메뉴 건너뛰기




Volumn 8, Issue 1, 2018, Pages

AxonDeepSeg: Automatic axon and myelin segmentation from microscopy data using convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; ARTIFICIAL NEURAL NETWORK; AUTOMATION; AXON; IMAGE PROCESSING; METABOLISM; MICROSCOPY; MOUSE; MYELIN SHEATH; PROCEDURES; SOFTWARE;

EID: 85043275350     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-018-22181-4     Document Type: Article
Times cited : (108)

References (40)
  • 1
    • 80052084695 scopus 로고    scopus 로고
    • Axons and myelinating glia: An intimate contact
    • Zoupi, L., Savvaki, M. & Karagogeos, D. Axons and myelinating glia: An intimate contact. IUBMB Life 63, 730-735 (2011).
    • (2011) IUBMB Life , vol.63 , pp. 730-735
    • Zoupi, L.1    Savvaki, M.2    Karagogeos, D.3
  • 2
    • 84906791217 scopus 로고    scopus 로고
    • Regulation of conduction time along axons
    • Seidl, A. H. Regulation of conduction time along axons. Neuroscience 276, 126-134 (2014).
    • (2014) Neuroscience , vol.276 , pp. 126-134
    • Seidl, A.H.1
  • 3
    • 84912567915 scopus 로고    scopus 로고
    • Mechanisms of white matter damage in multiple sclerosis
    • Lassmann, H. Mechanisms of white matter damage in multiple sclerosis. Glia 62, 1816-1830 (2014).
    • (2014) Glia , vol.62 , pp. 1816-1830
    • Lassmann, H.1
  • 4
    • 84928215531 scopus 로고    scopus 로고
    • From demyelination to remyelination: The road toward therapies for spinal cord injury
    • Papastefanaki, F. & Matsas, R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 63, 1101-1125 (2015).
    • (2015) Glia , vol.63 , pp. 1101-1125
    • Papastefanaki, F.1    Matsas, R.2
  • 7
    • 84969667861 scopus 로고    scopus 로고
    • In vivo histology of the myelin g-ratio with magnetic resonance imaging
    • Stikov, N. et al. In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 118, 397-405 (2015).
    • (2015) Neuroimage , vol.118 , pp. 397-405
    • Stikov, N.1
  • 8
    • 85043287191 scopus 로고    scopus 로고
    • Axon and Myelin Morphology in Animal and Human Spinal Cord
    • Saliani, A. et al. Axon and Myelin Morphology in Animal and Human Spinal Cord. Front. Neuroanat. 11, 129 (2017).
    • (2017) Front. Neuroanat , vol.11 , pp. 129
    • Saliani, A.1
  • 9
    • 0034655374 scopus 로고    scopus 로고
    • Automatic morphometry of nerve histological sections
    • Romero, E. et al. Automatic morphometry of nerve histological sections. J. Neurosci. Methods 97, 111-122 (2000).
    • (2000) J. Neurosci. Methods , vol.97 , pp. 111-122
    • Romero, E.1
  • 10
    • 0032594312 scopus 로고    scopus 로고
    • Automatic segmentation and measurement of axons in microscopic images
    • (International Society for Optics and Photonics
    • Cuisenaire, O., Romero, E., Veraart, C. & Macq, B. M. M. Automatic segmentation and measurement of axons in microscopic images. In Medical Imaging1999: Image Processing 3661, 920-930 (International Society for Optics and Photonics, 1999).
    • (1999) In Medical Imaging1999: Image Processing , vol.3661 , pp. 920-930
    • Cuisenaire, O.1    Romero, E.2    Veraart, C.3    Macq, B.M.M.4
  • 11
    • 80052306840 scopus 로고    scopus 로고
    • A semi-automated method for identifying and measuring myelinated nerve fibers in scanning electron microscope images
    • More, H. L., Chen, J., Gibson, E., Donelan, J. M. & Beg, M. F. A semi-automated method for identifying and measuring myelinated nerve fibers in scanning electron microscope images. J. Neurosci. Methods 201, 149-158 (2011).
    • (2011) J. Neurosci. Methods , vol.201 , pp. 149-158
    • More, H.L.1    Chen, J.2    Gibson, E.3    Donelan, J.M.4    Beg, M.F.5
  • 13
    • 84862801626 scopus 로고    scopus 로고
    • Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems
    • Wang, Y.-Y., Sun, Y.-N., Lin, C.-C. K. & Ju, M.-S. Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems. Artif. Intell. Med. 54, 189-200 (2012).
    • (2012) Artif. Intell. Med , vol.54 , pp. 189-200
    • Wang, Y.-Y.1    Sun, Y.-N.2    Lin, C.-C.K.3    Ju, M.-S.4
  • 14
    • 77049100019 scopus 로고    scopus 로고
    • Automatic identification and morphometry of optic nerve fibers in electron microscopy images
    • Zhao, X., Pan, Z., Wu, J., Zhou, G. & Zeng, Y. Automatic identification and morphometry of optic nerve fibers in electron microscopy images. Comput. Med. Imaging Graph. 34, 179-184 (2010).
    • (2010) Comput. Med. Imaging Graph , vol.34 , pp. 179-184
    • Zhao, X.1    Pan, Z.2    Wu, J.3    Zhou, G.4    Zeng, Y.5
  • 15
    • 84928011602 scopus 로고    scopus 로고
    • Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue
    • Bégin, S. et al. Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue. Biomed. Opt. Express 5, 4145-4161 (2014).
    • (2014) Biomed. Opt. Express , vol.5 , pp. 4145-4161
    • Bégin, S.1
  • 16
    • 84989899209 scopus 로고    scopus 로고
    • AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis
    • Zaimi, A. et al. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis. Front. Neuroinform. 10, 37 (2016).
    • (2016) Front. Neuroinform , vol.10 , pp. 37
    • Zaimi, A.1
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet Classification with Deep Convolutional Neural Networks
    • (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.), Curran Associates, Inc
    • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. in Advances in Neural Information Processing Systems 25 (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097-1105 (Curran Associates, Inc., 2012).
    • (2012) In Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. Proc. IEEE (2015).
    • (2015) Proc. IEEE
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 22
    • 84885927068 scopus 로고    scopus 로고
    • Classification of mitotic figures with convolutional neural networks and seeded blob features
    • Malon, C. D. & Cosatto, E. Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. Inform. 4, 9 (2013).
    • (2013) J. Pathol. Inform , vol.4 , pp. 9
    • Malon, C.D.1    Cosatto, E.2
  • 23
    • 84877789057 scopus 로고    scopus 로고
    • Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images
    • (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.), Curran Associates, Inc
    • Ciresan, D., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. In Advances in Neural Information Processing Systems 25 (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 2843-2851 (Curran Associates, Inc., 2012).
    • (2012) In Advances in Neural Information Processing Systems , vol.25 , pp. 2843-2851
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 25
    • 85028066929 scopus 로고    scopus 로고
    • Identification and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic image using a deep learning model
    • Naito, T. et al. Identification and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic image using a deep learning model. J. Neurosci. Methods 291, 141-149 (2017).
    • (2017) J. Neurosci. Methods , vol.291 , pp. 141-149
    • Naito, T.1
  • 27
    • 84959273164 scopus 로고    scopus 로고
    • In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy
    • Jelescu, I. O. et al. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy. Neuroimage 132, 104-114 (2016).
    • (2016) Neuroimage , vol.132 , pp. 104-114
    • Jelescu, I.O.1
  • 28
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proc. IEEE (2015).
    • (2015) Proc. IEEE
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 29
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • Simard, P. Y., Steinkraus, D. & Platt, J. C. Best practices for convolutional neural networks applied to visual document analysis. ICDAR (2003).
    • (2003) ICDAR
    • Simard, P.Y.1    Steinkraus, D.2    Platt, J.C.3
  • 31
    • 84969584486 scopus 로고    scopus 로고
    • Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
    • Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. in International Conference on Machine Learning 448-456 (2015).
    • (2015) International Conference on Machine Learning , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 34
    • 84884467080 scopus 로고    scopus 로고
    • Chapter 10 - Projections from the Spinal Cord to the Brain
    • Academic Press
    • Kayalioglu, G. Chapter 10 - Projections from the Spinal Cord to the Brain. In The Spinal Cord 148-167 (Academic Press, 2009).
    • (2009) In the Spinal Cord , pp. 148-167
    • Kayalioglu, G.1
  • 35
    • 72049113160 scopus 로고    scopus 로고
    • Chapter 11 - Projections from the Brain to the Spinal Cord
    • Academic Press
    • Watson, C. & Harvey, A. R. Chapter 11 - Projections from the Brain to the Spinal Cord. in The Spinal Cord 168-179 (Academic Press, 2009).
    • (2009) In the Spinal Cord , pp. 168-179
    • Watson, C.1    Harvey, A.R.2
  • 36
    • 30444454016 scopus 로고    scopus 로고
    • Ex vivo evaluation of ADC values within spinal cord white matter tracts
    • Schwartz, E. D. et al. Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am. J. Neuroradiol. 26, 390-397 (2005).
    • (2005) AJNR Am. J. Neuroradiol , vol.26 , pp. 390-397
    • Schwartz, E.D.1
  • 38
    • 70649084126 scopus 로고    scopus 로고
    • What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach
    • Chomiak, T. & Hu, B. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. journals. plos.org (2009).
    • (2009) Journals. Plos.org
    • Chomiak, T.1    Hu, B.2
  • 39
    • 84908539410 scopus 로고    scopus 로고
    • Sivic -Proceedings of the IEEE, J. & Learning and transferring mid-level image representations using convolutional neural networks
    • Oquab, M., Bottou, L., Laptev, I. Sivic -Proceedings of the IEEE, J. & Learning and transferring mid-level image representations using convolutional neural networks. cv-foundation.org (2014).
    • (2014) Cv-foundation.org
    • Oquab, M.1    Bottou, L.2    Laptev, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.