메뉴 건너뛰기




Volumn 28, Issue 42, 2017, Pages

Deep learning for single-molecule science

Author keywords

data analysis; deep learning; machine learning; nanoscience; nanotechnology; single molecule

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA REDUCTION; DEEP LEARNING; DNA SEQUENCES; GENE ENCODING; IMAGE RECOGNITION; LEARNING SYSTEMS; MOLECULES; NANOSCIENCE; NANOTECHNOLOGY; NEURAL NETWORKS; SIGNAL TO NOISE RATIO; SPEECH RECOGNITION; TECHNOLOGY TRANSFER;

EID: 85030178612     PISSN: 09574484     EISSN: 13616528     Source Type: Journal    
DOI: 10.1088/1361-6528/aa8334     Document Type: Review
Times cited : (57)

References (57)
  • 1
    • 0037474152 scopus 로고    scopus 로고
    • Zero-mode waveguides for single-molecule analysis at high concentrations
    • Levene M J 2003 Zero-mode waveguides for single-molecule analysis at high concentrations Science 299 682-6
    • (2003) Science , vol.299 , pp. 682-686
    • Levene, M.J.1
  • 2
    • 58149234737 scopus 로고    scopus 로고
    • Real-time DNA sequencing from single polymerase molecules
    • Eid J et al 2009 Real-time DNA sequencing from single polymerase molecules Science 323 133-8
    • (2009) Science , vol.323 , pp. 133-138
    • Eid, J.1
  • 3
    • 84923108892 scopus 로고    scopus 로고
    • Multiplex single-molecule interaction profiling of DNA-barcoded proteins
    • Gu L et al 2014 Multiplex single-molecule interaction profiling of DNA-barcoded proteins Nature 515 554-7
    • (2014) Nature , vol.515 , pp. 554-557
    • Gu, L.1
  • 4
    • 84962129079 scopus 로고    scopus 로고
    • Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
    • Bell N A W and Keyser U F 2016 Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores Nat. Nanotechnol. 11 645-51
    • (2016) Nat. Nanotechnol. , vol.11 , pp. 645-651
    • Bell, N.A.W.1    Keyser, U.F.2
  • 5
    • 84938151045 scopus 로고    scopus 로고
    • Quantitative interpretations of break junction conductance histograms in molecular electron transport
    • Quan R, Pitler C S, Ratner M A and Reuter M G 2015 Quantitative interpretations of break junction conductance histograms in molecular electron transport ACS Nano 9 7704-13
    • (2015) ACS Nano , vol.9 , pp. 7704-7713
    • Quan, R.1    Pitler, C.S.2    Ratner, M.A.3    Reuter, M.G.4
  • 6
    • 34547443630 scopus 로고    scopus 로고
    • Intrinsic multistate switching of gold clusters through electrochemical gating
    • Albrecht T, Mertens S F L and Ulstrup J 2007 Intrinsic multistate switching of gold clusters through electrochemical gating J. Am. Chem. Soc. 129 9162-7
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 9162-9167
    • Albrecht, T.1    Mertens, S.F.L.2    Ulstrup, J.3
  • 7
    • 84939234270 scopus 로고    scopus 로고
    • New insights into single-molecule junctions using a robust, unsupervised approach to data collection and analysis
    • Inkpen M S et al 2015 New insights into single-molecule junctions using a robust, unsupervised approach to data collection and analysis J. Am. Chem. Soc. 137 9971-81
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 9971-9981
    • Inkpen, M.S.1
  • 8
    • 84864299139 scopus 로고    scopus 로고
    • Electrochemical tunnelling sensors and their potential applications
    • Albrecht T 2012 Electrochemical tunnelling sensors and their potential applications Nat. Commun. 3 829
    • (2012) Nat. Commun. , vol.3 , pp. 829
    • Albrecht, T.1
  • 9
    • 84924757312 scopus 로고    scopus 로고
    • Correlation of breaking forces, conductances and geometries of molecular junctions
    • Yoshida K et al 2015 Correlation of breaking forces, conductances and geometries of molecular junctions Sci. Rep. 5 9002
    • (2015) Sci. Rep. , vol.5 , pp. 9002
    • Yoshida, K.1
  • 10
    • 65249178229 scopus 로고    scopus 로고
    • Random telegraphic conductance fluctuation at Au-pentacene-Au nanojunctions
    • Kihira Y, Shimada T, Matsuo Y, Nakamura E and Hasegawa T 2009 Random telegraphic conductance fluctuation at Au-pentacene-Au nanojunctions Nano Lett. 9 1442-6
    • (2009) Nano Lett. , vol.9 , pp. 1442-1446
    • Kihira, Y.1    Shimada, T.2    Matsuo, Y.3    Nakamura, E.4    Hasegawa, T.5
  • 11
    • 84935901993 scopus 로고    scopus 로고
    • Flicker noise as a probe of electronic interaction at metal-single molecule interfaces
    • Adak O et al 2015 Flicker noise as a probe of electronic interaction at metal-single molecule interfaces Nano Lett. 15 4143-9
    • (2015) Nano Lett. , vol.15 , pp. 4143-4149
    • Adak, O.1
  • 13
    • 33749874031 scopus 로고    scopus 로고
    • Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: Effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold
    • Fujihira M, Suzuki M, Fujii S and Nishikawa A 2006 Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold Phys. Chem. Chem. Phys. 8 3876-84
    • (2006) Phys. Chem. Chem. Phys. , vol.8 , pp. 3876-3884
    • Fujihira, M.1    Suzuki, M.2    Fujii, S.3    Nishikawa, A.4
  • 14
    • 84989877355 scopus 로고    scopus 로고
    • Unsupervised vector-based classification of single-molecule charge transport data
    • Lemmer M, Inkpen M S, Kornysheva K, Long N J and Albrecht T 2016 Unsupervised vector-based classification of single-molecule charge transport data Nat. Commun. 7 12922
    • (2016) Nat. Commun. , vol.7 , pp. 12922
    • Lemmer, M.1    Inkpen, M.S.2    Kornysheva, K.3    Long, N.J.4    Albrecht, T.5
  • 15
    • 85013174188 scopus 로고    scopus 로고
    • Uncovering hierarchical data structure in single molecule transport
    • Wu B H, Ivie J A, Johnson T K and Monti O L A 2017 Uncovering hierarchical data structure in single molecule transport J. Chem. Phys. 146 092321
    • (2017) J. Chem. Phys. , vol.146
    • Wu, B.H.1    Ivie, J.A.2    Johnson, T.K.3    Monti, O.L.A.4
  • 16
    • 84861328703 scopus 로고    scopus 로고
    • Chemical recognition and binding kinetics in a functionalized tunnel junction
    • Chang S et al 2012 Chemical recognition and binding kinetics in a functionalized tunnel junction Nanotechnology 23 235101
    • (2012) Nanotechnology , vol.23 , Issue.23
    • Chang, S.1
  • 17
    • 84867270440 scopus 로고    scopus 로고
    • Palladium electrodes for molecular tunnel junctions
    • Chang S et al 2012 Palladium electrodes for molecular tunnel junctions Nanotechnology 23 425202
    • (2012) Nanotechnology , vol.23
    • Chang, S.1
  • 18
    • 84902295162 scopus 로고    scopus 로고
    • Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling
    • Zhao Y A et al 2014 Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling Nat. Nanotechnol. 9 466-73
    • (2014) Nat. Nanotechnol. , vol.9 , pp. 466-473
    • Zhao, Y.A.1
  • 19
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C and Vapnik V 1995 Support-vector networks Mach. Learn. 20 273-97
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich T G and Bakiri G 1994 Solving multiclass learning problems via error-correcting output codes J. Artif. Intell. Res. 2 263-86
    • (1994) J. Artif. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 25
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber J 2015 Deep learning in neural networks: an overview Neural Netw. 61 85-117
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 26
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • (arXiv:1409.1556)
    • Simonyan K and Zisserman A 2015 Very deep convolutional networks for large-scale image recognition ICLR 2015 (arXiv:1409.1556)
    • (2015) ICLR 2015
    • Simonyan, K.1    Zisserman, A.2
  • 27
    • 84994201246 scopus 로고    scopus 로고
    • The IBM 2016 English conversational telephone speech recognition system
    • (arXiv:1604.08242v1)
    • Saon G, Sercu T, Rennie S and Kuo H-K J 2016 The IBM 2016 English conversational telephone speech recognition system InterSpeech 2016 (arXiv:1604.08242v1)
    • (2016) InterSpeech 2016
    • Saon, G.1    Sercu, T.2    Rennie, S.3    Kuo, H.-K.J.4
  • 28
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of go with deep neural networks and tree search
    • Silver D et al 2016 Mastering the game of go with deep neural networks and tree search Nature 529 484-9
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 31
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W S and Pitts W 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys. 5 115-33
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 33
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol. Rev. 65 386-408
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 40
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D E, Hinton G E and Williams R J 1986 Learning representations by back-propagating errors Nature 323 533-6
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 41
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural Netw. 2 359-66
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 42
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • LeCun Y et al 1989 Backpropagation applied to handwritten zip code recognition Neural Comput. 1 541-51
    • (1989) Neural Comput. , vol.1 , pp. 541-551
    • LeCun, Y.1
  • 43
    • 0002331173 scopus 로고
    • Comparison of learning algorithms for handwritten digit recognition
    • LeCun Y et al 1995 Comparison of learning algorithms for handwritten digit recognition Int. Conf. Artif. Neural Networks pp 53-60
    • (1995) Int. Conf. Artif. Neural Networks , pp. 53-60
    • LeCun, Y.1
  • 45
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal R M 1992 Connectionist learning of belief networks Artif. Intell. 56 71-113
    • (1992) Artif. Intell. , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 46
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton G E, Dayan P, Frey B J and Neal R M 1995 The wake-sleep algorithm for unsupervised neural networks Science 268 1158-61
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 48
    • 0029727454 scopus 로고    scopus 로고
    • Learning task-dependent distributed representations by backpropagation through structure
    • Goller C and Küchler A 1996 Learning task-dependent distributed representations by backpropagation through structure IEEE Trans. Neural Netw. 1 347-52
    • (1996) IEEE Trans. Neural Netw. , vol.1 , pp. 347-352
    • Goller, C.1    Küchler, A.2
  • 50
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G E, Osindero S and Teh Y-W 2006 A fast learning algorithm for deep belief nets Neural Comput. 18 1527-54
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 52
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • Szegedy C et al 2014 Going deeper with convolutions IEEE CVPR 00 1-9
    • (2014) IEEE CVPR , pp. 1-9
    • Szegedy, C.1
  • 54
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-based learning applied to document recognition Proc. IEEE 86 2278-324
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 55
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • (arXiv:1312.6034)
    • Simonyan K, Vedaldi A and Zisserman A 2014 Deep inside convolutional networks: visualising image classification models and saliency maps ICLR (arXiv:1312.6034)
    • (2014) ICLR
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 56
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • ed D Fleet et al
    • Zeiler M D and Fergus R 2014 Visualizing and understanding convolutional networks ECCV ed D Fleet et al pp 818-33
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.