메뉴 건너뛰기




Volumn 2, Issue 10, 2016, Pages 725-732

Neural networks for the prediction of organic chemistry reactions

Author keywords

[No Author keywords available]

Indexed keywords

EXPOSED TO; FINGERPRINTING METHODS; ORGANIC CHEMISTRY; REACTION PREDICTION; REACTION TYPES;

EID: 85012967324     PISSN: 23747943     EISSN: 23747951     Source Type: Journal    
DOI: 10.1021/acscentsci.6b00219     Document Type: Article
Times cited : (398)

References (53)
  • 1
    • 15944399730 scopus 로고    scopus 로고
    • Computer-aided organic synthesis
    • Todd, M. H. Computer-aided organic synthesis. Chem. Soc. Rev. 2005, 34, 247.
    • (2005) Chem. Soc. Rev , vol.34 , pp. 247
    • Todd, M.H.1
  • 3
    • 0007316055 scopus 로고
    • Centenary lecture. Computer-assisted analysis of complex synthetic problems
    • Corey, E. J. Centenary lecture. Computer-assisted analysis of complex synthetic problems. Q. Rev., Chem. Soc. 1971, 25, 455-482.
    • (1971) Q. Rev., Chem. Soc , vol.25 , pp. 455-482
    • Corey, E.J.1
  • 4
    • 0012063694 scopus 로고
    • Techniques for perception by a computer of synthetically significant structural features in complex molecules
    • Corey, E.; Wipke, W. T.; Cramer, R. D., III; Howe, W. J. Techniques for perception by a computer of synthetically significant structural features in complex molecules. J. Am. Chem. Soc. 1972, 94, 431-439.
    • (1972) J. Am. Chem. Soc , vol.94 , pp. 431-439
    • Corey, E.1    Wipke, W.T.2    Cramer, R.D.3    Howe, W.J.4
  • 5
    • 0001324343 scopus 로고
    • General methods of synthetic analysis. Strategic bond disconnections for bridged polycyclic structures
    • Corey, E.; Howe, W. J.; Orf, H.; Pensak, D. A.; Petersson, G. General methods of synthetic analysis. Strategic bond disconnections for bridged polycyclic structures. J. Am. Chem. Soc. 1975, 97, 6116-6124.
    • (1975) J. Am. Chem. Soc , vol.97 , pp. 6116-6124
    • Corey, E.1    Howe, W.J.2    Orf, H.3    Pensak, D.A.4    Petersson, G.5
  • 6
    • 0001397737 scopus 로고
    • Computerassisted synthetic analysis. Selection of protective groups for multistep organic syntheses
    • Corey, E.; Long, A. K.; Greene, T. W.; Miller, J. W. Computerassisted synthetic analysis. Selection of protective groups for multistep organic syntheses. J. Org. Chem. 1985, 50, 1920-1927.
    • (1985) J. Org. Chem , vol.50 , pp. 1920-1927
    • Corey, E.1    Long, A.K.2    Greene, T.W.3    Miller, J.W.4
  • 7
    • 0000183514 scopus 로고
    • Computer-assisted synthetic analysis. Facile man-machine communication of chemical structure by interactive computer graphics
    • Corey, E.; Wipke, W. T.; Cramer, R. D., III; Howe, W. J. Computer-assisted synthetic analysis. Facile man-machine communication of chemical structure by interactive computer graphics. J. Am. Chem. Soc. 1972, 94, 421-430.
    • (1972) J. Am. Chem. Soc , vol.94 , pp. 421-430
    • Corey, E.1    Wipke, W.T.2    Cramer, R.D.3    Howe, W.J.4
  • 10
    • 0000807036 scopus 로고    scopus 로고
    • Further Development of a Reaction Generator in the SOPHIA System for Organic Reaction Prediction. Knowledge-Guided Addition of Suitable Atoms and/or Atomic Groups to Product Skeleton
    • Satoh, H.; Funatsu, K. Further Development of a Reaction Generator in the SOPHIA System for Organic Reaction Prediction. Knowledge-Guided Addition of Suitable Atoms and/or Atomic Groups to Product Skeleton. J. Chem. Inf. Comput. Sci. 1996, 36, 173-184.
    • (1996) J. Chem. Inf. Comput. Sci , vol.36 , pp. 173-184
    • Satoh, H.1    Funatsu, K.2
  • 11
    • 0001134962 scopus 로고    scopus 로고
    • A Novel Approach to Retrosynthetic Analysis Using Knowledge Bases Derived from Reaction Databases
    • Satoh, K.; Funatsu, K. A Novel Approach to Retrosynthetic Analysis Using Knowledge Bases Derived from Reaction Databases. J. Chem. Inf. Comput. Sci. 1999, 39, 316-325.
    • (1999) J. Chem. Inf. Comput. Sci , vol.39 , pp. 316-325
    • Satoh, K.1    Funatsu, K.2
  • 12
    • 85026304090 scopus 로고    scopus 로고
    • ChemPlanner. http://www.chemplanner.com/.
  • 13
    • 0000274551 scopus 로고
    • Building and refining a knowledge base for synthetic organic chemistry via the methodology of inductive and deductive machine learning
    • Gelernter, H.; Rose, J. R.; Chen, C. Building and refining a knowledge base for synthetic organic chemistry via the methodology of inductive and deductive machine learning. J. Chem. Inf. Model. 1990, 30, 492-504.
    • (1990) J. Chem. Inf. Model , vol.30 , pp. 492-504
    • Gelernter, H.1    Rose, J.R.2    Chen, C.3
  • 14
    • 70349921822 scopus 로고    scopus 로고
    • No Electron Left Behind: A Rule-Based Expert System to Predict Chemical Reactions and Reaction Mechanisms
    • Chen, J. H.; Baldi, P. No Electron Left Behind: A Rule-Based Expert System To Predict Chemical Reactions and Reaction Mechanisms. J. Chem. Inf. Model. 2009, 49, 2034-2043.
    • (2009) J. Chem. Inf. Model , vol.49 , pp. 2034-2043
    • Chen, J.H.1    Baldi, P.2
  • 15
    • 57549109625 scopus 로고    scopus 로고
    • Synthesis Explorer: A Chemical Reaction Tutorial System for Organic Synthesis Design and Mechanism Prediction
    • Chen, J. H.; Baldi, P. Synthesis Explorer: A Chemical Reaction Tutorial System for Organic Synthesis Design and Mechanism Prediction. J. Chem. Educ. 2008, 85, 1699.
    • (2008) J. Chem. Educ , vol.85 , pp. 1699
    • Chen, J.H.1    Baldi, P.2
  • 17
    • 84864753920 scopus 로고    scopus 로고
    • Rewiring Chemistry: Algorithmic Discovery and Experimental Validation of One-Pot Reactions in the Network of Organic Chemistry
    • Gothard, C. M.; Soh, S.; Gothard, N. A.; Kowalczyk, B.; Wei, Y.; Baytekin, B.; Grzybowski, B. A. Rewiring Chemistry: Algorithmic Discovery and Experimental Validation of One-Pot Reactions in the Network of Organic Chemistry. Angew. Chem. 2012, 124, 8046-8051.
    • (2012) Angew. Chem , vol.124 , pp. 8046-8051
    • Gothard, C.M.1    Soh, S.2    Gothard, N.A.3    Kowalczyk, B.4    Wei, Y.5    Baytekin, B.6    Grzybowski, B.A.7
  • 19
    • 84877708271 scopus 로고    scopus 로고
    • Automated discovery of chemically reasonable elementary reaction steps
    • Zimmerman, P. M. Automated discovery of chemically reasonable elementary reaction steps. J. Comput. Chem. 2013, 34, 1385-1392.
    • (2013) J. Comput. Chem , vol.34 , pp. 1385-1392
    • Zimmerman, P.M.1
  • 21
    • 84958025992 scopus 로고    scopus 로고
    • Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways
    • Wang, L.-P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J. Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. J. Chem. Theory Comput. 2016, 12, 638-649.
    • (2016) J. Chem. Theory Comput , vol.12 , pp. 638-649
    • Wang, L.-P.1    McGibbon, R.T.2    Pande, V.S.3    Martinez, T.J.4
  • 22
    • 70349961724 scopus 로고    scopus 로고
    • Dynamics of 1, 3-Dipolar Cycloaddition Reactions of Diazonium Betaines to Acetylene and Ethylene: Bending Vibrations Facilitate Reaction
    • Xu, L.; Doubleday, C. E.; Houk, K. Dynamics of 1, 3-Dipolar Cycloaddition Reactions of Diazonium Betaines to Acetylene and Ethylene: Bending Vibrations Facilitate Reaction. Angew. Chem. 2009, 121, 2784-2786.
    • (2009) Angew. Chem , vol.121 , pp. 2784-2786
    • Xu, L.1    Doubleday, C.E.2    Houk, K.3
  • 24
    • 23944448062 scopus 로고    scopus 로고
    • ROBIA: A Reaction Prediction Program
    • Socorro, I. M.; Taylor, K.; Goodman, J. M. ROBIA: A Reaction Prediction Program. Org. Lett. 2005, 7, 3541-3544.
    • (2005) Org. Lett , vol.7 , pp. 3541-3544
    • Socorro, I.M.1    Taylor, K.2    Goodman, J.M.3
  • 25
    • 23944448062 scopus 로고    scopus 로고
    • ROBIA: A reaction prediction program
    • Socorro, I. M.; Taylor, K.; Goodman, J. M. ROBIA: a reaction prediction program. Org. Lett. 2005, 7, 3541-3544.
    • (2005) Org. Lett , vol.7 , pp. 3541-3544
    • Socorro, I.M.1    Taylor, K.2    Goodman, J.M.3
  • 26
    • 84973911419 scopus 로고    scopus 로고
    • Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
    • He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 IEEE Int. Conf. Comput. Vision (ICCV) 2015, 1026-1034.
    • (2015) 2015 IEEE Int. Conf. Comput. Vision (ICCV) , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 29
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih, V.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529-533.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1
  • 30
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver, D.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484-489.
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 32
    • 84867780136 scopus 로고    scopus 로고
    • ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning
    • Kayala, M. A.; Baldi, P. ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning. J. Chem. Inf. Model. 2012, 52, 2526-2540.
    • (2012) J. Chem. Inf. Model , vol.52 , pp. 2526-2540
    • Kayala, M.A.1    Baldi, P.2
  • 34
    • 0000293407 scopus 로고
    • The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service
    • Morgan, H. L. The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. J. Chem. Doc. 1965, 5, 107-113.
    • (1965) J. Chem. Doc , vol.5 , pp. 107-113
    • Morgan, H.L.1
  • 35
    • 77952772341 scopus 로고    scopus 로고
    • Extended-Connectivity Fingerprints
    • Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742-754.
    • (2010) J. Chem. Inf. Model , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 36
    • 84946476177 scopus 로고    scopus 로고
    • Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery
    • Pyzer-Knapp, E. O.; Li, K.; Aspuru-Guzik, A. Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery. Adv. Funct. Mater. 2015, 25, 6495-6502.
    • (2015) Adv. Funct. Mater , vol.25 , pp. 6495-6502
    • Pyzer-Knapp, E.O.1    Li, K.2    Aspuru-Guzik, A.3
  • 37
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester, P. J.; Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169-1175.
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 38
    • 33750321978 scopus 로고    scopus 로고
    • A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models
    • Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. J. Chem. Inf. Model. 2006, 46, 1984-1995.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 1984-1995
    • Zhang, S.1    Golbraikh, A.2    Oloff, S.3    Kohn, H.4    Tropsha, A.5
  • 39
    • 77954054048 scopus 로고    scopus 로고
    • Assessing Synthetic Accessibility of Chemical Compounds Using Machine Learning Methods
    • Podolyan, Y.; Walters, M. A.; Karypis, G. Assessing Synthetic Accessibility of Chemical Compounds Using Machine Learning Methods. J. Chem. Inf. Model. 2010, 50, 979-991.
    • (2010) J. Chem. Inf. Model , vol.50 , pp. 979-991
    • Podolyan, Y.1    Walters, M.A.2    Karypis, G.3
  • 42
    • 84936800622 scopus 로고    scopus 로고
    • Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
    • von Lilienfeld, O. A.; Ramakrishnan, R.; Rupp, M.; Knoll, A. Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quantum Chem. 2015, 115, 1084-1093.
    • (2015) Int. J. Quantum Chem , vol.115 , pp. 1084-1093
    • Von Lilienfeld, O.A.1    Ramakrishnan, R.2    Rupp, M.3    Knoll, A.4
  • 43
    • 33845379303 scopus 로고
    • Atom pairs as molecular features in structure-activity studies: Definition and applications
    • Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom pairs as molecular features in structure-activity studies: definition and applications. J. Chem. Inf. Model. 1985, 25, 64-73.
    • (1985) J. Chem. Inf. Model , vol.25 , pp. 64-73
    • Carhart, R.E.1    Smith, D.H.2    Venkataraghavan, R.3
  • 44
    • 84921799235 scopus 로고    scopus 로고
    • Development of a Novel Fingerprint for Chemical Reactions and Its Application to Large-Scale Reaction Classification and Similarity
    • Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. Development of a Novel Fingerprint for Chemical Reactions and Its Application to Large-Scale Reaction Classification and Similarity. J. Chem. Inf. Model. 2015, 55, 39-53.
    • (2015) J. Chem. Inf. Model , vol.55 , pp. 39-53
    • Schneider, N.1    Lowe, D.M.2    Sayle, R.A.3    Landrum, G.A.4
  • 45
    • 84877823346 scopus 로고    scopus 로고
    • Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds
    • Virshup, A. M.; Contreras-García, J.; Wipf, P.; Yang, W.; Beratan, D. N. Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds. J. Am. Chem. Soc. 2013, 135, 7296-7303.
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 7296-7303
    • Virshup, A.M.1    Contreras-García, J.2    Wipf, P.3    Yang, W.4    Beratan, D.N.5
  • 47
    • 18344363754 scopus 로고    scopus 로고
    • Prospective Exploration of Synthetically Feasible, Medicinally Relevant Chemical Space
    • Schurer, S. C.; Tyagi, P.; Muskal, S. M. Prospective Exploration of Synthetically Feasible, Medicinally Relevant Chemical Space. J. Chem. Inf. Model. 2005, 45, 239-248.
    • (2005) J. Chem. Inf. Model , vol.45 , pp. 239-248
    • Schurer, S.C.1    Tyagi, P.2    Muskal, S.M.3
  • 48
    • 84864753920 scopus 로고    scopus 로고
    • Rewiring Chemistry: Algorithmic Discovery and Experimental Validation of One-Pot Reactions in the Network of Organic Chemistry
    • Gothard, C. M.; Soh, S.; Gothard, N. A.; Kowalczyk, B.; Wei, Y.; Baytekin, B.; Grzybowski, B. A. Rewiring Chemistry: Algorithmic Discovery and Experimental Validation of One-Pot Reactions in the Network of Organic Chemistry. Angew. Chem. 2012, 124, 8046-8051.
    • (2012) Angew. Chem , vol.124 , pp. 8046-8051
    • Gothard, C.M.1    Soh, S.2    Gothard, N.A.3    Kowalczyk, B.4    Wei, Y.5    Baytekin, B.6    Grzybowski, B.A.7
  • 49
    • 0003922512 scopus 로고    scopus 로고
    • 6th ed.; Pearson: Upper Saddle River, NJ, USA
    • Wade, L. G. Organic chemistry, 6th ed.; Pearson: Upper Saddle River, NJ, USA, 2013; p 377.
    • (2013) Organic Chemistry , pp. 377
    • Wade, L.G.1
  • 50
    • 84930655650 scopus 로고    scopus 로고
    • Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?
    • Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminf. 2015, 7, 1-13.
    • (2015) J. Cheminf , vol.7 , pp. 1-13
    • Bajusz, D.1    Rácz, A.2    Héberger, K.3
  • 52
    • 84938378229 scopus 로고    scopus 로고
    • Hyperopt: A Python library for model selection and hyperparameter optimization
    • Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D. D. Hyperopt: a Python library for model selection and hyperparameter optimization. Comput. Sci. Discovery 2015, 8, 014008.
    • (2015) Comput. Sci. Discovery , vol.8 , pp. 014008
    • Bergstra, J.1    Komer, B.2    Eliasmith, C.3    Yamins, D.4    Cox, D.D.5
  • 53
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine Learning in Python
    • Pedregosa, F.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2825-2830
    • Pedregosa, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.