Su, Y., et al. Single cell proteomics in biomedicine: high-dimensional data acquisition, visualization, and analysis. Proteomics, 17, 2017, 1600267.
    • (2017) Proteomics , vol.17
    • Su, Y.1
  • 5
    • 85020532249 scopus 로고    scopus 로고
    • Microfluidics as a strategic player to decipher single-cell omics?
    • Caen, O., et al. Microfluidics as a strategic player to decipher single-cell omics?. Trends Biotechnol. 35 (2017), 713–727.
    • (2017) Trends Biotechnol. , vol.35 , pp. 713-727
    • Caen, O.1
  • 6
    • 85033670876 scopus 로고    scopus 로고
    • Microfluidics for combating antimicrobial resistance
    • Liu, Z., et al. Microfluidics for combating antimicrobial resistance. Trends Biotechnol. 35 (2017), 1129–1139.
    • (2017) Trends Biotechnol. , vol.35 , pp. 1129-1139
    • Liu, Z.1
  • 7
    • 33644777646 scopus 로고    scopus 로고
    • Lab-on-a-chip: microfluidics in drug discovery
    • Dittrich, P.S., Manz, A., Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5 (2006), 210–218.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , pp. 210-218
    • Dittrich, P.S.1    Manz, A.2
  • 8
    • 1242346127 scopus 로고    scopus 로고
    • Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter
    • Wolff, A., et al. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3 (2003), 22–27.
    • (2003) Lab Chip , vol.3 , pp. 22-27
    • Wolff, A.1
  • 9
    • 84861216623 scopus 로고    scopus 로고
    • Hydrodynamic stretching of single cells for large population mechanical phenotyping
    • Gossett, D.R., et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 7630–7635.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 7630-7635
    • Gossett, D.R.1
  • 10
    • 84877057770 scopus 로고    scopus 로고
    • Single-cell analysis and sorting using droplet-based microfluidics
    • Mazutis, L., et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8 (2013), 870–891.
    • (2013) Nat. Protoc. , vol.8 , pp. 870-891
    • Mazutis, L.1
  • 11
    • 84992388359 scopus 로고    scopus 로고
    • High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays
    • Cermak, N., et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34 (2016), 1052–1059.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1052-1059
    • Cermak, N.1
  • 12
    • 84929573436 scopus 로고    scopus 로고
    • Quantifying the volume of single cells continuously using a microfluidic pressure-driven trap with media exchange
    • Riordon, J., et al. Quantifying the volume of single cells continuously using a microfluidic pressure-driven trap with media exchange. Biomicrofluidics, 8, 2014, 011101.
    • (2014) Biomicrofluidics , vol.8 , pp. 011101
    • Riordon, J.1
  • 13
    • 84900315204 scopus 로고    scopus 로고
    • Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption
    • Wang, B.L., et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol. 32 (2014), 473–478.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 473-478
    • Wang, B.L.1
  • 14
    • 59349111076 scopus 로고    scopus 로고
    • Microfluidic control of cell pairing and fusion
    • Skelley, A., et al. Microfluidic control of cell pairing and fusion. Nat. Methods 6 (2009), 147–152.
    • (2009) Nat. Methods , vol.6 , pp. 147-152
    • Skelley, A.1
  • 15
    • 37549002543 scopus 로고    scopus 로고
    • Isolation of rare circulating tumour cells in cancer patients by microchip technology
    • Nagrath, S., et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450 (2007), 1235–1239.
    • (2007) Nature , vol.450 , pp. 1235-1239
    • Nagrath, S.1
  • 16
    • 84934437818 scopus 로고    scopus 로고
    • A microfluidic device for label-free, physical capture of circulating tumor cell clusters
    • Sarioglu, A.F., et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12 (2015), 685–691.
    • (2015) Nat. Methods , vol.12 , pp. 685-691
    • Sarioglu, A.F.1
  • 17
    • 0242417549 scopus 로고    scopus 로고
    • Passively driven integrated microfluidic system for separation of motile sperm
    • Cho, B.S., et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75 (2003), 1671–1675.
    • (2003) Anal. Chem. , vol.75 , pp. 1671-1675
    • Cho, B.S.1
  • 18
    • 84894259696 scopus 로고    scopus 로고
    • Rapid selection of sperm with high DNA integrity
    • Nosrati, R., et al. Rapid selection of sperm with high DNA integrity. Lab Chip 14 (2014), 1142–1150.
    • (2014) Lab Chip , vol.14 , pp. 1142-1150
    • Nosrati, R.1
  • 19
    • 84925291393 scopus 로고    scopus 로고
    • Microfluidics for sperm research
    • Knowlton, S.M., et al. Microfluidics for sperm research. Trends Biotechnol. 33 (2015), 221–229.
    • (2015) Trends Biotechnol. , vol.33 , pp. 221-229
    • Knowlton, S.M.1
  • 20
    • 85035334552 scopus 로고    scopus 로고
    • Microfluidics for sperm analysis and selection
    • Nosrati, R., et al. Microfluidics for sperm analysis and selection. Nat. Rev. Urol. 14 (2017), 707–730.
    • (2017) Nat. Rev. Urol. , vol.14 , pp. 707-730
    • Nosrati, R.1
  • 21
    • 85023177328 scopus 로고    scopus 로고
    • Droplet control technologies for microfluidic high throughput screening (μHTS)
    • Sesen, M., et al. Droplet control technologies for microfluidic high throughput screening (μHTS). Lab Chip 17 (2017), 2372–2394.
    • (2017) Lab Chip , vol.17 , pp. 2372-2394
    • Sesen, M.1
  • 22
    • 79955457407 scopus 로고    scopus 로고
    • Zebrafish embryo development in a microfluidic flow-through system
    • Wielhouwer, E.M., et al. Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 11 (2011), 1815–1824.
    • (2011) Lab Chip , vol.11 , pp. 1815-1824
    • Wielhouwer, E.M.1
  • 23
    • 84857162647 scopus 로고    scopus 로고
    • Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development
    • Choudhury, D., et al. Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab Chip 12 (2012), 892–900.
    • (2012) Lab Chip , vol.12 , pp. 892-900
    • Choudhury, D.1
  • 24
    • 46249092235 scopus 로고    scopus 로고
    • Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans
    • Chung, K., et al. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods 5 (2008), 637–643.
    • (2008) Nat. Methods , vol.5 , pp. 637-643
    • Chung, K.1
  • 25
    • 79551572775 scopus 로고    scopus 로고
    • A microfluidic array for large-scale ordering and orientation of embryos
    • Chung, K., et al. A microfluidic array for large-scale ordering and orientation of embryos. Nat. Methods 8 (2011), 171–176.
    • (2011) Nat. Methods , vol.8 , pp. 171-176
    • Chung, K.1
  • 26
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., et al. Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1
  • 27
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • Bengio, Y., et al. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 1798–1828.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1798-1828
    • Bengio, Y.1
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., et al. ImageNet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 25 (2012), 1097–1105.
    • (2012) Adv. Neural Inform. Process. Syst. , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1
  • 29
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Published online September 4, 2014.
    • Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. arXiv, 2014 Published online September 4, 2014. https://arxiv.org/abs/1409.1556v6.
    • (2014) arXiv
    • Simonyan, K.1    Zisserman, A.2
  • 32
    • 85039172448 scopus 로고    scopus 로고
    • Effective approaches to attention-based neural machine translation
    • Published online August 17, 2015.
    • Luong, M.-T., et al. Effective approaches to attention-based neural machine translation. arXiv, 2015 Published online August 17, 2015. https://arxiv.org/abs/1508.04025.
    • (2015) arXiv
    • Luong, M.-T.1
  • 33
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Sutskever, I., et al. Sequence to sequence learning with neural networks. Adv. Neural Inform. Process. Syst. 4 (2014), 3104–3112.
    • (2014) Adv. Neural Inform. Process. Syst. , vol.4 , pp. 3104-3112
    • Sutskever, I.1
  • 34
    • 84921940378 scopus 로고    scopus 로고
    • Learning phrase representations using RNN encoder–decoder for statistical machine translation
    • Published online June 3, 2014.
    • Cho, K., et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. arXiv, 2014 Published online June 3, 2014. https://arxiv.org/abs/1406.1078.
    • (2014) arXiv
    • Cho, K.1
  • 37
    • 85050637249 scopus 로고    scopus 로고
    • Bag of tricks for efficient text classification
    • Published online July 6, 2016.
    • Joulin, A., et al. Bag of tricks for efficient text classification. arXiv, 2016 Published online July 6, 2016. https://arxiv.org/abs/1607.01759.
    • (2016) arXiv
    • Joulin, A.1
  • 38
    • 84943153743 scopus 로고    scopus 로고
    • Reading text in the wild with convolutional neural networks
    • Jaderberg, M., et al. Reading text in the wild with convolutional neural networks. Int. J. Comput. Vis. 116 (2016), 1–20.
    • (2016) Int. J. Comput. Vis. , vol.116 , pp. 1-20
    • Jaderberg, M.1
  • 39
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J., Troyanskaya, O.G., Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12 (2015), 931–934.
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 40
    • 84980022857 scopus 로고    scopus 로고
    • Deep learning for computational biology
    • Angermueller, C., et al. Deep learning for computational biology. Mol. Syst. Biol., 12, 2016, 878.
    • (2016) Mol. Syst. Biol. , vol.12 , pp. 878
    • Angermueller, C.1
  • 41
    • 85041308556 scopus 로고    scopus 로고
    • Machine learning to detect signatures of disease in liquid biopsies – a user's guide
    • Ko, J., et al. Machine learning to detect signatures of disease in liquid biopsies – a user's guide. Lab Chip 18 (2018), 395–405.
    • (2018) Lab Chip , vol.18 , pp. 395-405
    • Ko, J.1
  • 42
    • 85017546094 scopus 로고    scopus 로고
    • High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy
    • Guo, B., et al. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy. Cytometry A 91 (2017), 494–502.
    • (2017) Cytometry A , vol.91 , pp. 494-502
    • Guo, B.1
  • 43
    • 85035364200 scopus 로고    scopus 로고
    • Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes
    • Ko, J., et al. Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes. ACS Nano 11 (2017), 11182–11193.
    • (2017) ACS Nano , vol.11 , pp. 11182-11193
    • Ko, J.1
  • 44
    • 85028336483 scopus 로고    scopus 로고
    • Label-free, high-throughput holographic screening and enumeration of tumor cells in blood
    • Singh, D.K., et al. Label-free, high-throughput holographic screening and enumeration of tumor cells in blood. Lab Chip 17 (2017), 2920–2932.
    • (2017) Lab Chip , vol.17 , pp. 2920-2932
    • Singh, D.K.1
  • 45
    • 84994756552 scopus 로고    scopus 로고
    • Machine learning based single-frame super-resolution processing for lensless blood cell counting
    • Huang, X., et al. Machine learning based single-frame super-resolution processing for lensless blood cell counting. Sensors, 16, 2016, 1836.
    • (2016) Sensors , vol.16 , pp. 1836
    • Huang, X.1
  • 46
    • 85015332197 scopus 로고    scopus 로고
    • Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation
    • Mahdi, Y., Daoud, K., Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation. J. Dispers. Sci. Technol. 38 (2017), 1501–1508.
    • (2017) J. Dispers. Sci. Technol. , vol.38 , pp. 1501-1508
    • Mahdi, Y.1    Daoud, K.2
  • 47
    • 84960984309 scopus 로고    scopus 로고
    • Deep learning in label-free cell classification
    • Chen, C.L., et al. Deep learning in label-free cell classification. Sci. Rep., 6, 2016, 21471.
    • (2016) Sci. Rep. , vol.6 , pp. 21471
    • Chen, C.L.1
  • 48
    • 85029505529 scopus 로고    scopus 로고
    • Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip
    • Heo, Y.J., et al. Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip. Sci. Rep., 7, 2017, 21471.
    • (2017) Sci. Rep. , vol.7 , pp. 21471
    • Heo, Y.J.1
  • 49
    • 84999836246 scopus 로고    scopus 로고
    • Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
    • Van Valen, D.A., et al. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol., 12, 2016, e1005177.
    • (2016) PLoS Comput. Biol. , vol.12
    • Van Valen, D.A.1
  • 50
    • 85009237688 scopus 로고    scopus 로고
    • Cytopathological image analysis using deep-learning networks in microfluidic microscopy
    • Gopakumar, G., et al. Cytopathological image analysis using deep-learning networks in microfluidic microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 34, 2017, 111.
    • (2017) J. Opt. Soc. Am. A Opt. Image Sci. Vis. , vol.34 , pp. 111
    • Gopakumar, G.1
  • 51
    • 85017419380 scopus 로고    scopus 로고
    • Deep learning for flow sculpting: insights into efficient learning using scientific simulation data
    • Stoecklein, D., et al. Deep learning for flow sculpting: insights into efficient learning using scientific simulation data. Sci. Rep, 7, 2017, 46368.
    • (2017) Sci. Rep , vol.7 , pp. 46368
    • Stoecklein, D.1
  • 52
    • 85030178612 scopus 로고    scopus 로고
    • Deep learning for single-molecule science
    • Albrecht, T., et al. Deep learning for single-molecule science. Nanotechnology, 28, 2017, 423001.
    • (2017) Nanotechnology , vol.28 , pp. 423001
    • Albrecht, T.1
  • 53
    • 85032037004 scopus 로고    scopus 로고
    • Opportunities and obstacles for deep learning in biology and medicine
    • Published online May 28, 2017
    • Ching, T., et al. Opportunities and obstacles for deep learning in biology and medicine. bioRxiv, 2017, 10.1101/142760 Published online May 28, 2017.
    • (2017) bioRxiv
    • Ching, T.1
  • 54
    • 84968861400 scopus 로고    scopus 로고
    • Applications of deep learning in biomedicine
    • Mamoshina, P., et al. Applications of deep learning in biomedicine. Mol. Pharm. 13 (2016), 1445–1454.
    • (2016) Mol. Pharm. , vol.13 , pp. 1445-1454
    • Mamoshina, P.1
  • 55
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos, P.J., Backpropagation through time: what it does and how to do it. Proc. IEEE 78 (1990), 1550–1560.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 56
    • 84872497956 scopus 로고    scopus 로고
    • Machine learning approach for automated screening of malaria parasite using light microscopic images
    • Das, D.K., et al. Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 45 (2013), 97–106.
    • (2013) Micron , vol.45 , pp. 97-106
    • Das, D.K.1
  • 57
    • 85029661023 scopus 로고    scopus 로고
    • Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning
    • Mirsky, S.K., et al. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry A 91A (2017), 893–900.
    • (2017) Cytometry A , vol.91A , pp. 893-900
    • Mirsky, S.K.1
  • 58
    • 85035364200 scopus 로고    scopus 로고
    • Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes
    • Ko, J., et al. Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes. ACS Nano 11 (2017), 11182–11193.
    • (2017) ACS Nano , vol.11 , pp. 11182-11193
    • Ko, J.1
  • 59
    • 84997174196 scopus 로고    scopus 로고
    • Deep phenotyping unveils hidden traits and genetic relations in subtle mutants
    • San-Miguel, A., et al. Deep phenotyping unveils hidden traits and genetic relations in subtle mutants. Nat. Commun., 7, 2016, 12990.
    • (2016) Nat. Commun. , vol.7 , pp. 12990
    • San-Miguel, A.1
  • 60
    • 85021745740 scopus 로고    scopus 로고
    • How not to drown in data: a guide for biomaterial engineers
    • Vasilevich, A.S., et al. How not to drown in data: a guide for biomaterial engineers. Trends Biotechnol. 35 (2017), 743–755.
    • (2017) Trends Biotechnol. , vol.35 , pp. 743-755
    • Vasilevich, A.S.1
  • 61
    • 85054455201 scopus 로고    scopus 로고
    • Use of deep learning for characterization of microfluidic soft sensors
    • Han, S., et al. Use of deep learning for characterization of microfluidic soft sensors. IEEE Robot. Autom. Lett. 3 (2018), 873–880.
    • (2018) IEEE Robot. Autom. Lett. , vol.3 , pp. 873-880
    • Han, S.1
  • 62
    • 85020469555 scopus 로고    scopus 로고
    • DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads
    • Boža, V., et al. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 12, 2017, e0178751.
    • (2017) PLoS One , vol.12
    • Boža, V.1
  • 63
    • 77952112749 scopus 로고    scopus 로고
    • Using buoyant mass to measure the growth of single cells
    • Godin, M., et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7 (2010), 387–390.
    • (2010) Nat. Methods , vol.7 , pp. 387-390
    • Godin, M.1
  • 64
    • 85039174318 scopus 로고    scopus 로고
    • Exploring the limits of language modeling
    • Published online February 7, 2016.
    • Jozefowicz, R., et al. Exploring the limits of language modeling. arXiv, 2016 Published online February 7, 2016. https://arxiv.org/abs/1602.02410.
    • (2016) arXiv
    • Jozefowicz, R.1
  • 65
    • 85039863846 scopus 로고    scopus 로고
    • On the prediction of DNA-binding proteins only from primary sequences: a deep learning approach
    • Qu, Y.-H., et al. On the prediction of DNA-binding proteins only from primary sequences: a deep learning approach. PLoS One, 12, 2017, e0188129.
    • (2017) PLoS One , vol.12
    • Qu, Y.-H.1
  • 67
    • 85041430720 scopus 로고    scopus 로고
    • Single cells make big data: new challenges and opportunities in transcriptomics
    • Angerer, P., et al. Single cells make big data: new challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4 (2017), 85–91.
    • (2017) Curr. Opin. Syst. Biol. , vol.4 , pp. 85-91
    • Angerer, P.1
  • 68
    • 85054453053 scopus 로고    scopus 로고
    • Massive single-cell RNA-seq analysis and imputation via deep learning
    • Published online July 26 2018
    • Deng, Y., et al. Massive single-cell RNA-seq analysis and imputation via deep learning. bioRxiv, 2018, 10.1101/315556 Published online July 26 2018.
    • (2018) bioRxiv
    • Deng, Y.1
  • 69
    • 85042487006 scopus 로고    scopus 로고
    • Deep learning for biology
    • Webb, S., Deep learning for biology. Nature 554 (2018), 555–557.
    • (2018) Nature , vol.554 , pp. 555-557
    • Webb, S.1
  • 70
    • 85047752833 scopus 로고    scopus 로고
    • Next-generation machine learning for biological networks
    • Camacho, D.M., et al. Next-generation machine learning for biological networks. Cell 173 (2018), 1581–1592.
    • (2018) Cell , vol.173 , pp. 1581-1592
    • Camacho, D.M.1
  • 71
    • 84969504939 scopus 로고    scopus 로고
    • Multi-omics of single cells: strategies and applications
    • Bock, C., et al. Multi-omics of single cells: strategies and applications. Trends Biotechnol. 34 (2016), 605–608.
    • (2016) Trends Biotechnol. , vol.34 , pp. 605-608
    • Bock, C.1
  • 72
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • LeCun, Y., Bengio, Y., Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw., 3361, 1995, 1995.
    • (1995) Handb. Brain Theory Neural Netw. , vol.3361 , pp. 1995
    • LeCun, Y.1    Bengio, Y.2
  • 73
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • IEEE
    • Zeiler, M.D. et al. (2011) Adaptive deconvolutional networks for mid and high level feature learning. In 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2018–2025, IEEE.
    • (2011) 2011 IEEE International Conference on Computer Vision (ICCV) , pp. 2018-2025
    • Zeiler, M.D.1
  • 74
    • 85041441983 scopus 로고    scopus 로고
    • Visual estimation of bacterial growth level in microfluidic culture systems
    • Kim, K., et al. Visual estimation of bacterial growth level in microfluidic culture systems. Sensors, 18, 2018, 447.
    • (2018) Sensors , vol.18 , pp. 447
    • Kim, K.1
  • 75
    • 85043275350 scopus 로고    scopus 로고
    • AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
    • Zaimi, A., et al. AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks. Sci. Rep., 8, 2018, 3816.
    • (2018) Sci. Rep. , vol.8 , pp. 3816
    • Zaimi, A.1
  • 78
    • 85033697420 scopus 로고    scopus 로고
    • SegNet: a deep convolutional encoder–decoder architecture for image segmentation
    • Badrinarayanan, V., et al. SegNet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017), 2481–2495.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , pp. 2481-2495
    • Badrinarayanan, V.1
  • 79
    • 84986261676 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • IEEE
    • Lin, G. et al. (2016) Efficient piecewise training of deep structured models for semantic segmentation. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3194–3203, IEEE.
    • (2016) 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 3194-3203
    • Lin, G.1
  • 81
    • 84986250328 scopus 로고    scopus 로고
    • ParseNet: looking wider to see better
    • Published online June 15, 2015.
    • Liu, W., et al. ParseNet: looking wider to see better. arXiv, 2015 Published online June 15, 2015. https://arxiv.org/abs/1506.04579.
    • (2015) arXiv
    • Liu, W.1
  • 82
    • 85024089027 scopus 로고    scopus 로고
    • DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
    • Published online June 2, 2016.
    • Chen, L.-C., et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv, 2016 Published online June 2, 2016. https://arxiv.org/abs/1606.00915.
    • (2016) arXiv
    • Chen, L.-C.1
  • 83
    • 85013149570 scopus 로고    scopus 로고
    • Prospective identification of hematopoietic lineage choice by deep learning
    • Buggenthin, F., et al. Prospective identification of hematopoietic lineage choice by deep learning. Nat. Methods 14 (2017), 403–406.
    • (2017) Nat. Methods , vol.14 , pp. 403-406
    • Buggenthin, F.1
  • 84
    • 85046485207 scopus 로고    scopus 로고
    • Phenotypic antimicrobial susceptibility testing with deep learning video microscopy
    • Yu, H., et al. Phenotypic antimicrobial susceptibility testing with deep learning video microscopy. Anal. Chem. 90 (2018), 6314–6322.
    • (2018) Anal. Chem. , vol.90 , pp. 6314-6322
    • Yu, H.1
  • 85
    • 84905754409 scopus 로고    scopus 로고
    • Microfluidic organs-on-chips
    • Bhatia, S.N., Ingber, D.E., Microfluidic organs-on-chips. Nat. Biotechnol. 32 (2014), 760–772.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 760-772
    • Bhatia, S.N.1    Ingber, D.E.2
  • 86
    • 85031413199 scopus 로고    scopus 로고
    • Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies
    • Ahadian, S., et al. Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies. Adv. Healthc. Mater., 7, 2018, 1700506.
    • (2018) Adv. Healthc. Mater. , vol.7
    • Ahadian, S.1
  • 87
    • 85037041276 scopus 로고    scopus 로고
    • An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival
    • Lu, C., et al. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod. Pathol. 30 (2017), 1655–1665.
    • (2017) Mod. Pathol. , vol.30 , pp. 1655-1665
    • Lu, C.1
  • 88
    • 85047079043 scopus 로고    scopus 로고
    • Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction
    • Faust, K., et al. Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction. BMC Bioinform., 19, 2018, 173.
    • (2018) BMC Bioinform. , vol.19 , pp. 173
    • Faust, K.1
  • 89
    • 85044195316 scopus 로고    scopus 로고
    • Interconnected microphysiological systems for quantitative biology and pharmacology studies
    • Edington, C.D., et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep., 8, 2018, 4530.
    • (2018) Sci. Rep. , vol.8 , pp. 4530
    • Edington, C.D.1
  • 90
    • 84960154893 scopus 로고    scopus 로고
    • Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis
    • Zhang, B., et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15 (2016), 669–678.
    • (2016) Nat. Mater. , vol.15 , pp. 669-678
    • Zhang, B.1
  • 91
    • 84946222016 scopus 로고    scopus 로고
    • Synthetic biology lures Silicon Valley investors
    • Check Hayden, E., Synthetic biology lures Silicon Valley investors. Nature, 527, 2015, 19.
    • (2015) Nature , vol.527 , pp. 19
    • Check Hayden, E.1
  • 92
    • 85012967324 scopus 로고    scopus 로고
    • Neural networks for the prediction of organic chemistry reactions
    • Wei, J.N., et al. Neural networks for the prediction of organic chemistry reactions. ACS Cent. Sci. 2 (2016), 725–732.
    • (2016) ACS Cent. Sci. , vol.2 , pp. 725-732
    • Wei, J.N.1
  • 93
    • 85041012344 scopus 로고    scopus 로고
    • A platform for high-throughput assessments of environmental multistressors
    • Nguyen, B., et al. A platform for high-throughput assessments of environmental multistressors. Adv. Sci. (Weinh.), 5, 2018, 1700677.
    • (2018) Adv. Sci. (Weinh.) , vol.5
    • Nguyen, B.1
  • 94
    • 85028560598 scopus 로고    scopus 로고
    • A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities
    • Lambert, B.S., et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2 (2017), 1344–1349.
    • (2017) Nat. Microbiol. , vol.2 , pp. 1344-1349
    • Lambert, B.S.1
  • 95
    • 85021654643 scopus 로고    scopus 로고
    • Turning the page: advancing paper-based microfluidics for broad diagnostic application
    • Gong, M.M., Sinton, D., Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem. Rev. 117 (2017), 8447–8480.
    • (2017) Chem. Rev. , vol.117 , pp. 8447-8480
    • Gong, M.M.1    Sinton, D.2
  • 96
    • 84905482334 scopus 로고    scopus 로고
    • Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics
    • Erickson, D., et al. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 14 (2014), 3159–3164.
    • (2014) Lab Chip , vol.14 , pp. 3159-3164
    • Erickson, D.1
  • 97
    • 85038104955 scopus 로고    scopus 로고
    • Microfluidics based point-of-care diagnostics
    • Pandey, C.M., et al. Microfluidics based point-of-care diagnostics. Biotechnol. J., 13, 2017, 1700047.
    • (2017) Biotechnol. J. , vol.13
    • Pandey, C.M.1
  • 98
    • 85019091951 scopus 로고    scopus 로고
    • Ensuring food safety: quality monitoring using microfluidics
    • Weng, X., Neethirajan, S., Ensuring food safety: quality monitoring using microfluidics. Trends Food Sci. Technol. 65 (2017), 10–22.
    • (2017) Trends Food Sci. Technol. , vol.65 , pp. 10-22
    • Weng, X.1    Neethirajan, S.2
  • 99
    • 84973486576 scopus 로고    scopus 로고
    • Rapid, low-cost detection of Zika virus using programmable biomolecular components
    • Pardee, K., et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165 (2016), 1255–1266.
    • (2016) Cell , vol.165 , pp. 1255-1266
    • Pardee, K.1
  • 100
    • 84968649810 scopus 로고    scopus 로고
    • Convolutional neural networks for medical image analysis: full training or fine tuning?
    • Tajbakhsh, N., et al. Convolutional neural networks for medical image analysis: full training or fine tuning?. IEEE Trans. Med. Imaging 35 (2016), 1299–1312.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1299-1312
    • Tajbakhsh, N.1
  • 101
    • 85054461995 scopus 로고    scopus 로고
    • Texas Instruments, Inc. Miniaturized electronic circuits, US3138743A
    • Kilby, J.S. Texas Instruments, Inc. Miniaturized electronic circuits, US3138743A.
    • Kilby, J.S.1
  • 102
    • 0031173078 scopus 로고    scopus 로고
    • The Intel 4004 microprocessor: what constituted invention?
    • Aspray, W., The Intel 4004 microprocessor: what constituted invention?. IEEE Ann. Hist. Comput. 19 (1997), 4–15.
    • (1997) IEEE Ann. Hist. Comput. , vol.19 , pp. 4-15
    • Aspray, W.1
  • 103
    • 0018653907 scopus 로고
    • A gas chromatographic air analyzer fabricated on a silicon wafer
    • Terry, S.C., et al. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26 (1979), 1880–1886.
    • (1979) IEEE Trans. Electron Devices , vol.26 , pp. 1880-1886
    • Terry, S.C.1
  • 104
    • 0032403465 scopus 로고    scopus 로고
    • Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
    • Duffy, D.C., et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70 (1998), 4974–4984.
    • (1998) Anal. Chem. , vol.70 , pp. 4974-4984
    • Duffy, D.C.1
  • 105
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev., 65, 1958, 386.
    • (1958) Psychol. Rev. , vol.65 , pp. 386
    • Rosenblatt, F.1
  • 106
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., et al. Learning representations by back-propagating errors. Nature 323 (1986), 533–536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1
  • 107
    • 77956729294 scopus 로고    scopus 로고
    • Serial order: a parallel distributed processing approach
    • (Donahoe, J.W. and Dorsel, P., eds), Elsevier
    • Jordan, M.I. (1997) Serial order: a parallel distributed processing approach. In Advances in Psychology (Vol. 121) (Donahoe, J.W. and Dorsel, P., eds), pp. 471–495, Elsevier.
    • (1997) Advances in Psychology , vol.121 , pp. 471-495
    • Jordan, M.I.1
  • 108
    • 85021238093 scopus 로고    scopus 로고
    • TensorFlow: large-scale machine learning on heterogeneous distributed systems
    • Published online March 14, 2016.
    • Abadi, M., et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv, 2016 Published online March 14, 2016. https://arxiv.org/abs/1603.04467.
    • (2016) arXiv
    • Abadi, M.1
  • 109
    • 84958291921 scopus 로고    scopus 로고
    • TensorFlow: biology's gateway to deep learning?
    • Rampasek, L., Goldenberg, A., TensorFlow: biology's gateway to deep learning?. Cell Syst. 2 (2016), 12–14.
    • (2016) Cell Syst. , vol.2 , pp. 12-14
    • Rampasek, L.1    Goldenberg, A.2
  • 110
    • 38949126980 scopus 로고    scopus 로고
    • What are artificial neural networks?
    • Krogh, A., What are artificial neural networks?. Nat. Biotechnol. 26 (2008), 195–197.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 195-197
    • Krogh, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.